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Abstract

The predictability of the mean August-September photosynthetic activity of vegetation over the Sahel
for the period 1982-2002 is explored through a Model Output Statistics approach using ECHAM4.5
retrospective forecasts. Given the poor ability of Atmospheric General Circulation Models (AGCMs)
to correctly simulate rainfall over the Sahel, the stress is put on using atmospheric dynamics alone.
The mean July-September predicted fields of zonal wind at 600hPa and humidity flux at 850hPa are
selected because of their key-role in the West African Monsoon system and their consistency in
AGCMs. Coupled modes of NDVI / atmospheric dynamics are extracted using Canonical Correlation
Analyses performed in leave-one-out cross-validation. The most relevant modes (using NCEP/DOE 2
or ECHAMA4.5 atmospheric dynamics) associate enhanced greenness to a weakened African Easterly
Jet displaced northward and strengthened moisture fluxes from the Guinean Gulf. They are linked
with increased rainfall over the Sahel and positive (negative) SST anomalies over the Mediterranean
(the Eastern equatorial Pacific).

Used as predictors in a Multiple Linear Regression model, the 3rd cross-validated canonical
coefficient derived from ECHAMA4.5 simulations added to the August-September NDVI value of the
previous year enable to explain 30% of the variance of a Sahelian regional index with a 2-month lead-
time. Applied at an 8-km spatial resolution, the statistical model possesses a usable skill (>.5) for 24%
of the pixels analysed. The NDVI of pixels covered by open grassland appears as the most

predictable.
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1. Introduction

The monitoring and understanding of the interannual evolution of the vegetation over the
Sahel by use of the Normalised Difference Vegetation Index (NDVI) satellite product have been the
subject of numerous studies in the last two decades.
The earlier studies by Justice and Hiernaux (1986), Tucker et al. (1986), Dregne and Tucker (1988)
were amongst the first to attempt the monitoring of vegetation over the Sahel. They pointed out the
ability of the NDVI product to detect spatial variations in the primary production from one year to
another for the very dry years 1983-1985. Tucker et al. (1991) used NDVI to estimate annual
precipitation and analysed the latitudinal shifts of the Saharan-Sahelian boundary. They observed that
the boundary mean position in 1990 was ~130km south of its position in 1980.
The extension of the NDVI data set temporal coverage (more than 20-year records by now) have
enabled to further investigate the factors and characteristics of the NDVI interannual variability over
the Sahel. The prime driver of NDVI variability is rainfall. A strong linear and positive relationship
is observed between annual (and seasonal) NDVI and rainfall amounts (Malo and Nicholson, 1990,
Nicholson et al., 1990, Herrmann et al., 2005, Camberlin et al., 2007). However, for a given rainfall
amount, the strength of the relationship significantly varies with the vegetation type : open grassland
and cropland areas exhibit the highest NDVI/rainfall correlations (Camberlin et al. 2007). Memory
effects from one year to another have also been recently evoked by Martiny er al. (2005) and
Philippon et al. (2007) to explain the persistence of marked NDVI anomalies after very wet or very
dry years (e.g. 1984).
In view of the characteristics of the NDVI variability, two main points recently emerged. At first, the
NDVI variability is spatially coherent over the region. Yearly maps of NDVI anomalies by Anyamba
and Tucker (2005) clearly highlight Sahel-wide patterns. Jarlan ef al. (2005) and Philippon et al.
(2007) extracted regional-scale modes of NDVI variability which partly match those of rainfall (such
as the global and West Sahelian modes, Moron 1994) by applying Principal or Independent
Component Analyses to the NDVI data set. Secondly, seasonal NDVI presents a positive trend since
1982 over most of the Sahel (Eklundh and Olsson, 2003, Herrmann et al., 2005, Anyamba and

Tucker, 2005, Heumann et al., 2007). This greenness increase has proved to be related at first with



rainfall recovery from the early 80's drought conditions (Hickler ef al., 2005) but the synchronous
changes observed in land use and land management are also assumed to play a role (Olsson et al.,
2005).

Thus, the studies performed until now have offered to the scientific community a clearer
picture of the factors and characteristics of the spatial and temporal variability of the vegetation
photosynthetic activity over the Sahel. The next step must be toward the NDVI forecasting. Several
early warning systems (for famine, epidemics) use satellite remote sensing data to supplement
ground-based observations (Gulaid, 1986). Indeed, remote sensing data have an advantage in
timeliness and for the identification of hot-spots areas where to take action (Hutchinson, 1991).
Numerous studies have demonstrated that Net Primary Production and crop yield could be estimated
from NDVI (Tucker et al., 1986, Groten, 1993, Maselli et al., 1993, 2000). Forecasts of NDVI such
as the ones proposed in the current study have been demonstrated to be a valuable tool for forecasting
crop yields (Rasmussen, 1997) and grain potential prices movement (Brown et al. 2008), planning
resources for livestock for the dry season (Wylie et al, 1991). Used as an indicator for
wetness/dryness conditions in semi-arid Africa, NDVI forecasts can also potentially inform on
epidemic and epizootic risks (Linthicum et al., 1999, Indeje et al., 2006).

