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A PRODUCT TYPE NON-PARAMETRIC ESTIMATOR OF
THE CONDITIONAL DENSITY BY QUANTILE
TRANSFORM AND COPULA REPRESENTATION.

By OLIVIER P. FAUGERAS

L.S.T.A, Université Paris 6

We present a new non-parametric estimator of the conditional
density of the kernel type. It is based on an efficient transformation of
the data by quantile transform. By use of the copula representation, it
turns out to have a remarkable product form. We study its asymptotic
properties and compare its bias and variance to competitors based
on nonparametric regression.

1. Introduction .

1.1. Motivations. For predicting the response Y of a real valued input
variable X at a given location x from an independent identically distributed
sample ((X;,Y;);4 = 1,...,n), it is of great interest of estimating not only
the conditional mean or regression function E(Y|X = z), but the full con-
ditional density f(y|z). Indeed, estimating the conditional density is much
more informative, allowing not only to recalculate the (predicted) condi-
tional expected value E(Y|X) and conditional standard deviation from the
density, but also to provide the general shape of the conditional density.
This is especially important for multi-modal densities, which often arise
from nonlinear phenomenas, where the expected value might be nowhere
near a mode. Therefore, considering the expected value as the best predic-
tor, (which is the case from a mathematical standpoint for a decision based
on the choice, yet arbitrary, of the Ly norm) is questionable. Moreover, for
situations in which confidence intervals are preferred to point estimates, the
estimated conditional density is an object of obvious interest.

A natural approach to estimate the conditional density f(y|x) of Y given
X = x would be to exploit the identity

~ fxy(z,y)
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where fxy and fx denote the joint density of (X,Y) and X, respectively. By
introducing Parzen-Rosenblatt kernel estimators of these densities, namely

R 1
faxy(z,y) 1= - > K (X — 2)Kp(Y; — y)
i=1
. 1
fn’X(l‘) L= ; ZK}IL’(XZ - l‘)
i=1

where K and K’ are kernels with their associated sequence of bandwidth h
and 1/ going to zero as n — oo, one can construct the quotient

_ fn,;XY(xa y)
fnx(z)

and obtain an estimator of the conditional density.

As pointed out by numerous authors, see e.g. Fan and Yao [2005] chap-
ter 6, this approach is equivalent to the one arising from considering this
conditional density estimation problem in a regression framework. Indeed,
let F(y|x) be the cumulative conditional distribution function of Y given
X = z. It stems from the fact that

fr(ylz) -

E (1|y_y‘§h‘X = x) = F(y + hlz) — F(Y — hlz) =~ 2h.f(y|x)

as h — 0, that, if one replace the expectation in the above expression by its
empirical counterpart, one can apply the usual local averaging methods and
perform a regression estimation on the synthetic data ((1/2h)1)y,_y<p; i =
1,...,n). By a Bochner type theorem, one can even replace the transformed
data by its smoothed version

1 Y-y
Y = K,(Y; —y) ==K [ = .

In particular, the popular Nadaraya-Watson regression estimator

iz Vi K (Xi — x)

£2
n x = n
fo(ylz) UKL (X, —2)

reduces itself to the same estimator of the conditional density of the kernel

type as before

Yie1 Kn(Yi — y)- K (X — )
> Ky (X — )

falylz) = = falyle).
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However, these equivalent approaches suffer from several drawbacks: first,
by its form as a quotient of two estimators, the probabilistic behavior of the
Nadaraya-Watson estimator (or its local polynomial counterpart) is tricky
to study. It is usually dealt with by a centering at expectation for both nu-
merator and denominator and a linearisation of the inverse, see e.g. Ferraty
and Vieu [2006], Fan and Yao [2005], or Bosq [1998] for details. Second, at
a conceptual level, one could argue that implementing regression estimation
techniques in this setting is, in a sense, unnatural: estimating a density, even
if it a is conditional one, should resort to density estimation techniques only.
Finally, practical implementations of these estimators can lead to numerical
instability when the denominator is close to zero.

To remedy these problems, we propose an estimator which builds on the
idea of using synthetic data, i.e. a representation of the data more adapted to
the problem than the original one. By transforming the data, the estimator
turns out to have a remarkable product form. Its study then reveals to be
particularly simple: it reduces to the ones already done on nonparametric
density estimation.

The rest of the paper is organized as follows: in the rest of this section,
a brief overview of the literature is sketched. In section 2 we introduce the
quantile transform and the copula representation which leads to the defini-
tion of our estimator (section 3). In section 4, the main asymptotic results
about our conditional density estimator are established and compared in sec-
tion 5 to those of other competitors. Proofs are mainly based on a series of
preliminary lemmas which are given in the appendix. For sake of simplicity
and clarity of exposition, we have limited ourselves to unidimensional input
variables X. However, all results can be easily extended to the multivariate
case.

1.2. Owerview of the literature. Nonparametric conditional density esti-
mation was not much investigated since it was first studied by Rosenblatt
[1969]. Recent years have witnessed a renewed interested, starting with Hyn-
dman, Bashtannyk and Grunwald [1996], who improved Rosenblatt’s kernel
based estimators. See also the book of Ferraty and Vieu [2006] for an exten-
sion for functional data.

