
HAL Id: hal-00172589
https://hal.science/hal-00172589v1

Preprint submitted on 17 Sep 2007 (v1), last revised 12 Jun 2008 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A product type non-parametric estimator of the
conditional density by quantile transform and copula

representation.
Olivier P. Faugeras

To cite this version:
Olivier P. Faugeras. A product type non-parametric estimator of the conditional density by quantile
transform and copula representation.. 2007. �hal-00172589v1�

https://hal.science/hal-00172589v1
https://hal.archives-ouvertes.fr


A product type non-parametric estimator

of the conditional density by quantile

transform and copula representation.

Olivier P. Faugeras

L.S.T.A, Université Paris 6
175, rue du Chevaleret, 75013 Paris, France

e-mail: olivier.faugeras@gmail.com

Abstract: We present a new non-parametric estimator of the conditional

density of the kernel type. It is based on an efficient transformation of the

data by quantile transform. By use of the copula representation, it turns

out to have a remarkable product form. We study its asymptotic properties

and compare its bias and variance to competitors based on nonparametric

regression.
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1. Introduction

1.1. Motivations

For predicting the response Y of a real valued input variable X at a given
location x from an independent identically distributed sample ((Xi, Yi); i =
1, . . . , n), it is of great interest of estimating not only the conditional mean
or regression function E(Y |X = x), but the full conditional density f(y|x).
Indeed, estimating the conditional density is much more informative, allowing
not only to recalculate the (predicted) conditional expected value E(Y |X) and
conditional standard deviation from the density, but also to provide the general
shape of the conditional density. This is especially important for multi-modal
densities, which often arise from nonlinear phenomenas, where the expected
value might be nowhere near a mode. Therefore, considering the expected value
as the best predictor, (which is the case from a mathematical standpoint for
a decision based on the choice, yet arbitrary, of the L2 norm) is questionable.
Moreover, for situations in which confidence intervals are preferred to point
estimates, the estimated conditional density is an object of obvious interest.

A natural approach to estimate the conditional density f(y|x) of Y given
X = x would be to exploit the identity

f(y|x) =
fXY (x, y)

fX(x)
(1)

1
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where fXY and fX denote the joint density of (X,Y ) and X, respectively. By
introducing Parzen-Rosenblatt kernel estimators of these densities, namely

f̂n,XY (x, y) : =
1

n

n
∑

i=1

K ′
h′(Xi − x)Kh(Yi − y)

f̂n,X(x) : =
1

n

n
∑

i=1

K ′
h′(Xi − x)

where K and K ′ are kernels with their associated sequence of bandwidth h and
h′ going to zero as n → ∞, one can construct the quotient

f̂1
n(y|x) :=

f̂n,XY (x, y)

f̂n,X(x)

and obtain an estimator of the conditional density.
As pointed out by numerous authors, see e.g. Fan and Yao [2005] chapter 6,

this approach is equivalent to the one arising from considering this conditional
density estimation problem in a regression framework. Indeed, let F (y|x) be the
cumulative conditional distribution function of Y given X = x. It stems from
the fact that

E
(

1|Y −y|≤h|X = x
)

= F (y + h|x) − F (Y − h|x) ≈ 2h.f(y|x)

as h → 0, that, if one replace the expectation in the above expression by its
empirical counterpart, one can apply the usual local averaging methods and
perform a regression estimation on the synthetic data ((1/2h)1|Yi−y|≤h; i =
1, . . . , n). By a Bochner type theorem, one can even replace the transformed
data by its smoothed version

Y ′
i := Kh(Yi − y) :=

1

h
K

(

Yi − y

h

)

.

In particular, the popular Nadaraya-Watson regression estimator

f̂2
n(y|x) :=

∑n
i=1 Y ′

i .K ′
h′(Xi − x)

∑n
i=1 K ′

h′(Xi − x)

reduces itself to the same estimator of the conditional density of the kernel type
as before

f̂2
n(y|x) :=

∑n
i=1 Kh(Yi − y).K ′

h′(Xi − x)
∑n

i=1 K ′
h′(Xi − x)

= f̂1
n(y|x).

However, these equivalent approaches suffer from several drawbacks: first,
by its form as a quotient of two estimators, the probabilistic behavior of the
Nadaraya-Watson estimator (or its local polynomial counterpart) is tricky to
study. It is usually dealt with by a centering at expectation for both numerator
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and denominator and a linearisation of the inverse, see e.g. Ferraty and Vieu
[2006], Fan and Yao [2005], or Bosq [1998] for details. Second, at a conceptual
level, one could argue that implementing regression estimation techniques in
this setting is, in a sense, unnatural: estimating a density, even if it a is condi-
tional one, should resort to density estimation techniques only. Finally, practical
implementations of these estimators can lead to numerical instability when the
denominator is close to zero.

To remedy these problems, we propose an estimator which builds on the idea
of using synthetic data, i.e. a representation of the data more adapted to the
problem than the original one. By transforming the data, the estimator turns
out to have a remarkable product form. Its study then reveals to be particularly
simple: it reduces to the ones already done on nonparametric density estimation.

The rest of the paper is organized as follows: in the rest of this section,
a brief overview of the literature is sketched. In section 2 we introduce the
quantile transform and the copula representation which leads to the definition
of our estimator (section 3). In section 4, the main asymptotic results about
our conditional density estimator are established and compared in section 5 to
those of other competitors. Proofs are mainly based on a series of preliminary
lemmas which are given in the appendix. For sake of simplicity and clarity
of exposition, we have limited ourselves to unidimensional input variables X.
However, all results can be easily extended to the multivariate case.

1.2. Overview of the literature

Nonparametric conditional density estimation was not much investigated since
it was first studied by Rosenblatt [1969]. Recent years have witnessed a renewed
interested, starting with Hyndman, Bashtannyk and Grunwald [1996], who im-
proved Rosenblatt’s kernel based estimators. See also the book of Ferraty and
Vieu [2006] for an extension for functional data.