The predictability of NDVI has recently been evaluated by Funk and Brown (2006), Mangiarotti et
al. (2006), Indeje et al. (2006), and Martiny et al. (2008) for the whole or specific areas of semi-arid
Africa. The two former studies focused on projections of the intra-seasonal NDVI changes and used
in particular the NDVI itself as a predictor. The two latter studies worked on seasonal NDVI to be
related with lagged observed or modelled oceano-atmospheric conditions. In addition, Jarlan et al.
(2005) and Philippon et al. (2007) highlighted significant lagged relationships between the NDVI
over the Sahel and Sea Surface Temperatures anomalies over the Pacific, the Indian or the Atlantic
oceans. On the whole, these studies point out the high potential predictability for the NDVI over
semi-arid areas of Africa. Thus, the objective of this study is to evaluate the predictability of the
vegetation photosynthetic activity for the Sahelian region specifically. The approach adopted follows
the one developed by Indeje et al. (2006) for forecasting NDVI in East Africa: we first look for the

coupled modes of variability between the NDVI and selected observed or modelled atmospheric



fields. We secondly apply a Model Output Statistics (MOS) approach to hindcast the NDVI from the
main modes of atmospheric variability detected. However, our study is distinct from the one of
Indeje et al. (2006) regarding (i) the fields used as predictors: in particular, we did not use rainfall as
a potential predictor of the NDVI, (i1) the way the CCAs are computed: we applied leave-one-out
cross-validations which means that skill is lowered but more realistic in particular in view of
operational forecasting, and (iii) the pixel resolution considered: we tested the MOS for the NDVI
field at an 8-km spatial resolution, and examined predictability according to the land-cover type. The
study is organised into 6 sections. Section 2 presents the NDVI and observed / modelled atmospheric
data used. Section 3 gives a brief overview of the statistical tools and MOS approach employed to
relate NDVI to the atmospheric fields. In section 4, the main coupled modes of NDVI and observed /
modelled atmospheric fields are presented, compared, and discussed in terms of linkages with the
rainfall and sea surface temperature fields. The atmospheric components of the coupled modes
detected in section 4 are then used as predictors in forecasting models presented in section 5. Section

6 closes the paper.

2. Data sets:

a. Normalized Difference Vegetation Index:

The NDVI is a combination of measures in the red and infra-red spectral regions which allows to
estimate the photosynthetic capacity of vegetated areas. The NDVI data set used in this study is from
the new process by the Global Inventory Mapping and Monitoring Studies (GIMMS) group at the
University of Maryland (available at http://glcf.umiacs.umd.edu/data/gimms). This data set from the
Advanced Very High Resolution Radiometer instrument on-board the NOAA meteorological
satellites provides NDVI global records at an 8-km spatial resolution for the period July 1981 —
December 2003. In the current study, we worked on the Africa subset, sampled at a 10-day time step.
This data set differs from the previous data sets in several ways: the use of an empirical mode
decomposition/reconstruction to minimise effects of orbital drift, NOAA-9 descending node data
from September 1994 to January 1995, a volcanic stratospheric aerosol correction for 1982-1984 and

1991-1994 (Tucker et al., 2005). As a consequence, NDVI variations arising from calibration, view
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geometry, volcanic aerosols, and other effects not related to actual vegetation change are significantly
reduced.

For the purposes of our study, we extracted data documenting the domain 10-20°N/20°W-20°E over
the period 1982-2002, and we averaged the 10-day periods of August-September. August-September
is the peak of the photosynthetic activity over the Sahel, and the interannual variability of NDVI for
these months and domain is strongly coherent (Philippon et al., 2007). Pixels with at least one 10-day
value below 0.11 were flagged. Below this value, NDVI is no longer representative of vegetated areas
(Martiny et al. 2005). In addition, we computed a regional index ('Sahelian NDVI index') which is
the spatial average of the 8km pixels correlated at 0.4 with the Sahelian index computed in a previous
study by Philippon et al. (2007, using an older version of the GIMMS NDVI dataset). This index will

be used as predictand in the multiple linear regression model developed in section 5.

b. Atmospheric dynamics:

'Observed’ data

The NCEP/DOE 2 reanalyses (Kanamitsu et al., 2002) were used as a proxy for the observed
atmospheric dynamics. We selected 4 parameters: the zonal component of the wind at 600hPa (U600
hereafter), the zonal and meridional components of the wind and the specific humidity at 850hPa
(U,V and SH850). The 3 latter fields were combined to compute the humidity fluxes at 850hPa
(HF850 hereafter). We extracted them over the window 0-40°N/40°W-40°E to capture the enlarged
domain of the West African Monsoon (WAM). We selected the months of July to September (JAS) to
take into account the one-month time-lag that exists between rainfall (as well as the atmospheric
dynamics) and vegetation photosynthetic activity over the region (Malo and Nicholson, 1990, Justice
et al., 1991, Martiny et al., 2006), .

The choice of the U600 and HF850 fields was first motivated by their importance for the WAM.
Figure 1 top panels provide their climatology for JAS and the period 1982-2002, over the above
mentioned domain. U600 documents the African Easterly Jet (AEJ) in JAS, located around 10°N
from 20°E to 20°W (Fig. 1 top left panel, -10m/s contour, see also Afiesimama 2007). The AEJ

intensity has proved to be negatively correlated with the JAS rainfall amounts (Fontaine and Janicot,