Taking advantage of the regression formulation, Fan, Yao and Tong [1996]
proposed a conditional density estimator which generalises the kernel one by
use of the local polynomial techniques. In particular, it allows to tackle with
the bias issues of the kernel smoothing. However, and unlike the former, it
is no longer guaranteed to have positive value nor to integrate to 1 with
respect to y. With these issues in mind, Hyndman and Yao [1998] built on
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local polynomial techniques and suggested two improved methods, the first
one based on locally fitting a log-linear model and the second one on con-
strained local polynomial modeling. An overview can be found in Fan and
Yao [2005] (chapter 6 and 10). Very recently, Gyorfi and Kohler [2007] stud-
ied a partitioning type estimate and studied its properties in total variation
norm.

2. The quantile transform and copula function.

2.1. The quantile transform. The idea of transforming the data is not
new. It has been used to improve the range of applicability and performance
of classical estimation techniques, e.g. to deal with skewed data, heavy tails,
or restrictions on the support (see e.g. Devroye and Lugosi [2001] chapter
14 and the references therein, and also Van der Vaart [1998] chapter 3.2 for
the related topic of variance stabilizing transformations). In order to make
inference on Y from X, a natural question which then arises is, what is the
“best” transformation, if this question has a sense. As one can note from the
above references, the “best” transformation is very linked to the distribution
of the underlying data. We will see below that the natural candidate is the
quantile transform.

The quantile transform is a well-known probabilistic trick which dates
back at least to Skorohod [1956] and the so-called Skorohod Representation
Theorem. It is used to reduce proofs for arbitrary real valued random vari-
ables X to ones for random variables U uniformly distributed on the interval
[0,1], e.g. in empirical process theory. Moreover, it is at the core of some
invariance properties in statistics and probability theory: for example, one
can show by this device, that the law of the Kolmogorov-Smirnov statistic

sup |, (z) — F(z)]
TER

is independent of F. (See e.g. Shorack and Wellner [1986], chapter 1).
First things first, let’s recall the definition of the generalised inverse of an
increasing function:

DEFINITION 2.1.  For a non-decreasing function F' : R — [0, 1], its gen-
eralised inverse QQ is defined as

Q(t) :==inf{z: F(z) > t}.

If F is continuous, then @ is uniquely defined. We then have that z < Q(¢)
if and only if F(x) < t.
The quantile transform is based on the following well-known theorem:
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THEOREM 2.2. For any real valued random variable X with cumulative
distribution function F and quantile function Q, the following properties
hold :

(i) Whenever F is continuous, the random wvariable U = F(X) is uni-
formly distributed on (0,1);
(i) Conversely, when F is arbitrary, if U is a uniformly distributed random

variable on (0,1), one has the distributional identity: X 4 Q).
PROOF. See e.g. Shorack and Wellner [1986] chap. 1. O

As a consequence, given a sample (X1, ..., X,) of random variables with
common c.d.f. F' sitting on a probability space (€,.4,P), one can always
enlarge this probability space to carry a sequence (Uy,...,U,) of uniform
(0,1) random variables such that U; = F(X;), that is to say to construct a
pseudo-sample with a prescribed uniform marginal distribution.

2.2. The copula representation. Formally, a copula is a bi-(or multi)variate
distribution function whose marginal distribution functions are uniform on
the interval [0,1]. Indeed, solving a problem formulated by Fréchet [51],
Sklar [59] proved the following fundamental result:

THEOREM 2.3.  For any bivariate cumulative distribution function Fx y
on R2, if the marginal distribution functions Fx, Fy are continuous, then
there exists some function C : [0,1]? — [0, 1], called the dependence or copula
function, such as

(2) Fxy(z,y) =C(Fx(z),Fy(y)) , —oo <,y < +00

This representation is unique with respect to (Fx,Fy). The copula func-
tion C is itself a cumulative distribution function on [0,1]? with uniform
marginals.

This theorem gives a representation of the bivariate c.d.f. as a function
of each univariate c.d.f. In other words, the copula function captures the
dependence structure among the components X and Y of the vector (X,Y),
irrespectively of the marginal distribution Fx and Fy. Simply put, it allows
to deal with the randomness of the dependence structure and the randomness
of the marginals separately.

From now on, we assume that the copula function C(u,v) has a density
c(u,v) with respect to the Lebesgue measure on [0, 1]? and that Fx and Fy
are differentiable with densities fx and fy. Formula (2) enables us to derive
explicit formulas of the following quantities:
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e the joint density,

0*Fxy (x,
Frv(eyy) = ZEED) by el (@), By (1)
xdy
. 0%2C(uw) . . .
where c(u,v) := =552 is the above mentioned copula density;

e the conditional density,

B Frxley) = XY ey (), e ()
[x(x)

and symmetrically for the laws of X|Y. For more details regarding copulas
and their properties, one can consult for example the book of Joe [1997].

As we argued in our introduction, Probability does not mix well with
Algebra: the law of a random variable transformed by an algebraic operation,
and especially the inverse, is not easy to tackle with. Formula (3) is thus of
considerable importance since it has turned the conditional density formula
(1) of the ratio type into a product one. This formula is the backbone of our
article where the product form will be especially relevant from a statistical
point of view, when we will turn to the estimation issue, which we now deal
with in the next section.

3. Presentation of the estimator of the conditional density. From
now on, we simplify notations and note f and F' the density and c.d.f. of X,
and g and G those of Y. We can rewrite the previously stated formula (3)
as

fyix(x,y) = g(y)e(F(z), G(y)).

A natural plug-in approach to build an estimator of the conditional density
is to use estimators of each of the following quantities:

1. the marginal density g of Y,
2. the c.d.f F(x) and G(y) of X and Y respectively,
3. the second crossed derivative ¢(u,v) of the copula function C(u,v).