Taking advantage of the regression formulation, Fan, Yao and Tong [1996]
proposed a conditional density estimator which generalises the kernel one by
use of the local polynomial techniques. In particular, it allows to tackle with
the bias issues of the kernel smoothing. However, and unlike the former, it is no
longer guaranteed to have positive value nor to integrate to 1 with respect to y.
With these issues in mind, Hyndman and Yao [1998] built on local polynomial
techniques and suggested two improved methods, the first one based on locally
fitting a log-linear model and the second one on constrained local polynomial
modeling. An overview can be found in Fan and Yao [2005] (chapter 6 and 10).
Very recently, Györfi and Kohler [2007] studied a partitioning type estimate and
studied its properties in total variation norm.
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2. The quantile transform and copula function

2.1. The quantile transform

The idea of transforming the data is not new. It has been used to improve
the range of applicability and performance of classical estimation techniques,
e.g. to deal with skewed data, heavy tails, or restrictions on the support (see
e.g. Devroye and Lugosi [2001] chapter 14 and the references therein, and also
Van der Vaart [1998] chapter 3.2 for the related topic of variance stabilizing
transformations). In order to make inference on Y from X, a natural question
which then arises is, what is the “best” transformation, if this question has a
sense. As one can note from the above references, the “best” transformation is
very linked to the distribution of the underlying data. We will see below that
the natural candidate is the quantile transform.

The quantile transform is a well-known probabilistic trick which dates back at
least to Skorohod [1956] and the so-called Skorohod Representation Theorem.
It is used to reduce proofs for arbitrary real valued random variables X to
ones for random variables U uniformly distributed on the interval [0, 1], e.g. in
empirical process theory. Moreover, it is at the core of some invariance properties
in statistics and probability theory: for example, one can show by this device,
that the law of the Kolmogorov-Smirnov statistic

sup
x∈R

|Fn(x) − F (x)|

is independent of F . (See e.g. Shorack and Wellner [1986], chapter 1).
First things first, let’s recall the definition of the generalised inverse of an

increasing function:

Definition 2.1. For a non-decreasing function F : R → [0, 1], its generalised
inverse Q is defined as

Q(t) := inf {x : F (x) > t} .

If F is continuous, then Q is uniquely defined. We then have that x ≤ Q(t) if
and only if F (x) ≤ t.

The quantile transform is based on the following well-known theorem:

Theorem 2.2. For any real valued random variable X with cumulative distri-
bution function F and quantile function Q, the following properties hold :

(i) Whenever F is continuous, the random variable U = F (X) is uniformly
distributed on (0, 1);

(ii) Conversely, when F is arbitrary, if U is a uniformly distributed random

variable on (0, 1), one has the distributional identity: X
d
= Q(U).

Proof. See e.g. Shorack and Wellner [1986] chap. 1.

As a consequence, given a sample (X1, . . . ,Xn) of random variables with
common c.d.f. F sitting on a probability space (Ω,A, P), one can always enlarge
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this probability space to carry a sequence (U1, . . . , Un) of uniform (0, 1) random
variables such that Ui = F (Xi), that is to say to construct a pseudo-sample
with a prescribed uniform marginal distribution.

2.2. The copula representation

Formally, a copula is a bi-(or multi)variate distribution function whose marginal
distribution functions are uniform on the interval [0, 1]. Indeed, solving a prob-
lem formulated by Fréchet [51], Sklar [59] proved the following fundamental
result:

Theorem 2.3. For any bivariate cumulative distribution function FX,Y on R
2,

if the marginal distribution functions FX , FY are continuous, then there exists
some function C : [0, 1]2 → [0, 1], called the dependence or copula function, such
as

FX,Y (x, y) = C(FX(x), FY (y)) , −∞ ≤ x, y ≤ +∞ (2)

This representation is unique with respect to (FX , FY ). The copula function C
is itself a cumulative distribution function on [0, 1]2 with uniform marginals.

This theorem gives a representation of the bivariate c.d.f. as a function of each
univariate c.d.f. In other words, the copula function captures the dependence
structure among the components X and Y of the vector (X,Y ), irrespectively
of the marginal distribution FX and FY . Simply put, it allows to deal with the
randomness of the dependence structure and the randomness of the marginals
separately.

From now on, we assume that the copula function C(u, v) has a density
c(u, v) with respect to the Lebesgue measure on [0, 1]2 and that FX and FY

are differentiable with densities fX and fY . Formula (2) enables us to derive
explicit formulas of the following quantities:

• the joint density,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
= fX(x)fY (y)c(FX(x), FY (y))

where c(u, v) := ∂2C(u,v)
∂u∂v is the above mentioned copula density;

• the conditional density,

fY |X(x, y) =
fXY (x, y)

fX(x)
= fY (y)c(FX(x), FY (y)) (3)

and symmetrically for the laws of X|Y . For more details regarding copulas and
their properties, one can consult for example the book of Joe [1997].

As we argued in our introduction, Probability does not mix well with Alge-
bra: the law of a random variable transformed by an algebraic operation, and
especially the inverse, is not easy to tackle with. Formula (3) is thus of con-
siderable importance since it has turned the conditional density formula (1) of
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the ratio type into a product one. This formula is the backbone of our article
where the product form will be especially relevant from a statistical point of
view, when we will turn to the estimation issue, which we now deal with in the
next section.

3. Presentation of the estimator of the conditional density

From now on, we simplify notations and note f and F the density and c.d.f. of
X, and g and G those of Y . We can rewrite the previously stated formula (3)
as

fY |X(x, y) = g(y)c(F (x), G(y)).

A natural plug-in approach to build an estimator of the conditional density is
to use estimators of each of the following quantities:

1. the marginal density g of Y ,
2. the c.d.f F (x) and G(y) of X and Y respectively,
3. the second crossed derivative c(u, v) of the copula function C(u, v).

To this purpose, we propose to use:

1. a Parzen-Rosenblatt kernel type non parametric estimator of the marginal
density g of Y ,

ĝn(y) :=
1

n

n
∑

i=1

K0

(

y − Yi

hn

)

2. the empirical distribution functions Fn(x) and Gn(y) for F (x) and G(y)
respectively,

Fn(x) :=
1

n

n
∑

j=1

1Xj≤x (4)

Gn(y) :=
1

n

n
∑

j=1

1Yj≤y. (5)

Concerning the copula density c(u, v), one can note that c(u, v) is the joint
density of the transformed variables (U, V ) = (F (X), G(Y )). Therefore, c(u, v)
can be estimated by the bivariate Parzen-Rosenblatt kernel type non parametric
density (pseudo) estimator,

cn(u, v) :=
1

n

n
∑

i=1

K

(

(u, v) − (Ui, Vi)

h′
n

)

where K is a bivariate kernel and h′
n its associated bandwidth. For simplicity, we

restrict ourselves to product kernels, and the pseudo estimator cn writes itself

cn(u, v) :=
1

n

n
∑

i=1

K1

(

u − Ui

an

)

K2

(

v − Vi

bn

)

.
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Nonetheless, since F and G are unknown, the random variables (Ui, Vi) are not
observable, i.e. cn is not a true statistic. Therefore, we approximate the pseudo-
sample (Ui, Vi), i = 1, . . . , n by its empirical counterpart (Fn(Xi), Gn(Yi)), i =
1, . . . , n where Fn and Gn are the empirical distribution functions (4) and (5)
respectively. We therefore obtain a genuine estimator of c(u, v)

ĉn(u, v) :=
1

n

n
∑

i=1

K1

(

u − Fn(Xi)

an

)

K2

(

v − Gn(Yi)

bn

)

.