1992, Fontaine et al., 1995, Adedoyin 2000): indeed, a strong AEJ is a limiting factor for deep
convection. It is to be noticed that the AEJ is also sensitive to the land surface state, and the soil
moisture meridional gradients (Cook 1999) in particular. More generally, from the decadal to the
intra-seasonal time-scales, the WAM variability has been proved to be strongly sensitive and related
to the land surface conditions (Douville 2002). The HF850 field enables to capture variations in the
monsoon layer thickness, and in moisture advections from the Gulf of Guinea and the Mediterranean
(Fig. 1 top right panel). Recently, Rowell (2003), Raichich ef al. (2003) and Jung et al. (2006)
highlighted a strong teleconnection between the Mediterranean SST and the WAM through moisture
advections. A second motivation for the selection of the U600 and HF850 fields is that they are
usually correctly simulated by the atmospheric general circulation models (AGCMs). Moron et al.
(2004) analysed an ensemble of SST forced AGCMs simulations. They showed that interannual
variations of the AEJ and the West African Monsoon Index (WAMI) are well reproduced by models
in comparison with rainfall. Garric et al. (2002) compared the skill of rainfall forecasts based on
ARPEGE AGCM atmospheric dynamics (namely indices depicting the AEJ, the WAM or the
Tropical Easterly Jet) outputs to the direct rainfall outputs. They noticed that direct rainfall outputs
are less skillful than forecasts based on the atmospheric dynamics outputs.

Model outputs

The simulated atmospheric dynamics data set was obtained from the International Research Institute
for Climate and Society (IRI). Outputs are from retrospective forecasts with the ECHAM4.5 AGCM

(available from http://iridl.Ideo.columbia.edu/SOURCES/.IRI/.FD/.ECHAMA4p5/.Forecast/.ca_sst/

and released in early 2006). The retrospective ensemble selected for this study has been produced by
forcing ECHAM4.5 with constructed analogue SST ('ca_sst' hereafter) over tropical oceans (30S-
30N) and persisted SST over the extra-tropical oceans as boundary conditions. Analogue SST were
computed based on the methodology proposed by van den Dool (1994), lying on a linear combination
of past observed anomaly patterns as close as desired of the initial state, here the first 5 PCs of the
global SST field at consecutive 3-month periods prior to forecast time. Persisted SST were computed
by adding the dampened SST anomalies of the preceding months (with a dampened coefficient

having an e-folding time of three months) to the climatological annual cycle. The skill comparison
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performed by Li and Goddard (2005) demonstrates that retrospective forecasts under analogues
significantly improve upon retrospective forecasts under persisted SST anomalies.

The ca_sst forecasts consist in 24-member ensemble forecasts covering the period 1957-2002, with
lead-times of 0 to 6 months. We selected the simulations starting and initialised in early June and we
extracted the same variables as for NCEP/DOE2 (i.e., U600, and U, V, SH850 combined into HF850
over the domain 40°N/40°W-40°E) over the same domain for JAS and the 1982-2002 period. Given
the fact that the NDVI is considered from August to September, the statistical models built in this
study by use of dynamical outputs have potentially a 2-month lead-time. Notice that all the analyses
were performed using the 24-member ensemble mean. Figure 1 bottom panels present the JAS
climatological fields of U600 and HF850 as obtained from ECHAM4.5 ca_sst simulations. As
compared to the reanalyses (Fig. 1 top left), the AEJ is weakened (-8m/s against -10m/s); it is also
located northward and extends westward (Fig. 1 bottom left). The 850hPa humidity fluxes (Fig. 1
bottom right) display an enhanced zonal component at 10°N. Conversely, moisture advections from
the Mediterranean are reduced as well as the North-East fluxes associated with the Azores high
pressure. Despite these differences, ECHAM4.5 ca_sst simulates reasonably well the climatological
July-September U600 and HF850 fields. ECHAMA4.5 skill in simulating the interannual variability is

presented and discussed in the 4" section.

c. Rainfall and Sea Surface Temperatures:

The rainfall and sea surface temperature (SST) fields were used to interpret and understand the
teleconnections underlying the coupled modes of NDVI / atmospheric dynamics variability detected.
Rainfall data were extracted from the Climate Research Unit database which provides data for the
global land areas at a monthly time resolution and a 0.5° lat/lon spatial resolution (New et al., 2000).
We selected data for the months of July-September (we computed the JAS seasonal amount) and the
domain 10-18°N/20°W-20°E. The choice of this data set that documents the period 1900-2000 only,
was motivated by the balance between a high spatial resolution (0.5°) and a good quality. For
example the CMAP dataset that documents the period 1979-2006 has a coarse resolution of 2.5°.

SST data originate from the Hadley Centre HadISST database (Rayner et al., 2003). This global



coverage data set provides monthly mean fields of SST and sea-ice concentration from 1870 to
present on a 1°x1° grid. It improves upon the older GISST2.3b (Global Sea Ice and Sea Surface
Temperature version 2.3b) data set. We extracted data documenting the months of July-September

and the domain 40°S-40°N/180°W-180°E.

3. Methods

The methodology used in this study follows the one proposed by Indeje et al. (2006) and comprises
two steps: (i) the detection of coupled modes of NDVI / U600-HF850 (from NCEP/DOE2 and
ECHAMA4.5 ca_sst) variability and (ii) the hindcast of NDVI using a Multiple Linear Regression
Model in which the predictors are the U600-HF850 part of the coupled modes detected. This latter
approach is commonly referred to as the Model Output Statistics (MOS) approach (Wilks, 2006). It
enables to link large-scale simulated fields of atmospheric dynamics to fine-scale observed fields such
as rainfall (Landman and Goddard, 2002, Paeth and Hense, 2003) or NDVI (Indeje et al. 2006). Note
that in this study predictands are (1) a regional index of NDVI and (2) NDVI for each 8-km pixel
over the Sahelian domain. An additional predictor has also been considered: the August-September
NDVI of the previous year in order to take into account inter-season memory effects highlighted by
Martiny et al. (2005).