To this purpose, we propose to use:

1. a Parzen-Rosenblatt kernel type non parametric estimator of the marginal
density g of Y,

1 & y—Y;
0, = — K
9n(y) n; 0( e )
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2. the empirical distribution functions F,(z) and G, (y) for F(x) and
G(y) respectively,

4) Faa) =13 Ixs
j=1

) Caly) = 3 v,z
j=1

Concerning the copula density c(u,v), one can note that c(u,v) is the
joint density of the transformed variables (U, V) = (F(X), G(Y")). Therefore,
¢(u,v) can be estimated by the bivariate Parzen-Rosenblatt kernel type non
parametric density (pseudo) estimator,

v (0

where K is a bivariate kernel and R/, its associated bandwidth. For simplicity,
we restrict ourselves to product kernels, and the pseudo estimator ¢,, writes

itself v
x5 m ()

Nonetheless, since F' and G are unknown, the random variables (U;,V;)
are not observable, i.e. ¢, is not a true statistic. Therefore, we approxi-
mate the pseudo-sample (U;,V;),i = 1,...,n by its empirical counterpart
(Fn(X;),Gn(Y2)),1 = 1,...,n where F, and G,, are the empirical distri-
bution functions (4) and (5) respectively. We therefore obtain a genuine

estimator of ¢(u,v)
u— Fn(Xi) n(Yi
bn
Eventually, the conditional density estimator writes itself
F,(X;
= [ 300 (4 )] [ (BT

e <Fn(y) ;nGn(Yi))]

(Usz)>

n

or, under a more compact form,
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To our knowledge, the estimator studied in this paper has never been pro-
posed in the literature. However, some connections can be made to the ones
proposed by Gasser and Miiller [1979] in the context of regression estima-
tion, which tackles the issue of having a random denominator. Indeed, their
estimator of the regression function, which result from an improvement of
the one initially proposed by Priestley and Chao [1972], can be considered as
a convolution type estimator, which first transform the design to a uniform
(random) one. These estimators are shown below:

1 Xit1n T —u
GM(1
g <>=h—2{/m (55 s
1 & x— X;
M(2) i,n
- h_; i+1n — zn)K (T) YVM

n n

where X, denotes the ith order statistic of the sample (Xi,...,X,) and
Y[; its corresponding Y value.

4. Asymptotic results. For stating our results, we will have to make
some regularity assumptions on the densities f, ¢ and the kernels Ky, K7,
K5. One will note that these assumptions are far from being minimal but are
somehow customary in nonparametric density estimation (See section 6.2 for
details). These assumptions are presented below: We note the ith moment
of a generic kernel (possibly multivariate) K as m;(K) := [u'K (u)du, and
the L, norm of a function h by ||h||, := [ hP. We use the sign ~ to denote
the order of the bandwidths.

Assumptions on the Kernel:

e Assumption (K-0)
(i) K is of bounded support and of bounded variation;
(ii) K > 0 and is bounded above by a constant C
(iii) K is a first order kernel: mo(K) = 1, m1(K) = 0 and mo(K) <
+00.
e Assumption (K-1) K satisfies a Lipschitz condition. For a bivari-

ate K of the product type, one can write it as follows: There exists
constants C; and Cy, such that for every (u,v) € [0,1]% x [0,1]?,

| K (u1) Ko (ug) — Kq(vi)Ka(v2)| < Cyur — v1] + Co |ug — v2

e Assumption (K-2) K is twice differentiable with bounded second
partial derivatives.
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Regularity assumptions on the density:

e Assumptions (f-0): The density is twice differentiable with bounded
second derivative on its support.

e Assumptions (f’-0): In addition to the previous assumption, the
density is bounded and non-vanishing on an interval [a, b].

In the remainder of this paper, we will always suppose that g and c satisfy

assumptions (f-0), and the kernels Ky and K assumptions (K-0).

4.1. Weak consistency of the estimator. We have the following weak con-
sistency theorem:

THEOREM 4.1. If the bivariate kernel K satisfy the Lipschitz condition
(K-1), and if hy, ~n~"'/5, a, ~ b, ~n='/5, then

Falylz) = f(ylz) + Op(n™"%).
PROOF. We have the following decomposition,

Falyla) = f(ylz) = du()én(Fu(2), Gu(y) — g(y)e(F(2), G(y))
= (9n(y) = 9(v) én(Fu(z), Gn(y))
+9() (en(Fn(z), Gnly)) — en(F(2), G(y)))
+9) (en(F(2),G(y)) — c(F(x),G(y)))
:= D14 Dy + Ds.
Since || K[|, < C, ||én]|o, < C, which in turn entails

|D1| < Clgn(y) —9(y)|-

By invoking classical consistency results for the kernel unidimensional den-
sity estimator of section 6 (lemma 6.2), we get

|D1| = Op (

)+ 0(h) = 0,0~

for an optimal choice of h, ~ n~1/>. By invoking again consistency results
for the kernel bidimensional density estimator (lemma 6.3), we also get

Dy = Op(n~'7%)
for a choice of a, ~ b, ~ n~Y/6. Therefore, fot this choice of a, and by,
lemma (6.4), entails
1
Vnay,

We may then conclude. O

Dy =Op ( ) = Op(n~1/3).
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We also have weak consistency results uniformly on sets:

COROLLARY 4.2. In addition, if g and c also satisfies assumption (f’-0),
then hy, ~ (Inn/n)"°, a, ~ b, ~ (Inn/n)'/5 entails

A lnn\/3
yil[lal,)b}|f (ylz) = f(ylz)| = Op (( " > )

PrOOF. Use the same decomposition as before and majorize in uniform

norm. Then use the results in uniform norm of section 6 (lemma 6.2 and
6.3). O

REMARK 1. Qur estimator is optimal in the sense that it reaches the
minimazx rate of convergence.