Eventually, the conditional density estimator writes itself

f̂n(y|x) :=

[

1

n

n
∑

i=1

K0

(

y − Yi

hn

)

]

.

[

1

n

n
∑

i=1

K1

(

Fn(x) − Fn(Xi)

an

)

K2

(

Fn(y) − Gn(Yi)

bn

)]

or, under a more compact form,

f̂n(y|x) := ĝn(y)ĉn(Fn(x), Gn(y)). (6)

To our knowledge, the estimator studied in this paper has never been pro-
posed in the literature. However, some connections can be made to the ones
proposed by Gasser and Muller [1979] in the context of regression estimation,
which tackles the issue of having a random denominator. Indeed, their estimator
of the regression function, which result from an improvement of the one initially
proposed by Priestley and Chao [1972], can be considered as a convolution type
estimator, which first transform the design to a uniform (random) one. These
estimators are shown below:

mGM(1)
n =

1

hn

n−1
∑

i=1

{

∫ Xi+1,n

Xi,n

K

(

x − u

hn

)

du

}

Y[i]

mGM(2)
n =

1

hn

n
∑

i=1

(Xi+1,n − Xi,n)K

(

x − Xi,n

hn

)

Y[i]

where Xi,n denotes the ith order statistic of the sample (X1, . . . ,Xn) and Y[i]

its corresponding Y value.

4. Asymptotic results

For stating our results, we will have to make some regularity assumptions on the
densities f , c and the kernels K0, K1, K2. One will note that these assumptions
are far from being minimal but are somehow customary in nonparametric den-
sity estimation (See section 6.2 for details). These assumptions are presented
below: We note the ith moment of a generic kernel (possibly multivariate) K as
mi(K) :=

∫

uiK(u)du, and the Lp norm of a function h by ||h||p :=
∫

hp.
Assumptions on the Kernel:
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• Assumption (K-0)

(i) K is of bounded support and of bounded variation;

(ii) K ≥ 0 and is bounded above by a constant C;

(iii) K is a first order kernel: m0(K) = 1, m1(K) = 0 and m2(K) < +∞.

• Assumption (K-1) K satisfies a Lipschitz condition. For a bivariate K
of the product type, one can write it as follows: There exists constants C1

and C2, such that for every (u, v) ∈ [0, 1]2 × [0, 1]2,

|K1(u1)K2(u2) − K1(v1)K2(v2)| ≤ C1 |u1 − v1| + C2 |u2 − v2|

• Assumption (K-2) K is twice differentiable with bounded second partial
derivatives.

Regularity assumptions on the density:

• Assumptions (f-0): The density is twice differentiable with bounded
second derivative on its support.

• Assumptions (f’-0): In addition to the previous assumption, the density
is bounded and non-vanishing on an interval [a, b].

In the remainder of this paper, we will always suppose that g and c satisfy
assumptions (f-0), and the kernels K0 and K assumptions (K-0).

4.1. Weak consistency of the estimator

We have the following weak consistency theorem:

Theorem 4.1. If the bivariate kernel K satisfy the Lipschitz condition (K-1),
and if hn = O(n−1/5), an = bn = O(n−1/6), then

f̂n(y|x) = f(y|x) + Op(n
−1/3).

Proof. We have the following decomposition,

f̂n(y|x) − f(y|x) = ĝn(y)ĉn(Fn(x), Gn(y)) − g(y)c(F (x), G(y))

= (ĝn(y) − g(y)) ĉn(Fn(x), Gn(y))

+ g(y) (ĉn(Fn(x), Gn(y)) − cn(F (x), G(y)))

+ g(y) (cn(F (x), G(y)) − c(F (x), G(y)))

: = D1 + D2 + D3.

Since ‖K‖∞ < C, ‖ĉn‖∞ < C, which in turn entails

|D1| ≤ C |ĝn(y) − g(y)| .

By invoking classical consistency results for the kernel unidimensional density
estimator of section 6 (lemma 6.2), we get

|D1| = OP

(

1√
nhn

)

+ O(h2
n) = Op(n

−2/5)
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for an optimal choice of hn = O(n−1/5). By invoking again consistency results
for the kernel bidimensional density estimator (lemma 6.3), we also get

D3 = OP (n−1/3)

for a choice of an = bn = O(n−1/6). Therefore, fot this choice of an and bn,
lemma (6.4), entails

D2 = OP

(

1√
nan

)

= OP (n−1/3).

We may then conclude.

We also have weak consistency results uniformly on sets:

Corollary 4.2. In addition, if g and c also satisfies assumption (f’-0), then
hn = O((ln n/n)1/5), an = bn = O((ln n/n)1/6) entails

sup
y∈[a,b]

|f̂n(y|x) = f(y|x)| = Op

(

(

lnn

n

)1/3
)

.

Proof. Use the same decomposition as before and majorize in uniform norm.
Then use the results in uniform norm of section 6 (lemma 6.2 and 6.3).

Remark 1. Our estimator is optimal in the sense that it reaches the minimax
rate of convergence.

4.2. Almost sure convergence (strong consistency)

Theorem 4.3. If the bivariate kernel K satisfy the Lipschitz condition (K-1),
then, for hn = O((ln n/n)1/5), an = bn = O((ln n/n)1/6), we have

f̂n(y|x) = f(y|x) + Oa.s.((ln n/n)1/3).

Proof. It follows the same lines as the preceding theorem, but uses the a.s.
consistency results of the kernel density estimators in lemmas 6.2 and 6.3 and
corollary 6.5. It is therefore omitted.