a. The Canonical Correlation Analysis

The detection of the coupled modes is through a Canonical Correlation Analysis (CCA). This method
is designed to identify the linear combinations of variables in one field (here a combination of U600
and HF850) that are the most strongly correlated with linear combinations of variables in another
field (here NDVI) (Barnston and Ropelewski, 1992, Bretherton et al., 1992, Moron et al., 2001
among others). In this study, each CCA mode is depicted by:
(i) two time series called 'canonical coefficients' (CC hereafter), one for U600/HF850 and one for
NDVI. The U600/HF850 canonical coefficients will be used as potential predictors of NDVI.
(ii) three 'correlation patterns: the first two maps display the correlations between the

U600/HF850 canonical coefficient and the U600 and HF850 fields; they are called



'homogeneous' maps ('g-map' hereafter) and localise the covarying parts of U600 and HF850.
The third map, called 'heterogeneous' map (‘hn-map' hereafter), displays the correlations with
the NDVI field. The hn-map is of importance since it demonstrates the extent to which NDVI
is predictable from the atmospheric dynamics. Attached to each map is the percentage of total
variance explained (table 2).
As suggested by Barnett and Preisendorfer (1987), it is advisable to remove unnecessary noise in the
raw data by applying Principal Component Analyses (PCA) then reconstructing each field as a
combination of the first few principal components. We thus submitted the standardised NDVI and
U600-HF850 fields to separate PCA and used the PCs as inputs to the CCA instead of the original
grid-point values (note that the PCA for U600 and HF850 is a combined PCA). Table 1 displays the
number of PCs retained as well as the percentage of variance explained for the NDVI (line 2) and the
observed and simulated combined U600-FH850 fields (lines 3-4). The number of PCs retained is
chosen according to the scree-slope criterion (Wilks, 2006). The CCA results appear robust: in
particular the leading CCA modes are not very sensitive to variations in the number of PCs retained.
These leading modes are thought to carry potentially predictable signals. Lastly, note that the CCA
has been developed in a leave-one-out cross-validation way (Elsner and Schmertmann 1994). This
procedure consists in computing training and testing sub-samples by leaving one year in turn. It
usually provides a more realistic measure of skill than considering the whole dataset. Moreover, this

procedure is particularly appropriate for small sample size (Barnston and van den Dool, 1993).

b. Building of the Model Output Statistics

The hindcasts of NDVI are based on a Multiple Linear Regression (MLR) model where the cross-
validated U600-HF850 canonical coefficients (from NCEP/DOE2 or ECHAM4.5 ca_sst) and
previous year NDVI value are the predictors. The use of the canonical coefficients as predictors
rather than atmospheric dynamics indices (representative of the AEJ or the Mediterranean advections
for example) preserves against (i) the biases frequently observed in AGCM simulations in the
location of the main components of the atmospheric dynamics and (ii) colinear predictors. We first

run the MLR model with the Sahelian index of NDVI as the predictand, and selected the most
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powerful predictors (among the 8 ones available) through a stepwise procedure with a significance
level for a predictor to enter or leave the model fixed at 5%. Then all the 8-km resolution pixels
analysed were hindcasted using the same predictors. In the case where ECHAM4.5 ca_sst forecasts
would be perfect, the skill obtained with the MLR model fed with these forecasts should be the same
as the skill obtained with the MLR model fed with NCEP/DOE2 data. Two skill-scores measures are
used to evaluate the performance of our models: the correlation coefficient (ro hereafter) and the linear
error in probability space (LEPS) revised by Potts et al. (1996). The adjusted R-square ('R’.adj')
which is a modification of R-square has also been used. It takes into account the number of
explanatory terms in a model, and enables to compare the skill of models using different numbers of

predictors. It is defined as

. P — 7
R.adjl] 1—3—R = ¢ where n is the sample size and p the total number
—p— =

of predictors.

LEPS measures forecasts errors according to their errors in the climatological probability distribution,
giving greater relative penalty to forecasts errors near the centre than near the extreme of the
cumulative probability distribution (Ward and Folland, 1991). Ranging between -1 and 2, it is defined
as

LEPS[B 1-— | P, Pf| ? ch— p.? P!—P —1lwhere P, and P; are the cumulative
distribution function of the observation and the forecast respectively. LEPS appears as an alternative

unbiased skill measure to the common root mean-squared error and anomaly correlation (Potts et al.,

1996).

4. Coupled modes of NDVI / atmospheric dynamics variability and their links with rainfall and
SST
The search for coupled modes of NDVI / atmospheric dynamics has been done with NDVI field

upscaled to a 48-km spatial resolution using a simple pixel average.

a. Results with NCEP/DOE2 U600-HF850 fields
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Figure 2 presents the first CCA mode of NDVI and U600-HF850 from the NCEP/DOE2 reanalyses.
Table 2 provides the percentage of variance explained for each of the three fields (column 2), and the
correlation between the canonical coefficients (last line, 'R.CC").