4.2. Almost sure convergence (strong consistency).

THEOREM 4.3. If the bivariate kernel K satisfy the Lipschitz condition
(K-1), then, for h, ~ (Inn/n)'/%, a, ~ b, ~ (Inn/n)"/6, we have

fn(y‘x) = f(ylz) + Oa-S-((lnn/n)l/g)'

PRrROOF. It follows the same lines as the preceding theorem, but uses the
a.s. consistency results of the kernel density estimators in lemmas 6.2 and
6.3 and corollary 6.5. It is therefore omitted. O

COROLLARY 4.4. With the same hypothesis, we have that

Falyl2) — (y])] = O ((m_n>l/3> |

n

sup
yeER
PROOF. Omitted for the same reasons. O

4.3. Convergence in distribution.

THEOREM 4.5.  If the kernel K satisfy the assumption (K-2) of lemma
(6.6), then hy, ~ n~% a, ~ b, ~n"1% entails

'3 (falyle) = flyle)) S N (0,90)F(wl2)IK]3) -
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PrOOF. Use the decomposition,

Fnylz) — f(ylz) —gn( ) n( (:U),G (¥) — g(y)e(F(x), G(y))
+g( )( ( ( ), Gn(y)) — cn(F(z),G(y)))
)

+9) (en(F(2),G(y)) — c(F(x),G(y)))
:= D14 Dy + Ds.

Since, §n(y) = g(y)+O0p(n~2/%) and |¢&,| < C for a bounded bivariate kernel,
we have n'/3|D;| = Op(n~'/1%) = op(1). By the second approximation
lemma (6.6), |Dy| = Op(n="2) and n'/3|Dy| = Op(n=%) = op(1). The
last term, is asymptotically normal at rate n!/3 by the result of section 6,
lemma 6.3:

03 [en(u,0) = o(u, v)] S N (0, cu,v) | K3) -
That is to say,
d
n3g(y) [ea(F(2), G(w)) — e(F (@), Gw)] 4 N (0,6°(W)e(F (), Gw)) | K13)
An application of Slutsky’s lemma yields the desired result. O

For a vector (y1,...,yq), one can get a multidimensional version of the
convergence in distribution (fidi convergence):

THEOREM 4.6. With the same assumptions,

1/3 << Fulyilz) — f(yilz) ) i1 m) A pr(m)
Vo) Fyile) 1K)

where N(™) s the standard m-variate normal distribution.

PROOF. Omitted. It follows the lines of e.g. Bosq [1998], theorem 2.3. [
4.4. Asymptotic Bias.

THEOREM 4.7.  With assumptions (K-2) of lemma 6.5, and the choice
of the bandwidth h, ~ n_1/5, an >~ b, ~ n_1/6, we have

By = E(falule)) — £le) = D 2P @), Gw). K) + o)
with
Vic(a,b, K) Z aulau] / wiu; K (u)du.
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PrROOF. We omit x and y. We still have the additive decomposition,

fn(y‘x) — fWlz) = (Gn — 9)Cn + g (én — cn) + g (cn — )
= D1+ Dy + Ds.

The last term is, up to a multiplicative factor, the bias of the kernel density
estimator ¢,, in dimension 2. Therefore, lemma 6.3 yields

9?c(u,v) )
Z i, /uiqu(u)du—Fo(an).

1<e,5<2

E(D3) = g(y)E(cn = ¢)

We will show below that the other terms are negligible compared to Djs:
We go further in the decomposition of Dy

A~ A~

(gn - g)én = (gn - g)(én - Cn) + (gn - g)(cn - C) + (gn - g)c
: = D11+ D19 + Dq3s.

By lemma 6.2 the bias of g, (y) is

TTLQ(K())

B(gn(v)) — 9(y) = ——9" (W)hi, + o(h3,).

By Cauchy-Schwarz inequality, we can bound the product terms as D12 and
D14 as follows

E(Diz) = B~ 9)en — ) < (B~ 0)?)"” (Blew — )"

and
B(D11) = B — 9)(én — ) < (B —92) " (B — )"

By lemma 6.3 |¢, — ¢, | £ 0and |én — cp| is trivially asymptotically uniformly
integrable since the kernels are bounded. Therefore, F(é, — ¢,)? = o(1) and
the term E(D11) = E(gn — g)(én — cn) = o(h2) is asymptotically negligible.
The term (E(cn —¢)?)Y/2 is the root of the MSE of ¢,, and is of order a2 while
(E(gn — 9)?)"/? is the root of the MSE of §,, and is of order h2. Therefore
E(Ds2) = O(h2a2) is also negligible. In turn, E(D1) = O(h2) is negligible
compared to F(Ds3).