Corollary 4.4. With the same hypothesis, we have that

sup
y∈R

∣

∣

∣
f̂n(y|x) − f(y|x)

∣

∣

∣
= Oa.s.

(

(

lnn

n

)1/3
)

.

Proof. Omitted for the same reasons.
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4.3. Convergence in distribution

Theorem 4.5. If the kernel K satisfy the assumption (K-2) of lemma (6.6),
then hn = O(n−1/5), an = bn = O(n−1/6) entails

n1/3
(

f̂n(y|x) − f(y|x)
)

d
; N

(

0, g(y)f(y|x)||K||22
)

.

Proof. Use the decomposition,

f̂n(y|x) − f(y|x) = ĝn(y)ĉn(Fn(x), Gn(y)) − g(y)c(F (x), G(y))

= (ĝn(y) − g(y)) ĉn(Fn(x), Gn(y))

+ g(y) (ĉn(Fn(x), Gn(y)) − cn(F (x), G(y)))

+ g(y) (cn(F (x), G(y)) − c(F (x), G(y)))

: = D1 + D2 + D3.

Since, ĝn(y) = g(y) + OP (n−2/5) and |ĉn| ≤ C for a bounded bivariate kernel,
we have n1/3|D1| = OP (n−1/15) = oP (1). By the second approximation lemma
(6.6), |D2| = OP (n−1/2) and n1/3|D2| = OP (n−1/6) = oP (1). The last term, is
asymptotically normal at rate n1/3 by the result of section 6, lemma 6.3:

n1/3 [cn(u, v) − c(u, v)]
d
; N

(

0, c(u, v) ‖K‖2
2

)

.

That is to say,

n1/3g(y) [cn(F (x), G(y)) − c(F (x), G(y))]
d
; N

(

0, g2(y)c(F (x), G(y)) ‖K‖2
2

)

.

An application of Slutsky’s lemma yields the desired result.

For a vector (y1, . . . , yd), one can get a multidimensional version of the con-
vergence in distribution (fidi convergence):

Theorem 4.6. With the same assumptions,

n1/3

((

f̂n(yi|x) − f(yi|x)
√

g(yi)f(yi|x) ‖K‖2

)

, i = 1, ...,m

)

d
; N (m)

where N (m) is the standard m-variate normal distribution.

Proof. Omitted. It follows the lines of e.g. Bosq [1998], theorem 2.3.

4.4. Asymptotic Bias

Theorem 4.7. With assumptions (K-2) of lemma 6.5, and the choice of the
bandwidth hn = O(n−1/5), an = bn = O(n−1/6), we have

E0 := E(f̂n(y|x)) − f(y|x) = n−1/3 g(y)

2
∇2c(F (x), G(y),K) + o(n−1/3)
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with

∇2c(a, b,K) =
∑

1≤i,j≤2

∂2c(a, b)

∂ui∂uj

∫

R2

uiujK(u)du.

Proof. We omit x and y. We still have the additive decomposition,

f̂n(y|x) − f(y|x) = (ĝn − g)ĉn + g (ĉn − cn) + g (cn − c)

: = D1 + D2 + D3.

The last term is, up to a multiplicative factor, the bias of the kernel density
estimator cn, in dimension 2. Therefore, lemma 6.3 yields

E(D3) = g(y)E(cn − c) =
g(y)a2

n

2

∑

16i,j62

∂2c(u, v)

∂ui∂uj

∫

uiujK(u)du + o(a2
n).

We will show below that the other terms are negligible compared to D3: We
go further in the decomposition of D1

(ĝn − g)ĉn = (ĝn − g)(ĉn − cn) + (ĝn − g)(cn − c) + (ĝn − g)c

: = D11 + D12 + D13.

By lemma 6.2 the bias of ĝn(y) is

E(ĝn(y)) − g(y) =
m2(K0)

2
g′′(y)h2

n + o(h2
n).

By Cauchy-Schwarz inequality, we can bound the product terms as D12 and D11

as follows

E(D12) = E(ĝn − g)(cn − c) ≤
(

E(ĝn − g)2
)1/2 (

E(cn − c)2
)1/2

and

E(D11) = E(ĝn − g)(ĉn − cn) ≤
(

E(ĝn − g)2
)1/2 (

E(ĉn − cn)2
)1/2

.

By lemma 6.3 |ĉn − cn| P→ 0 and |ĉn − cn| is trivially asymptotically uniformly
integrable since the kernels are bounded. Therefore, E(ĉn − cn)2 = o(1) and the
term E(D11) = E(ĝn − g)(ĉn − cn) = o(h2

n) is asymptotically negligible. The
term (E(cn − c)2)1/2 is the root of the MSE of cn, and is of order a2

n while
(E(ĝn − g)2)1/2 is the root of the MSE of ĝn, and is of order h2

n. Therefore
E(D12) = O(h2

na2
n) is also negligible. In turn, E(D1) = O(h2

n) is negligible
compared to E(D3).

For the last term D2, first note that ||ĉn − cn||∞ is bounded uniformly in n.
By Fatou’s reversed lemma,

lim sup E||ĉn − cn||∞ ≤ E lim sup ||ĉn − cn||∞. (7)

Now, a careful analysis of lemma 6.5 shows that ||ĉn − cn||∞ is bounded above
by terms such as

C||F − Fn||∞A
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with C a constant, A a random variable depending of x, y, and such as A →
E(A) < +∞ a.s.. The law of iterated logarithm (lemma 6.1) entails

lim sup ||Fn − F ||∞ =
1

2

√

ln2 n

n
a.s..

Since lim sup A = E(A) a.s.,

lim sup ||ĉn − cn||∞ ≤ C ′

√

ln2 n

n
a.s.

where C ′ is a constant. In turn, together with (7),

lim sup E(||ĉn − cn||∞) ≤ C ′

√

ln2 n

n
,

yieding E(||ĉn − cn||∞) = o(n−1/3). Therefore E(D2) = o(n−1/3) is negligible
compared to E(D3).