The first CCA mode associates positive anomalies of NDVI over the central and eastern Sahel mainly
(hn-map Fig. 2a, 18.6% of variance explained) with a weakened northward shift of the AEJ (negative
correlations along 20°N, g-map Fig. 2b), and strengthened moisture advections from the Gulf of
Guinea (g-map Fig. 2¢). Such atmospheric dynamics patterns are known to be favourable to rainfall.
This is confirmed by the correlation map of the U600-HF850 mode 1 canonical coefficient (CC1
hereafter) with the JAS rainfall field (Fig. 3b): it features positive values over most of the Sahel, the
central and East Sahel recording values above 0.7. Similarly, Figure 3a provides CC1 correlation map
with the JAS SST field. Time series were detrended in order to highlight teleconnections at the
interannual time-scale. The main signal appears over the Mediterranean Sea with positive
correlations. This is not contradictory with Fig. 2c where no significant signal can be observed in the
humidity fluxes from the Mediterranean. Indeed, the correlation pattern computed between CC1 and
the 850hPa humidity field alone (without combining it with the wind, not shown) depicts a South-
West / North-East broad band of significant positive correlations (up to 0.7) spreading from the
Mediterranean to the Chad. Positive correlations are also observed with SST over the northern extra-
tropical basins. Two additional signals take place in the equatorial Pacific and in the tropical South
Atlantic to a lesser extent. Cold SST anomalies in these basins are favourable to high photosynthetic
activity over the Sahel (Mennis, 2006, Philippon et al. 2007). These results are in agreement with
previous studies relating the Sahelian rainfall variability with ENSO (Janicot and Fontaine, 1996,
Janicot et al., 2001, Rowell, 2001) and to the equatorial and South tropical Atlantic (Lough, 1986,
Druyan, 1991, Fontaine and Janicot, 1996, Janicot et al., 1998, Camberlin et al., 2001 among others).
Lastly, negative correlations are also found off the Senegal coast and could explain the low
correlations values observed in the hn-map (Fig. 2a) and the rainfall field (Fig. 3b) over the West
Sahel. In this case, cold SST there inhibit rainfall. A noteworthy point is that when considering the
canonical coefficient relative to NDVI (Fig. 2d, line), the significant correlations with the equatorial

Pacific are no longer observed while the ones with the equatorial and south tropical Atlantic are
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stronger (not shown). This could suggest that NDVI is more sensitive to rainfall variations related to
the availability of moisture (advected from the Guinean Gulf) than those due to convection activity
level within the ITCZ (partly modulated by ENSO).

The standardised cross-validated canonical coefficients are correlated at 0.81 (Fig. 2d and table 1) and
oppose the 'green' years 1988, 1994, 1999 to the 'yellow' years 1983, 1984, 1987. They also feature a
positive trend which has already been observed over the Sahel at the pixel scale (Eklundh and Olsson,
2003, Olsson et al., 2005, Heumann et al., 2007) and in the rainfall field (Nicholson, 2005), the
greening of the Sahel being primarily attributed to the rainfall fluctuations (Hickler et al., 2005). It is
worth mentioning there that the NDVI CC is in good agreement with the Sahelian index built by
Philippon et al. (2007) as a correlation of 0.76 is found between the two.

Among the next modes (not shown), the 2™ mode depicts more particularly the NDVI variability in
the western Sahel (agreeing with results obtained by Jarlan et al., 2005) but explains a low fraction of
variance (Table 2, 3" column). Positive NDVI anomalies there are associated with a cyclonic
circulation in the 850hPa humidity flux over the western Sahara, and an AEJ located eastward. The
CC associated with this mode feature negative trends as opposed to the positive ones observed for
CC1. Correlation maps with rainfall and SST fields highlight above normal rainfall over the Senegal
and a La Nifa event in the equatorial eastern Pacific in years of enhanced greenness in the Western
Sahel. The signal in this oceanic basin is much more marked than the one observed for the 1* CCA
mode: correlation values are up to 0.6 against 0.4 respectively. It may reflect a spatial shift in the
Sahelian rainfall / ENSO teleconnexion over the two last decades. All the next modes explain

strongly decreasing variance and become awkward to interpret.

b. Results with ECHAMA4.5 ca_sst U600-HF850 fields

The 1% and 2™ modes resulting from the CCA computed between NDVI and U600/HF850 fields from
ECHAMA4.5 ca_sst simulations, are not shown. Indeed, the variance explained is very low (table 2,
columns 4 and 5) and the associated atmospheric dynamics and NDVI patterns are noisy and
awkward to interpret. In addition, the canonical coefficients do not show any significant relationship

with the observed Sahelian rainfall field nor clear signals with the observed SST field. Thus they are
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assumed to be strongly model-dependent. Figure 4 presents the 3" CCA mode using ECHAM4.5
U600/HF850 fields. This mode roughly matches the 1% mode of the CCA performed with the
reanalyses fields (Fig. 2). The hn-map (Fig. 4a) depicts an in-phase NDVI variability over the whole
Sahelian band, while the g-maps show a weaker shifted northward AEJ (Fig. 4b), and reinforced
moisture advections from the Guinean Gulf and the Mediterranean (Fig. 4c). However, as compared
to reanalyses, correlations values (particularly in the hn-map, Fig. 4a) and explained variance (table
2) are less significant, and too much weight is given to advections from the Mediterranean and to
those associated with the eastern part of the monsoon. This latter point is consistent with the mean
HF850 field (Fig. 1d) for which this bias was already noticed. Correlations of the U600-HF850
canonical coefficient with the JAS SST and rainfall fields (Fig. 5ab) are also in agreement with
results obtained with the reanalyses (Fig. 3ab). For rainfall, positive significant correlations are
observed from the east of Senegal to the west of Burkina Faso and at the east of Niger (Fig. 5b). For
SST, positive (negative) correlations appear over the Mediterranean and the boreal extratropical
basins (the equatorial eastern Pacific, Fig. 5a) in agreement with observations (Fig.3a) but once again
correlations are less significant. Thus, ECHAMA4.5 ca_sst simulations capture in a fairly good way the
atmospheric dynamics associated with the rainfall and NDVI anomalies over the Sahel and its
teleconnection with the SST anomalies. The standardised cross-validated canonical coefficients (Fig.
4d) are correlated at 0.45 ('R.CC' table 2). Among the years of below (above) normal NDVI, notice
1984, 1987, 2002 (1988, 1994) which are also extreme years in the canonical coefficients associated
with the NCEP/DOE2 reanalyses (Fig. 2d). CC3 from ECHAM4.5 simulation and CC1 from
NCEP/DOE2 are correlated at 0.76 (0.74 when the trends are removed), indicating again the good
consistency between the observed and simulated atmospheric dynamics components of the coupled

modes.