For the last term Do, first note that ||&, — ¢, ||oo is bounded uniformly in

n. By Fatou’s reversed lemma,

(7) limsup E||é, — ¢nl|loo < Elimsup||é, — ¢nlloo-
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Now, a careful analysis of lemma 6.5 shows that ||¢, — ¢||e is bounded
above by terms such as
C||IF = FullocA

with C' a constant, A a random variable depending of x, y, and such as
A — E(A) < +00 a.s.. The law of iterated logarithm (lemma 6.1) entails

1 /1
limsup ||F), — Flloc = = H2n
2 n

Since limsup A = E(A) ass.,

|
limsup ||é, — enlloo < 7 d2n
' n

where C” is a constant. In turn, together with (7),

|
limsup E(||¢, — cnlloo) < C7 —nzn,
n

yieding F(||én —cnlloo) = 0(n~1/3). Therefore E(Ds) = o(n~/3) is negligible
compared to E(Ds). O

4.5. Asymptotic Variance and Mean Square Error. The asymptotic vari-
ance has already been derived in theorem 4.5:

Vo i= Var(f(ylz)) = n=*g(y) f (y])|| K5 + o(n~/?)

Together with the computation of the asymptotic bias of the preceding the-
orem, we get the asymptotic mean squared error as a corollary:

COROLLARY 4.8. with the previous assumptions, the Asymptotic Mean
Squared Error (AMSE) is

9(y) (V2e(F(2),G(y), K))
4

AMSE =n"*g(y) ( + f(y!w)!\K!@) +o(n=/?%)
which can also be written as

(V2e(F(2),G(y), K))”

4

AMSE:n‘%fQ(y)( +C(F(w),G(y))!\K!@)JrO(n_%)-

5. Comparison with other estimators .



14 OLIVIER FAUGERAS

5.1. Presentation of alternative estimators. For convenience, we recall
below the definition of other estimators of the conditional density encoun-
tered in the literature and summarize their bias and variance properties. We
will note the bias of the ith estimator fi(y|z) by E; and its variance by V;.

1. Double kernel estimator: as defined in the introduction section of
our paper by the following ratio,

K, (Xi = 2) K, (Yi — )

n

3=
)
it

fV(ylo) =

S|=

K, (Xi — )
1

(2

e Bias:

_ hima(K) <2f’(:v) ofylz)  Pfyle) <h2>262f(y|:v)>

Er 2 f(z) Oz Ox? h1 0y?

+o0(h?+h3)
e Variance:

K f(yl=) 2 1
v = LT (151 asie)) + o ()

2. Local polynomial estimator: Set

n

2
RO, z,y) := Z (KM(YZ- —y) — Z;:o 0;(X; — ;n)]> K (X — x),

i=1

then the local polynomial estimator is defined as
£ (yle) := 0o,

where éxy = (éo, 0,..., 0,) is the value of # which minimizes R(6, z,y).
This local polynomial estimator, although it has a superior bias than
the kernel one, is no longer restricted to be non-negative and does not
integrate to 1, except in the special case r = 0. From results of Fan,
Yao and Tong [1996], we get for the local linear estimator (see Fan
and Yao p256),

e Bias:

_ Mma(K) 8 (ylz) | hagma(K) 07 (yle)

2 2
D) ax2 D) ay2 + O(hl + h2)

ks
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e Variance:

v = IEIBIE N3/ (y]2) ( 1 )
2 — (@)
nhlhgf(l') nh1h2

3. Local parametric estimator: Set
1(0,2,y) == > (Kn, (Vi — AX; — 2,0))° K}, (X; — x)
i=1
where

A(r.0) = | <Z;:0 0;(X; — x)j)

and [(.) is a monotonic function mapping R — R, e.g. I(u) = exp(u).
Then
FN(yle) = A(0,6) = 1(bo).

e Bias:

Ej3 = hin(K')

P flylz)  I*A(0,6sy) n h3ma(K) 0* f (y|)
Ox? Ox? 2 Oy?

+ o(h? + h3)

e Variance:

_ T(E K f(yle) 1
V3 - nhlhgf(l') to (nh1h2>

where 1 and 7 are kernel dependent constants.

4. Constrained local polynomial estimator: A simple device to force
the local polynomial estimator to be positive is to set 6y = exp(«) in
the definition of Ry to be minimized. The constrained local polynomial
estimator f4(y\x) is then defined analogously as the local polynomial
estimator f2(y|z). We have:

e Bias:

_h2m2(2 ) 2?);%’95) +h%m2éK) 32](;(;42‘ ) (h +h2)

e Variance:

K f(yl) 1
= i haf (@) +°<nh1h2)
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5.2. Asymptotic Bias and Variance comparison. All estimators have (hope-
fully) the same order in their asymptotic bias and variance terms. The main
difference lies in the constant terms which depend on unknown densities.

Bias: Contrary to all the alternative estimators whose bias involves deriva-
tives of the full conditional density, one can note that our estimator’s one
only involves the density of Y and the derivatives of the copula density. To
make things more explicit, the terms involved, e.g. in the local polynomial
estimator, write themselves as the sum of the derivatives of the conditional
density,

0 f(yla) N 0 f (ylx)
T 922 0y?

that is to say,

9c(F(x),G(y)) 0%c(F (x),G(y))

~ fl2)gy)——g—+ P (@)g(y) u?

C X 2C x

whereas our (g(y)/2)V2c(F(x),G(y), K) term writes itself, modulo the con-
stants involved by the kernel, as

~ o) (aQC(F(x)’ CW) | FelF@).CE) | ,Pc(F(z). G<y>>> |

Ou? Ov? Oudv

It then becomes clear that we have a simpler expression, with less unknown
terms, as is the case for competitors which do involve the density f and its
derivative f’ of X and the derivative ¢’ of the Y density.