4.5. Asymptotic Variance and Mean Square Error

The asymptotic variance has already been derived in theorem 4.5:

V0 := V ar(f̂(y|x)) = n−2/3g(y)f(y|x)||K||22 + o(n−2/3)

Together with the computation of the asymptotic bias of the preceding theorem,
we get the asymptotic mean squared error as a corollary:

Corollary 4.8. with the previous assumptions, the Asymptotic Mean Squared
Error (AMSE) is

AMSE = n−2/3g(y)

(

g(y)
(

∇2c(F (x), G(y),K)
)2

4
+ f(y|x)||K||22

)

+ o(n−2/3)

which can also be written as

AMSE = n− 2
3 f2(y)

(

(

∇2c(F (x), G(y),K)
)2

4
+ c(F (x), G(y))||K||22

)

+o(n− 2
3 ).

5. Comparison with other estimators

5.1. Presentation of alternative estimators

For convenience, we recall below the definition of other estimators of the con-
ditional density encountered in the literature and summarize their bias and
variance properties. We will note the bias of the ith estimator f̂ i

n(y|x) by Ei

and its variance by Vi.
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1. Double kernel estimator: as defined in the introduction section of our
paper by the following ratio,

f̂ (1)
n (y|x) :=

1
n

n
∑

i=1

K ′
h1

(Xi − x)Kh2
(Yi − y)

1
n

n
∑

i=1

K ′
h1

(Xi − x)
.

• Bias:

E1 =
h2

1m2(K)

2

(

2
f ′(x)

f(x)

∂f(y|x)

∂x
+

∂2f(y|x)

∂x2
+

(

h2

h1

)2
∂2f(y|x)

∂y2

)

+ o
(

h2
1 + h2

2

)

• Variance:

V1 =
‖K‖2

2 f(y|x)

nh1h2f(x)

(

‖K‖2
2 − h2f(y|x)

)

+ o

(

1

nh1h2

)

2. Local polynomial estimator: Set

R(θ, x, y) :=

n
∑

i=1

(

Kh2
(Yi − y) −

∑r

j=0
θj(Xi − x)j

)2

K ′
h1

(Xi − x),

then the local polynomial estimator is defined as

f̂ (2)
n (y|x) := θ̂0,

where θ̂xy := (θ̂0, θ̂1, . . . , θ̂r) is the value of θ which minimizes R(θ, x, y).
This local polynomial estimator, although it has a superior bias than the
kernel one, is no longer restricted to be non-negative and does not integrate
to 1, except in the special case r = 0. From results of Fan, Yao and Tong
[1996], we get for the local linear estimator (see Fan and Yao p256),

• Bias:

E2 =
h2

1m2(K
′)

2

∂2f(y|x)

∂x2
+

h2
2m2(K)

2

∂2f(y|x)

∂y2
+ o(h2

1 + h2
2)

• Variance:

V2 =
||K||22||K ′||22f(y|x)

nh1h2f(x)
+ o

(

1

nh1h2

)

3. Local parametric estimator: Set

R1(θ, x, y) :=

n
∑

i=1

(Kh2
(Yi − y) − A(Xi − x, θ))

2
K ′

h1
(Xi − x)
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where
A(x, θ) = l

(

∑r

j=0
θj(Xi − x)j

)

and l(.) is a monotonic function mapping R 7→ R
+, e.g. l(u) = exp(u).

Then
f̂ (3)

n (y|x) := A(0, θ̂) = l(θ̂0).

• Bias:

E3 = h2
1η(K ′)

(

∂2f(y|x)

∂x2
− ∂2A(0, θxy)

∂x2

)

+
h2

2m2(K)

2

∂2f(y|x)

∂y2

+ o(h2
1 + h2

2)

• Variance:

V3 =
τ(K,K ′)2f(y|x)

nh1h2f(x)
+ o

(

1

nh1h2

)

where η and τ are kernel dependent constants.
4. Constrained local polynomial estimator: A simple device to force

the local polynomial estimator to be positive is to set θ0 = exp(α) in the
definition of R0 to be minimized. The constrained local polynomial estima-
tor f̂4

n(y|x) is then defined analogously as the local polynomial estimator
f̂2

n(y|x). We have:

• Bias:

E4 := h2
1

m2(K
′)

2

∂2f(y|x)

∂x2
+ h2

2

m2(K)

2

∂2f(y|x)

∂y2
+ o(h2

1 + h2
2)

• Variance:

V4 =
‖K‖2

2 f(y|x)

nh1h2f(x)
+ o

(

1

nh1h2

)

5.2. Asymptotic Bias and Variance comparison

All estimators have (hopefully) the same order in their asymptotic bias and
variance terms. The main difference lies in the constant terms which depend on
unknown densities.

Bias: Contrary to all the alternative estimators whose bias involve derivatives
of the full conditional density, one can note that our estimator’s one only involves
the density of Y and the derivatives of the copula density. To make things
more explicit, the terms involved, e.g. in the local polynomial estimator, write
themselves as the sum of the derivatives of the conditional densiy, that is to say

≈ ∂2f(y|x)

∂x2
+

∂2f(y|x)

∂y2
= f ′(x)g(y)

∂c(F (x), G(y))

∂u
+ f2(x)g(y)

∂2c(F (x), G(y))

∂u2

+ 2g′(y)g(y)
∂c(F (x), G(y))

∂v
+ g3(y)

∂2c(F (x), G(y))

∂v2
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whereas our (g(y)/2)∇2c(F (x), G(y),K) term writes itself, modulo the con-
stants involved by the kernel, as

≈ g(y)

(

∂2c(F (x), G(y))

∂u2
+

∂2c(F (x), G(y))

∂v2
+ 2

∂2c(F (x), G(y))

∂u∂v

)

.

It then becomes clear that we have a simpler expression, which does not involve
the density and its derivative of X nor the derivative of the Y density, as is the
case for the competitors.

Variance: The variance of our estimator involves a product of the density
g(y) of Y by the conditional density f(y|x),

g(y)f(y|x) = g2(y)c(F (x), G(y)

whereas competitors involve the ratio of f(y|x) by the density f(x) of X

f(y|x)

f(x)
=

g(y)

f(x)
c(F (x), G(y)).

It is a remarkable feature of the estimator we propose, that its variance does
not involve directly f(x), as is the case for the competitors, but only its contri-
bution to Y , through the copula density. This reflects the ability announced in
the introduction of the copula representation to have effectively separated the
randomness pertaining to Y alone, from the dependence structure of (X,Y ).
Moreover, our estimator also does not suffer from the unstable nature of com-
petitors who, due to their intrinsic ratio structure, get an explosive variance for
small value of the density f(x), making conditional estimation difficult, e.g. in
the tail of the distribution of X.