5. NDVI hindcasts using a Model Output Statistics approach

Analyses carried out in the previous section have highlighted the potential predictability of the NDVI

at a 48-km spatial resolution from key components of the large-scale atmospheric dynamics
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associated with the West African Monsoon. Moreover, the ECHAM4.5 retrospective forecasts
reproduce in a relatively accurate way the main observed coupled modes of variability despite
percentages of variance that remain low (table 2, 6" column). The Model Output Statistics approach
is now used to hindcast the NDVI at its highest resolution, i.e. 8km, from NCEP/DOE2 reanalyses
and ECHAM4.5 forecasts ('ND2 MOS' and 'EC4.5 MOS' hereafter). The former informs about the
skill that could be potentially reached with perfect forecasts.

Table 3 presents the canonical coefficients selected as predictors in the ND2 and EC4.5 MOS. It is
reminded that selection of predictors is based on MOS developed with a Sahelian NDVI index as
predictand. The skill of these MOS is displayed in Table 3 (column 3-4) while the observed and
hindcasted time-series of the Sahelian NDVI index are shown in Figure 6. Among the 7 canonical
coefficients and the previous year NDVI value available as predictors, only the 1* CC is selected in
the ND2 MOS. It enables to explain 77% of the Sahelian NDVI index variance. The EC4.5 MOS uses
the 3" CC and the previous year NDVI value but only explains 30% of variance. This agrees with the
lower percentage of variance explained by the EC4.5 modes. For the two MOS, the LEPS scores are
above 0.3. The fit between observations and hindcasts appears in Figure 6. It is particularly good for
the ND2 MOS (Fig. 6, full circles) : the most noticeable error concerns the key year 1984 for which
NDVI is over-estimated. 1984 is the driest year of the 2" half of the 20" century and is associated
with a warm equatorial Atlantic (Druyan and Hastenrath, 1992, Hisard et al., 1986). The over-
estimation is thought to be due to the weak teleconnection of CC1 with this basin (Fig. 3a) but also to
vegetation memory effects observed from one year to another as proposed by Martiny et al. (2005).
Indeed, adding the NDVI value of the previous year in the ND2 MOS improves the hindcast for that
year. Lastly, the ND2 MOS tends to accentuate the trend. The error in 1984 also concerns the EC4.5
MOS which even more largely over-estimates NDVI (again the over-estimation increases if the
NDVI of the previous year is removed from the EC4.5 MOS). The EC4.5 MOS (Fig. 6, stars) appears
also less skillfull for the key years 1994 and 1999 that are under-estimated. 1994 was a particularly
green year over the Central Sahel (see Philippon et al., 2007, their 3" mode from an independent
component analysis). However, this part of the Sahel is not well depicted in the MOS (NDVI there is

depicted by the 2" CCA mode which has been shown to be unrelated to observed rainfall and SST).
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Skill of NDVI hindcasts at 8km spatial resolution are provided in Figure 7. Panels ab display the
correlation maps and allow to locate the regions where NDVI is the best hindcasted. Figure 7c
summarises the distribution of the correlation values and allows a better comparison of the skill of the
two MOS. As expected, the regions recording the highest skill logically match those highlighted in
the 'hn-maps’ in Fig. 2a and Fig. 4a. On the whole, pixels ranging from 13-18°N and 18°W-20°E have
the highest potential predictability, the Sahelian domain being clearly discerned. Most of the pixels
located south of this domain, i.e. the Sudanian domain, record r, values below 0.3, suggesting that
either NDVI there is not predictable from the atmospheric dynamics or is in opposite phase with the
northern region. The former alternative is supported by Camberlin et al. (2007) study which shows
non significant or nil correlation values between annual NDVI and the synchronous rainfall amount
over the Guinean and Sudanian regions (see their figure 2). In this case, the low sensitivity of NDVI
to rainfall variations logically makes it less prone to be teleconnected to the atmospheric dynamics.
The second alternative is to be considered too since Philippon et al. (2007) detected a dipole-like
mode of NDVI variability over West Africa, opposing the Sahelian domain to the Guinean-Sudanian
one in August particularly (this mode prevailed in 1984, 1987, 1998 and 2001). At finer scale, skill
variations are also observable within the Sahelian domain. High skill is observable over South-
Eastern Mauritania, Central Niger, Western Tchad and Northern Burkina Faso especially for the ND2
MOS (Fig. 7a). As for the Sahelian NDVI index, a loss of skill is observed for the NDVI field with
EC4.5 MOS (Fig. 7bc): 24% of the grid-points of the domain considered record a r, above 0.5,
against 37% with ND2 MOS. A similar behaviour is observed in Indeje et al. (2006) results (see their
fig. 11). Pixels recording the highest skill in the EC4.5 MOS are located over Mali, Burkina Faso and
Niger (Fig. 7b).