Variance: The variance of our estimator involves a product of the density
g(y) of Y by the conditional density f(y|z),

9W)f (ylz) = g*(y)e(F(x), G(y)
whereas competitors involve the ratio of f(y|z) by the density f(z) of X

fylz) _ 9(y)

It is a remarkable feature of the estimator we propose, that its variance
does not involve directly f(x), as is the case for the competitors, but only
its contribution to Y, through the copula density. This reflects the ability
announced in the introduction of the copula representation to have effec-
tively separated the randomness pertaining to Y alone, from the dependence
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structure of (X,Y’). Moreover, our estimator also does not suffer from the
unstable nature of competitors who, due to their intrinsic ratio structure, get
an explosive variance for small value of the density f(x), making conditional
estimation difficult, e.g. in the tail of the distribution of X.

6. Appendix : auxiliary results. In this section, we gather some pre-
liminary results which we will need as basic tools for the demonstrations of
section 4. In subsection 6.1, we recall classical results about the convergence
of the Kolmogorov-Sminorv statistic. Next, we make a brief overview of ker-
nel density estimation and apply these results to the estimators g, (section
6.2) and ¢, (section 6.3). Eventually, we need two approximation lemmas of
¢n by ¢, to prove the consistency and asymptotic normality of our estimator,
in sections 6.4 and 6.5 respectively.

6.1. Approximation of the pseudo-variables F'(X;) by their estimates F,, (X;).
Let us note || F||,, the infinite (also called uniform) norm

| F[| o = sup [F(z)].
rzeR

Let (X;,i = 1,...,n), be an i.i.d. sample of the random variable X with
common c.d.f. F. The Kolmogorov-Smirnov (K-S) statistic is defined as
D,, = ||F,, — F| . We have already seen that it is invariant w.r.t to the
c.d.f. F. The famous Glivenko-Cantelli theorem asserts its convergence to
zero in probability: ||F, — F||,, = Op(1). Later Kolmogorov and Smirnov
derived a central limit theorem for a continuous F'

Visup|Fy(x) = F(x)| % p

yielding [|F,, — F||,, = Op(1/y/n). Chung [1949] derived the optimal a.s.
rate for i.i.d. observations:

1
— F =5 as.

lim sup o

n
— || F
n—oo 2Inlnn 1Fn

[Inl
||Fn _FHOO = Og.s. -t
n

REMARK 2. This kind of theorems can be considerably generalized and
rederived from functional central limit theorems of the Donsker type and
invariance principles. They allow to give upper bounds for the suprema of
empirical processes indexed by sets (the sets in our case would be | — oo, z])
or functions.

which entails
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Let’s collect these results in an approximation lemma:

LEMMA 6.1.  For an i.i.d. sample from a continuous c.d.f. F,

© 17 = Fllc = Ous. (\/ lnf”)

1
o) |17~ Pl = 0r (=)

As said earlier, although the random variables (U;) = (F(X;)) are not
observable, since F' is unknown, one can naturally approximate them by the
statistics F,,(X;). The lemmas above gives the speed of this approximation
: since

[F(X3) — Fu(X3)| < sup |F(z) = Fu(z)| = [[Fo — Fll  as.,
xe

we have that, for every (i < n) € N2,

(10) \F(X,) - Fn(XZ)’ = Oq.s. ( 1I121n)
(1) F(X) ~ ()] = 0p (=)

with the suitable previous assumptions.

6.2. Convergence of the kernel density estimator §,. We recall below
some classical results about the convergence of the Parzen-Rosenblatt kernel
non-parametric estimator fn of a d-variate density. Since its inception by
Rosenblatt [1956] and Parzen [1962] , it has been studied by a great deal
of authors. See e.g. Scott [1992], Prakasa Rao [1983], Nadaraya [1989] for
details. See also Bosq [1998] chapter 2.

It is well known that the bias of the kernel density estimator depends on
the degree of smoothness of the underlying density, measured by its num-
ber of derivatives or its Lipschitz order. In order to get the convergence of
the bias to zero, it suffices to assume that the density is continuous (See
Parzen [1962]). To get further information on the rate of convergence of the
estimator, it is necessary to make further assumptions. Moreover, for ker-
nel functions with unbounded support, the rate of convergence also depends
on the tail behaviour of the kernel (See Stute [1982]). Therefore, for clarity
of exposition and simplicity of notations, we will make the customary as-
sumptions that the density is twice differentiable and that the kernel is of
bounded support. We then have the following results:
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e Bias: if assumptions (f-0) and (K-0) are verified, then for a z in the
interior of the support of f, with h,, — 0 and nh? — oo:

R h2 82
Efn(z) = f(z) + 7/ Z %Zizﬂ((z)dz + o(h2).
fa 1<0j<d 10T

e Variance: With the same assumptions,

Var [fu@)] = Ly 1ol + 0 (7).

e Pointwise asymptotic normality: under the previous conditions,

Vb (£ul@) = Bfa(@)) 5 N, £ @) | Kol})

For a choice of the bandwidth as h, ~ n~/(@*+4) which realizes the opti-
mal trade-off between the bias and variance, one gets the following rates for
the convergence

e in probability:
‘fn(x) N ‘ _ —2/ d+4))

which is the optimal speed of convergence in the minimax sense in the
class of density functions with bounded second derivatives, according

to Stone [1980].
e in law:

/@ [£(2) = f(2)] 5 N (0, f(2) |1 Koll3)