6. Appendix : auxiliary results

In this section, we gather some preliminary results which we will need as basic
tools for the demonstrations of section 4. In subsection 6.1, we recall classical
results about the convergence of the Kolmogorov-Sminorv statistic. Next, we
make a brief overview of kernel density estimation and apply these results to
the estimators ĝn (section 6.2) and cn (section 6.3). Eventually, we need two
approximation lemmas of ĉn by cn to prove the consistency and asymptotic
normality of our estimator, in sections 6.4 and 6.5 respectively.

6.1. Approximation of the pseudo-variables F (Xi) by their
estimates Fn(Xi)

Let us note ‖F‖∞, the infinite (also called uniform) norm

‖F‖∞ := sup
x∈R

|F (x)| .
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Let (Xi, i = 1, . . . , n), be an i.i.d. sample of the random variable X with com-
mon c.d.f. F . The Kolmogorov-Smirnov (K-S) statistic is defined as Dn :=
‖Fn − F‖∞. We have already seen that it is invariant w.r.t to the c.d.f. F . The
famous Glivenko-Cantelli theorem asserts its convergence to zero in probability:
‖Fn − F‖∞ = OP (1). Later Kolmogorov and Smirnov derived a central limit
theorem for a continuous F

√
n sup

x
|Fn(x) − F (x)| d

; µ

yielding ‖Fn − F‖∞ = OP (1/
√

n). Chung [1949] derived the optimal a.s. rate
for i.i.d. observations:

lim sup
n→∞

√

n

2 ln lnn
. ‖Fn − F‖∞ =

1

2
a.s.

which entails

‖Fn − F‖∞ = Oa.s.

(

√

ln lnn

n

)

.

Remark 2. This kind of theorems can be considerably generalized and rederived
from functional central limit theorems of the Donsker type and invariance prin-
ciples. They allow to give upper bounds for the suprema of empirical processes
indexed by sets (the sets in our case would be ] −∞, x]) or functions.

Let’s collect these results in an approximation lemma:

Lemma 6.1. For an i.i.d. sample from a continuous c.d.f. F ,

‖Fn − F‖∞ = Oa.s.

(

√

ln lnn

n

)

(8)

‖Fn − F‖∞ = OP

(

1√
n

)

. (9)

As said earlier, although the random variables (Ui) = (F (Xi)) are not observ-
able, since F is unknown, one can naturally approximate them by the statistics
Fn(Xi). The lemmas above gives the speed of this approximation : since

|F (Xi) − Fn(Xi)| ≤ sup
x∈R

|F (x) − Fn(x)| = ‖Fn − F‖∞ a.s.,

we have that, for every (i ≤ n) ∈ N
2,

|F (Xi) − Fn(Xi)| = Oa.s.

(

√

ln lnn

n

)

(10)

|F (Xi) − Fn(Xi)| = OP

(

1√
n

)

(11)

with the suitable previous assumptions.
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6.2. Convergence of the kernel density estimator ĝn

We recall below some classical results about the convergence of the Parzen-
Rosenblatt kernel non-parametric estimator f̂n of a d-variate density. Since its
inception by Rosenblatt [1956] and Parzen [1962] , it has been studied by a great
deal of authors. See e.g. Scott [1992], Prakasa Rao [1983], Nadaraya [1989] for
details. See also Bosq [1998] chapter 2.

It is well known that the bias of the kernel density estimator depends on
the degree of smoothness of the underlying density, measured by its number
of derivatives or its Lipschitz order. In order to get the convergence of the
bias to zero, it suffices to assume that the density is continuous (See Parzen
[1962]). To get further information on the rate of convergence of the estimator,
it is necessary to make further assumptions. Moreover, for kernel functions with
unbounded support, the rate of convergence also depends on the tail behaviour
of the kernel (See Stute [1982]). Therefore, for clarity of exposition and simplicity
of notations, we will make the customary assumptions that the density is twice
differentiable and that the kernel is of bounded support. We then have the
following results:

• Bias: if assumptions (f-0) and (K-0) are verified, then for a x in the
interior of the support of f , with hn → 0 and nhd

n → ∞:

Ef̂n(x) = f(x) +
h2

n

2

∫

Rd

∑

1≤i,j≤d

∂2f(x)

∂xi∂xi
zizjK(z)dz + o(h2

n).

• Variance: With the same assumptions,

V ar
[

f̂n(x)
]

=
f(x)

nhd
n

‖K0‖2
2 + o

(

1

nhd
n

)

.

• Pointwise asymptotic normality: under the previous conditions,
√

nhd
n

(

f̂n(x) − Ef̂n(x)
)

d
; N (0, f(x) ‖K0‖2

2).

For a choice of the bandwidth as hn = O(n−1/(d+4)), which realizes the
optimal trade-off between the bias and variance, one gets the following rates for
the convergence

• in probability:
∣

∣

∣
f̂n(x) − f(x)

∣

∣

∣
= Op(n

−2/(d+4))

which is the optimal speed of convergence in the minimax sense in the
class of density functions with bounded second derivatives, according to
Stone [1980].

• in law:
n2/(d+4)

[

f̂n(x) − f(x)
]

d
; N

(

0, f(x) ‖K0‖2
2

)

.
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One can refine these results by a chaining argument to get uniform rate of
convergence on a compact set (see Bickel and Rosenblatt [1973]): for f bounded
and non-vanishing on [a, b],

sup
x∈[a,b]

∣

∣

∣
f̂n(x) − Ef̂n(x)

∣

∣

∣
= Op

[

(

lnn

nhn

)1/2
]

.

Therefore, for the choice of the bandwidth hn = O((ln n/n)1/d+4) which realizes
the optimal trade-off between the bias and variance, one gets the following result
in probability:

sup
x∈[a,b]

∣

∣

∣
f̂n(x) − f(x)

∣

∣

∣
= Op

[

(

lnn

n

)2/(d+4)
]

which is the optimal speed in the minimax sense in the class of density functions
with bounded second derivatives, according to Hasminskii [1978].

For almost sure results, we have (see e.g. Stute [1982], Bosq [1998] chap-
ter 2 and Fan and Yao [2005] chapter 5), under similar hypothesis and hn =
O((ln n/n)1/(d+4)), that

• pointwisely, for a fixed value of x in the interior of the support of f ,

f̂n(x) − f(x) = Oa.s.