According to Barnston and Ropelewski (1992), models with a r, below 0.5 are though to be unusable
for operational forecasting. However, despite the low skills obtained for a large part of pixels, results
are nonetheless encouraging given the fact that (i) they concern 8-km spatial resolution pixels, (ii)
they are issued from MOS that do not use any information relative to rainfall.

Lastly, a deeper insight on the skill of the MOS over the Sahelian domain is proposed in Figure 8.

Based on the land-cover map for Africa (Mayaux et al., 2004) prepared in the framework of the
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Global Land Cover 2000 project (Bartholomé et al., 2005), skill is provided as a function of the cover
type. Note that the GLC2000 Africa map provides data at an initial 1km resolution that have been up-
scaled at the 8km resolution for the purposes of our study. Pixels are shared among 14 different
classes (table 4). Looking at figure 8, it appears that the predictability level varies according to the
cover-type. In particular pixels covered by grassland (classes 12 to 15) and cropland (class 17) are the
most predictable. Focusing on results obtained with ND2 MOS, two cover types in particular emerge
as having a NDVI level noticeably predictable from the atmospheric dynamics: the open grasslands
(class 13) and croplands (class 17), the two having a median r, above 0.5, i.e. the usable level for
operational forecasting. With EC4.5 MOS, the median r, reaches only 0.4 for these two classes. This
loss of skill agrees with the one observed in figure 7c considering all the grid-points. Note also that
differences in predictability among the classes is less pronounced with the EC4.5 (Fig. 8b) than ND2
(Fig. 8a) MOS. These results are concordant with the study by Camberlin et al. (2007). These authors
noted, for the whole tropical Africa, the highest median correlation between annual rainfall and
annual NDVI for pixels covered by the open grasslands (with 80% of the pixels displaying significant
correlations). Thus and logically, vegetation for which the photosynthetic activity is the most
predictable from AGCMs simulations is the one that is the most strongly sensitive to rainfall
variability. A last point concerns pixels classified as 'bare soil' whose predictability is on average
higher than the one of woody cover types (7, 9 and 18) for ND2. This could be explained by the mix

of bare soil and open or sparse grassland covers in the 1km and 8km spatial resolution pixels.

6. Discussion and Conclusion

The purpose of this study was to assess the predictability of the mean photosynthetic activity of the
Sahelian vegetation in August-September. To that aim we looked for relevant potential predictors and
developed and tested forecasting models based on a Model Output Statistics approach.

Whereas most of the predictability studies use rainfall as predictors, we worked with predictors
depicting the atmospheric dynamics and simulated by an AGCM run in a forecast mode (i.e. forced

by constructed analogue SSTs). There are two main reasons for such a choice. Firstly, the interannual
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variability of rainfall over West Africa is usually inaccurately reproduced or predicted by
atmospheric (Moron et al. 1994) and coupled (Bouali et al. 2008) GCMs that better simulate the
decadal variability (Giannini et al. 2003, Hoerling et al 2006). Secondly, the one-month time-lag that
exists between rainfall and NDVI is not sufficient for using observed rainfall (or atmospheric
dynamics) in operational forecasting, given the frequency of the data updates. By use of AGCM
outputs initialised in early June, we take advantage of a 2-month lead-time.

The atmospheric dynamics fields selected are the zonal wind at 600hPa and the humidity fluxes at
850hPa over the domain of the West African Monsoon. They enable to capture the African Easterly
Jet and moisture advections from the Gulf of Guinea, which are two key components of the WAM.
The selection of these fields is of particular relevance. Indeed, enhanced August-September greenness
over the Sahel is associated with a weakened AEJ located northward, and reinforced moisture
advections from the Gulf of Guinea and the Mediterranean, in July-September. These atmospheric
dynamics patterns of anomalies appear in turn to be linked to a synchronous abnormally warm
Mediterranean and cool eastern equatorial Pacific (La Nifia event), and lead to above normal rainfall
amounts over the Sahel. Then, these signals are reasonably simulated by ECHAM4.5 and along with
the NDVI of the previous year (to take into account vegetation memory effects) explain a non
negligible part of the NDVI variability: 30% of a Sahelian index variance is explained. At a 8-km
spatial resolution, 24% of the pixels analysed have a useful skill (i.e., ry above 0.5). If these skills can
seem low as compared to the study by Indeje et al. (2006) for East Africa, it must be reminded that
our models (1) do not use rainfall as predictor, (2) are fully developed in a cross-validation way
(applied to the CCA), and (3) tested at the 8km resolution over a 21-yr period. Moreover, these skills
can also be partly model dependent. Further investigations and predictability assessment would worth
be conducted using outputs from AGCMs forced with persisted SSTs and following the ensemble
mean approach (single or multi-model ensemble mean). These latter allow first to reduce uncertainty
due to model parametrisation and second to express forecasts in terms of probabilities which is much
relevant for societal application purposes. Lastly, the attempt to integrate in our models the
‘persistence effect' as observed by Martiny et al. (2005), i.e. the NDVI recorded the previous year,

improves the skill mainly for the ECHAM4.5 based MOS. It also reduces errors in NCEP/DOE2
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based MOS for specific years, such as 1984.