One can refine these results by a chaining argument to get uniform rate
of convergence on a compact set (see Bickel and Rosenblatt [1973]): for f
bounded and non-vanishing on [a, b],

sup ‘fn(x) - Ef"(x)‘ =Op l(%)m] '

z€la,b]

Therefore, for the choice of the bandwidth h,, ~ (Inn/n)Y%* which realizes
the optimal trade-off between the bias and variance, one gets the following

result in probability:
‘ l(lnn)2/(d+4)]

which is the optimal speed in the minimax sense in the class of density
functions with bounded second derivatives, according to Hasminskii [1978].

xe[a,b}
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For almost sure results, we have (see e.g. Stute [1982], Bosq [1998] chapter
2 and Fan and Yao [2005] chapter 5), under similar hypothesis and h,, =
O((Inn/n)'/(@+4)) that

e pointwisely, for a fixed value of x in the interior of the support of f,

fn(@) = f(z) = Oqss. <<ln—n>2/(d+4)>

n

e on a compact set,

sup
z€[a,b)

fula) — £(@)| = Ous. <<h17n)2/(d+4)> |

Applied to our case (d = 1), we can summarize these results for further
reference in the following lemma for the estimator g, of the density g of Y:

LEMMA 6.2.  If the kernel Ko and the density g of Y satisfy assumption
(K-0) and (f-0) respectively, then for a point y in the interior of the support
of g, and a bandwidth chosen such as hy, ~n~Y°, we have

190 (y) — 9(y)| = Op(n~?/?)

n?/% (G (y) — 9(u)] % N (0, 9(y) [ Koll3) -

With the same assumptions, but for a bandwidth choice of h,, ~ (Inn/n)

9n(y) = 9(y) = Oa.s. ((%)wj :

If, in addition, g satisfies assumption (f’-0), then, for a choice of a band-
width such as hy, ~ (Inn/n)Y/?,

sup 9n(y) = 9(y)| = Ou.s. ((h%n)m) '

y€la,b]

1/5
)

6.3. Convergence of ¢, (u,v). Once one convinces oneself that ¢, (u,v) is
simply the kernel density estimator of the bivariate density c(u,v) of the
pseudo-variables (U, V'), one directly draws its convergence properties by
applying the results of the preceding subsection with d = 2:

LEMMA 6.3. If the bivariate kernel K = K1 Ko and the bivariate density
¢ satisfy assumptions (K-0) and (f-0) respectively, then, for a choice of
n =~ by ~n"Y5 for every (u,v) € (0,1)%, we have:
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e Pointwise consistency: ¢,(u,v) — c¢(u,v) = Op(n="3);
e Bias: with obvious notations,

Ecp(u,v) = Z O e(u,v) /uiqu(u)du + o(a?);

1<4,5<2 8ulau]

o Asymptotic normality:
1/3 - 4N (0 K2
n [cn(u,v) c(u,v)] ~ ,c(u,v) ” ”2 .

For almost sure results, we have, with the previous assumptions and for a
choice of a, ~ by, ~ (Inn/n)"/",

e pointwisely, for fized values of (u,v) € (0,1)2,

cn(u,v) = c(u,v) = Ogs. ((an>1/3> ;

e on a compact set, if ¢ satisfy assumption (f’-0),
Inn\ /3
sup mmwﬂmwzm&«—g |
(u,v)€[0,1] n

6.4. A first approrimation lemma of ¢, by ¢,. In order to prove the
consistency of the estimator, we need to prove the approximation lemma
of this section. To this end, we make the assumption that the bivariate
kernel K = K; K verify the Lipschitz hypothesis (K-1), i.e., there exist
two constants C; and Cy such that for every (u,v) € [0,1]? x [0, 1],

|K1(u1)K2(u2) — Kl(Ul)KQ(U2)| S Cl |U1 — U1| + 02 |’LL2 — U2| .

The following lemma gives an approximation rate of the copula density
estimator ¢, (Fy,(z), Gn(y))

0, = 13 (B B0 (Gl G0

an by,

by its analogue ¢, (F(x), F(y)) in the space of the pseudo-variables (U, V) :=
(F(X),G(Y)):

enF(2),G(0) = + 3 ey (P g, (G 2 GOy
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LEMMA 6.4. If the kernel K (u,v) = Ko(u)K7(v) follows hypothesis (K-
1), then

sup.[en(Fa(). Guly)) = n(F(2). G(w)| = O (
(z,y)€R?

1
Vvninf(ay,, bn)>
PROOF. For every (z,y) € R?, we have a.s.

|Cn(Fn (), Gn(y)) — cn(F(2), G(y))]
K, (Fn($) - Fn(XZ)> K, (Gn(y) - Gn(YZ))

i=1 n bn
e <F(az) ;NF(XZ-)> K, (G(y) ;nG(Yi))‘
< n%l S Fu(z) — F(x) + F(X;) — Fu(X)|
=1
N n% 3 Guy) = G(y) + G(V;) — G(Y3)]

Yet, [F(X;) — Fo(X3)| < SHEIF(w) — Fu(z)] = [|F — F|
S
for G — G,, term. Consequently, by using the approximation result of lemma

(6.1),

~ » and the same

) 2C 2C
e (Fa(2), Ga(y)) = en(F(2), GW)| < == 1 Fy = Fllo + 77 G — Gl
1 1
~0r (ot 7)
1
=Or (ﬁinf(an,bn)>
which had to be proved. O

REMARK 3. In particular, for a choice of a, ~ b, ~ n='/% one gets the
approrimation rate n=1/3,

COROLLARY 6.5.  With the same hypotheses,

) B 2Inlnn 1
00 6n(Fa(2),Golu) = en(F(2). G))| = O (\/Tmfmn, bn>) |

PRroOOF. It follows the same lines of the previous demonstration but uses
the a.s. bounds instead of the in probability ones of lemma (6.1). O
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6.5. A second approximation lemma. In order to prove the asymptotic
normality of the estimator, we need to prove the approximation lemma of
this section.