(

(

ln n
n

)2/(d+4)
)

• on a compact set,

sup
x∈[a,b]

∣

∣

∣
f̂n(x) − f(x)

∣

∣

∣
= Oa.s.

(

(

lnn

n

)2/(d+4)
)

.

Applied to our case (d = 1), we can summarize these results for further
reference in the following lemma for the estimator ĝn of the density g of Y :

Lemma 6.2. If the kernel K0 and the density g of Y satisfy assumption (K-0)
and (f-0) respectively, then for a point y in the interior of the support of g, and
a bandwidth chosen such as hn = O(n−1/5), we have

|ĝn(y) − g(y)| = Op(n
−2/5)

n2/5 [ĝn(y) − g(y)]
d
; N

(

0, g(y) ‖K0‖2
2

)

.

With the same assumptions, but for a bandwidth choice of hn = O((ln n/n)1/5),

ĝn(y) − g(y) = Oa.s.

(

(

lnn

n

)2/5
)

.

If, in addition, g satisfies assumption (f’-0), then, for a choice of a bandwidth
such as hn = O((ln n/n)1/5),

sup
y∈[a,b]

|ĝn(y) − g(y)| = Oa.s.

(

(

lnn

n

)2/5
)

.
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6.3. Convergence of cn(u, v)

Once one convinces oneself that cn(u, v) is simply the kernel density estimator
of the bivariate density c(u, v) of the pseudo-variables (U, V ), one directly draws
its convergence properties by applying the results of the preceding subsection
with d = 2:

Lemma 6.3. If the bivariate kernel K = K1K2 and the bivariate density c
satisfy assumptions (K-0) and (f-0) respectively, then, for a choice of an =
bn = O(n−1/6), for every (u, v) ∈ [0, 1]2, we have:

• Pointwise consistency: cn(u, v) − c(u, v) = OP (n−1/3);
• Bias: with obvious notations,

Ecn(u, v) = c(u, v) +
a2

n

2

∑

16i,j62

∂2c(u, v)

∂ui∂uj

∫

uiujK(u)du + o(a2
n);

• Asymptotic normality:

n1/3 [cn(u, v) − c(u, v)]
d
; N

(

0, c(u, v) ‖K‖2
2

)

.

For almost sure results, we have, with the previous assumptions and for a choice

of an = bn = O(
(

ln n
n

)1/6
),

• pointwisely, for fixed values of u and v,

cn(u, v) − c(u, v) = Oa.s.

(

(

lnn

n

)1/3
)

,

• on a compact set, if c satisfy assumption (f’-0),

sup
(u,v)∈[0,1]2

|cn(u, v) − c(u, v)| = Oa.s.

(

(

lnn

n

)1/3
)

.

6.4. A first approximation lemma of ĉn by cn

In order to prove the consistency of the estimator, we need to prove the approx-
imation lemma of this section. To this end, we make the assumption that the
bivariate kernel K = K1K2 verify the Lipschitz hypothesis (K-1), i.e., there
exist two constants C1 and C2 such that for every (u, v) ∈ [0, 1]2 × [0, 1]2,

|K1(u1)K2(u2) − K1(v1)K2(v2)| ≤ C1 |u1 − v1| + C2 |u2 − v2| .

The following lemma gives an approximation rate of the copula density estimator
ĉn(Fn(x), Gn(y))

ĉn(Fn(x), Gn(y)) =
1

n

n
∑

i=1

K1

(

Fn(x) − Fn(Xi)

an

)

K2

(

Gn(y) − Gn(Yi)

bn

)
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by its analogue cn(F (x), F (y)) in the space of the pseudo-variables (U, V ) :=
(F (X), G(Y )):

cn(F (x), G(y)) =
1

n

n
∑

i=1

K1

(

F (x) − F (Xi)

an

)

K2

(

G(y) − G(Yi)

bn

)

.

Lemma 6.4. If the kernel K(u, v) = K0(u)K1(v) follows hypothesis (K-1),
then

sup
(x,y)∈R2

|ĉn(Fn(x), Gn(y)) − cn(F (x), G(y))| = OP

(

1√
n inf(an, bn)

)

Proof. For every (x, y) ∈ R
2, we have a.s.

|ĉn(Fn(x), Gn(y)) − cn(F (x), G(y))|

≤ 1

n

n
∑

i=1

∣

∣

∣

∣

K1

(

Fn(x) − Fn(Xi)

an

)

K2

(

Gn(y) − Gn(Yi)

bn

)

−K1

(

F (x) − F (Xi)

an

)

K2

(

G(y) − G(Yi)

bn

)
∣

∣

∣

∣

≤ C1

nan

n
∑

i=1

|Fn(x) − F (x) + F (Xi) − Fn(Xi)|

+
C2

nbn

n
∑

i=1

|Gn(y) − G(y) + G(Yi) − Gn(Yi)|.

Yet, |F (Xi) − Fn(Xi)| ≤ sup
x∈R

|F (x) − Fn(x)| := ‖Fn − F‖∞ , and the same for

G−Gn. Consequently, by using the approximation result of section 6.1 (lemma
6.1),

|ĉn(Fn(x), Gn(y)) − cn(F (x), G(y))| ≤ 2C1

an
‖Fn − F‖∞ +

2C2

bn
‖Gn − G‖∞

= OP

(

1√
nan

+
1√
nbn

)

= OP

(

1√
n inf(an, bn)

)

which had to be proved.

Remark 3. In particular, for a choice of an = bn = O(n−1/6), one gets the
approximation rate n−1/3.

Corollary 6.5. With the same hypotheses,

sup
(x,y)∈R2

|ĉn(Fn(x), Gn(y)) − cn(F (x), G(y))| = Oa.s.

(

√

2 ln lnn

n

1

inf(an, bn)

)

.

Proof. It follows the same lines of the previous demonstration but uses the a.s.
bounds instead of the in probability ones of lemma (6.1).
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6.5. A second approximation lemma

In order to prove the asymptotic normality of the estimator, we need to prove
the approximation lemma of this section.

For simplicity, we use the same bandwidths for the bivariate kernel: an = bn.
Moreover, set

K(a, b) := K1

(

a

an

)

K2

(

b

an

)

and let’s introduce the following notation:

cn(u,U, v, V ) :=
1

n

n
∑

i=1

K1

(

u − Ui

an

)

K2

(

v − Vi

an

)

to stress the fact that the copula density estimator is calculated from from the
sample paths of (U, V ). We will make the slightly stronger assumption (K-2) on
the bivariate kernel K = K1K2, i.e. that K is twice differentiable with bounded
second partial derivatives.