Three additional noticeable points emerged from this study. At first, the degree to which NDVI is
predictable significantly varies according to the land-cover type. Pixels covered by grasslands have
the most predictable photosynthetic activity. This is coherent with findings by Camberlin et al. (2007)
showing that the strongest NDVI / rainfall relationship is observed for this land-cover type. Secondly,
looking at the correlation map between the rainfall field and the atmospheric dynamics modes, it
seems that NDVI is as predictable as the rainfall field (if not more since it is considered at 8km
resolution). Following the study by Grist ef al. (1997), estimations of the rainfall field for areas where
NDVI is highly predictable (which are also those where the NDVI / rainfall relationship is the
strongest) could then be produced and used e.g., as inputs in hydrological, crop yields (Rasmussen,
1997) and crop prices (Brown et al. 2008) models. Lastly, the fact that the teleconnexion patterns
with SST of the dynamical and NDVI parts of the NCEP/DOE?2 based CCA are different suggest that
the intra-seasonal and spatial distribution of rainfall rank number two after the rainfall amount for
explaining NDVI variability. This calls for further analyses on NDVI and its links with intra-seasonal

components of the rainy season.
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Table 1: percentage of variance and number of modes kept after the PCA pre-filtering of NDVI and
U600/HF850 (from NCEP/DOE2 and ECHAM4.5 ca_sst) fields.

% of variance | Number of modes
NDVI .64 7
NCEP/DOE2 81 10
U600/HF850
ECHAMA4.5 ca_sst 93 11

Table 2: percentage of variance explained by the main CCA modes for the NDVI field, and the U

600hPa and HF 850hPa fields from NCEP/DOE2 and ECHAMA4.5 ca_sst. 'R.CC' is the correlation

between the canonical coefficients. the CCA has been developed in a leave-one-out cross-validation

mode.
NCEP/DOE2 ECHAMA4.5 ca_sst
CCA 1 CCA?2 CCA 1 CCA2 CCA3
NDVI 18.6 6.4 5.4 4.4 7.3
U600 20.8 12.1 8.5 8.9 13.4
HF850 (U part) 20.3 10.6 6.5 8.2 13.3
HF850 (V part) 10.7 10.1 6.5 6.9 9.8
R.CC 81 .62 .16 A2 45

Table 3: number of the canonical coefficients selected as predictors, r,, adjusted R? and LEPS skill-
scores of the 1-yr cross-validated MOS models ('ND2' and 'EC4.5' in text) based on a Sahelian NDVI
index as predictand.

CC retained |r, (R’.adj)| LEPS
ND2 (NCEP/DOE?2) N°1 17 (56%) 47
EC4.5 (ECHAMA4.5 N° 3 .58 (30%) 32
Ca_sst + NDVI y-1)
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Table 4: number and denomination of the cover type associated with the land-cover classes defined

in GLC2000 for pixels considered in the study.

Class number Cover type
) Closed evergreen lowland forest
5 Mangrove
7 Mosaic forest / savanna
9 Deciduous woodland
10 Deciduous shrubland
12 Closed grassland
13 Open grassland with sparse shrubs
14 Open grassland
15 Sparse grassland
16 Swamp bushland and grassland
17 croplands
18 Croplands with open woody vegetation
19 Irrigated croplands
21 Bare soils
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Figure 1: mean July-September fields of the zonal wind at 600hPa (left panels) and the humidity
fluxes at 850hPa (right panels) from NCEP/DOE?2 reanalyses (top panels) and ECHAM4.5 ca_sst

(bottom) for the period 1982-2002.
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Figure 2: 1" CCA mode between NDVI and NCEP/DOE2 U600/HF850. (a) NDVI heterogeneous
pattern (‘hn-map’). (b and c¢) U600 and HF850 homogeneous patterns ('g-map’). (d) canonical
coefficients. Shading in panels bc denotes correlations significant at the 95% level according to

Student's T-test. CCA has been developed in a leave-one-out cross-validation.
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Figure 3: Correlation maps between the cross-validated 1" canonical coefficient from the CCA
between NDVI and NCEP/DOE2 atmospheric dynamics and (a) July-September SST field
(detrended), and (b) rainfall field (from CRU). Thick (thin) contours for positive (negative)

correlations. Shading denotes correlations significant at the 95% level according to Student's T-test.
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Figure 4: as Figure 2 but between NDVI and ECHAM4.5 ca_sst U600/HF850 and for the 3 CCA

mode.
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Figure 5 : as Figure 3 but between the 3™ canonical coefficient from the CCA between NDVI and

ECHAMA4.5 ca_sst atmospheric dynamics.
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Figure 6: 1-yr cross-validated hindcasts from ND2 (circle) and EC4.5(*) MOS (see text), and

observations (bar) of a standardised Sahelian NDVI index.
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Figure 7: Correlation ('ry') maps between 1-yr cross-validated observed and hindcasted NDVI using
(a) ND2 and (b) EC4.5 MOS. (c) cumulative percentage of grid points as a function of the correlation
value threshold for hindcasts from ND2 (black line) and EC4.5 (red line) MOS. The dash line
indicates the r,=0.5 threshold above which modes are usable for operational forecasting. The full line

indicates the 95% significance threshold for .
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Figure 8 : Box-plot of correlation coefficients ('ry ') between 1-yr cross-validated observed and
hindcasted NDVI from (a) ND2 and (b) EC4.5 MOS, as a function of the land-cover type (as defined
by GLC2000; see full classes denominations under table 4). Only those classes which are represented
by at least 100 grid-points are shown. Top numbers: number of grid-points. Horizontal dashed line:
95% confidence level. Box-plots are represented in the usual way (i.e., lower and upper limits of the
box: lower and upper quartiles; central line: median; whiskers: lowest and highest values, with ‘+’

showing outliers beyond 1.5 times the inter-quartile range).
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