For simplicity, we use the same bandwidths for the bivariate kernel: a,, =

b,,. Moreover, set
b
K(a, b) = K1 <i> K2 <—>
Qn Qn

and let’s introduce the following notation:

1 & —Ui - Vi
Cn(U,U,’U,V) ::;ZKl (u U)KQ <Ua >
i=1

an n

to stress the fact that the copula density estimator is calculated from from
the sample paths of (U, V). We will make the slightly stronger assumption
(K-2) on the bivariate kernel K = K; Ko, i.e. that K is twice differentiable
with bounded second partial derivatives.

We are going to show the following approximation lemma:

LEMMA 6.6. For every fized (x,y), if K satisfies assumption (K-2), then
en(Fn(@), Fu(X), G (y), Gu(Y))—cn(F(2), F(X), G(y), G(Y)) = Op(1/v/n).
PROOF. Set
1 n
= YK (Fu(z) = Fu(X,), Guly) — Ga(Y7))
i=1
—K (F(z) - F(X;),G(y) — G(Y))]
and introduce the following random variables
Zin(x) = Fy(z) — F,(X;) — F(z) + F(X;)
Z (y) = Guly) — Gu(Yi) = Gly) + G(Y)).
For all i € N, |F(X;) — F,(X;)| < ||F — F||, a.s. We thus have uniformly
in 7 the a.s. following bound
(12) 1Zinlloo < 2 Fn — Fll
and similarly for Z;, (y). Since K is twice countinously differentiable, its
Taylor expansion writes itself for ¢ > 0 and b > 0

_ 0K(0,0) ,0K(0,0)
K(a,b)=a 9a +b b

CL_282K(CL0,I)0) 582K(a0,b0) + bazK(ao,bo)
2 0d 2 o T Badb
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for an ag € [0,a] and by € [0, b]. Applied to our case, it gives
8KFx—FXZ,Gy—GY;
(o 2 )~ PO G) — GO

", OK(F(x) — F(X;),G(y) — G(Y;

Ap(w,y) =

1
n
1
+ -
n

=1
i e () 82K(ai7na(232), bin ()

= 2 Ain\T),0in
ZZZI%L( )8 K( a(b2) bin(y))

n: , (‘)2K(ai,n($), bi,n (y))
Z Zin(2)Z; n(y) Dadb

where a; ,(x) and b;,(y) are measurable random variables. We have obvi-
ously that
b (o) (2)
da an an n

O?K(a,b) a b
da? a_2K (@) i <£>

and symmetrically for the other partial derivatives. Therefore for bounded
kernels with bounded derivatives of first and second order, there exist a
constant C' such as

PK(.,.)
‘ da?

Therefore by using (12), we have a.s. the upper bound

1 & C
— > 1 Zinll2 =
n -

i=1

SR~ PIE = 0 ()
a’n

‘ C
<

= "o~
an,

IN

¢ K (ain (), bin

i3

IN

a2

and similarly for the other second-order terms in the expansion.
For the first order terms, we similarly bounds by using (12) as follows:

12 F(r) — F(X; ,G —G}/z
E; K(F(z) (8(1) (y) - GY3))
OK(F(x) — F(Xi),G(y)—G(Yz))}

Oa )

<2||F, - F| nz

i=1
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It remains to bound in probability,

A::lz

i3

Oa

OK(Fle) = FX).Cl) = 61|

We have by stationarity of (X;,Y;),

B(4) = F E = [ 2K (F) — F(X,).Glw) = G H

= Ja
5| OK (F(x) - F).60) - 60|
F(z) - FiX)) 1o (=60

Gn an,

1
Gn
If K5 is bounded by a constant C,

s = el (50 ol (212

n an an

1 u/an
C u—t
= — K/ = / 4
an/‘ 1( - )’dt C |K1(2)| d=
0 (u=1)/an

1
§C/}K{(z)}dz <C% < 0
0

since K7 is also bounded in absolute value by C, and the bound is uniform
in n. Therefore, Markov inequality entails that A is uniformly tight, i.e.
bounded in probability

1 29K (F(z) — F(X:),G(y) — G(Y;
E; (F(z) - F(X:),Gly) — GY))

da =0r(l)

and similarly for the other first-order term.
By recollecting all elements, we finally have:

1
An(2,9)] < Op (| Fn = Fllog + G = Gll,0) + Op (W)

n

1
< 0p(1/vi) + Or (1 )
naz
where the last inequality proceeds from the approximation lemma (6.1). For
an a, ~ n~% 1/na? is of order n=2/3 which is a o(n~'/?) and thus yields
the claimed result. O
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COROLLARY 6.7. With the same hypotheses,

Inlnn

|G (Fn(2), Gn(y)) = cn(F(2),G(y))| = Oas.

n

PRroOOF. It follows the same lines of the previous demonstration but uses
the a.s. bounds instead of the in probability ones of lemma (6.1). To bound
a.s. the quantity A, one note that by a strong law of large number A — E(A)

a.s.

, therefore A = O, (1).

O
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