We are going to show the following approximation lemma:

Lemma 6.6. For every fixed (x, y), if K satisfies assumption (K-2), then

cn(Fn(x), Fn(X), Gn(y), Gn(Y )) − cn(F (x), F (X), G(y), G(Y )) = OP (1/
√

n).

Proof. Set

∆n(x, y) := cn(Fn(x), Fn(X), Gn(y), Gn(Y )) − cn(F (x), F (X), G(y), G(Y ))

=
1

n

n
∑

i=1

[K (Fn(x) − Fn(Xi), Gn(y) − Gn(Yi))

−K (F (x) − F (Xi), G(y) − G(Yi))]

and introduce the following random variables

Zi,n(x) := Fn(x) − Fn(Xi) − F (x) + F (Xi)

Z ′
i,n(y) := Gn(y) − Gn(Yi) − G(y) + G(Yi).

For all i ∈ N, |F (Xi) − Fn(Xi)| ≤ ‖Fn − F‖∞ a.s. . We thus have uniformly in
i the a.s following bound

‖Zi,n‖∞ ≤ 2 ‖Fn − F‖∞ (12)

and similarly for Z ′
i,n(y). Since K is twice countinously differentiable, its Taylor

expansion writes itself for a > 0 and b > 0

K(a, b) = a
∂K(0, 0)

∂a
+ b

∂K(0, 0)

∂b

+
a2

2

∂2K(a0, b0)

∂a2
+

b2

2

∂2K(a0, b0)

∂b2
+ ab

∂2K(a0, b0)

∂a∂b
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for an a0 ∈ [0, a] and b0 ∈ [0, b]. Applied to our case, it gives

∆n(x, y) =
1

n

n
∑

i=1

(Zi,n(x))
∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a

+
1

n

n
∑

i=1

(

Z ′
i,n(y)

)∂K(F (x) − F (Xi), G(y) − G(Yi))

∂b

+
1

2n

n
∑

i=1

Z2
i,n(x)

∂2K(ai,n(x), bi,n(y))

∂a2

+
1

2n

n
∑

i=1

Z
′2
i,n(y)

∂2K(ai,n(x), bi,n(y))

∂b2

+
1

n

n
∑

i=1

Zi,n(x)Z ′
i,n(y)

∂2K(ai,n(x), bi,n(y))

∂a∂b

where ai,n(x) and bi,n(y) are measurable random variables. We have obviously
that

∂K(a, b)

∂a
=

1

an
K ′

1

(

a

an

)

K2

(

b

an

)

∂2K(a, b)

∂a2
=

1

a2
n

K ′′
1

(

a

an

)

K2

(

b

an

)

and symmetrically for the other partial derivatives. Therefore for bounded ker-
nels with bounded derivatives of first and second order, there exist a constant
C such as

∥

∥

∥

∥

∂2K(., .)

∂a2

∥

∥

∥

∥

∞

≤ C

a2
n

.

Therefore by using (12), we have a.s. the upper bound
∣

∣

∣

∣

∣

1

2n

n
∑

i=1

Z2
i,n(x)

∂2K(ai,n(x), bi,n(y))

∂a2

∣

∣

∣

∣

∣

≤ 1

2n

n
∑

i=1

‖Zi,n‖2
∞

C

a2
n

≤ C

a2
n

‖Fn − F‖2
∞ = OP

(

1

na2
n

)

and similarly for the other second-order terms in the expansion.
For the first order terms, we similarly bounds by using (12) as follows:

∣

∣

∣

∣

∣

1

n

n
∑

i=1

Zi,n(x)
∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a

∣

∣

∣

∣

∣

≤ 2 ‖Fn − F‖∞
1

n

n
∑

i=1

∣

∣

∣

∣

∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a

∣

∣

∣

∣

.
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It remains to bound in probability,

A :=
1

n

n
∑

i=1

∣

∣

∣

∣

∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a

∣

∣

∣

∣

.

We have by stationarity of (Xi, Yi),

E(A) = E

[

1

n

n
∑

i=1

∣

∣

∣

∣

∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a

∣

∣

∣

∣

]

= E

∣

∣

∣

∣

∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a

∣

∣

∣

∣

=
1

an
E

∣

∣

∣

∣

K ′
1

(

F (x) − F (X)

an

)

K2

(

G(y) − G(Y )

an

)
∣

∣

∣

∣

.

If K2 is bounded by a constant C,

E(A) ≤ C

an
E

∣

∣

∣

∣

K ′
1

(

F (x) − F (X)

an

)∣

∣

∣

∣

=
C

an
E

∣

∣

∣

∣

K ′
1

(

u − U

an

)∣

∣

∣

∣

=
C

an

1
∫

0

∣

∣

∣

∣

K ′
1

(

u − t

an

)∣

∣

∣

∣

dt = C

u/an
∫

(u−1)/an

|K ′
1(z)| dz

≤ C

1
∫

0

|K ′
1(z)| dz ≤ C2 < ∞

since K ′
1 is also bounded in absolute value by C, and the bound is uniform in

n. Therefore, Markov inequality entails that A is uniformly tight, i.e. bounded
in probability

1

n

n
∑

i=1

∂K(F (x) − F (Xi), G(y) − G(Yi))

∂a
= OP (1)

and similarly for the other first-order term.
By recollecting all elements, we finally have:

|∆n(x, y)| ≤ OP (‖Fn − F‖∞ + ‖Gn − G‖∞) + OP

(

1

na2
n

)

≤ OP (1/
√

n) + OP

(

1

na2
n

)

where the last inequality proceeds from the approximation lemma (6.1). For an
an = O(n−1/6), 1/na2

n is of order n−2/3 which is a o(n−1/2) and thus yields the
claimed result.
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Corollary 6.7. With the same hypotheses,

|ĉn(Fn(x), Gn(y)) − cn(F (x), G(y))| = Oa.s.

(

√

ln lnn

n

)

.

Proof. It follows the same lines of the previous demonstration but uses the a.s.
bounds instead of the in probability ones of lemma (6.1). To bound a.s. the
quantity A, one note that by a strong law of large number A → E(A) a.s.,
therefore A = Oa.s.(1).
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