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GloptiPoly 3: moments, optimization and

semidefinite programming

Didier Henrion1,2, Jean-Bernard Lasserre1,3, Johan Löfberg4

Version 3.0 of September 17, 2007

Abstract

We describe a major update of our Matlab freeware GloptiPoly for parsing gen-

eralized problems of moments and solving them numerically with semidefinite pro-

gramming.

1 What is GloptiPoly ?

Gloptipoly 3 is intended to solve, or at least approximate, the Generalized Problem of

Moments (GPM), an infinite-dimensional optimization problem which can be viewed as

an extension of the classical problem of moments [8]. From a theoretical viewpoint, the

GPM has developments and impact in various areas of mathematics such as algebra,

Fourier analysis, functional analysis, operator theory, probability and statistics, to cite

a few. In addition, and despite a rather simple and short formulation, the GPM has a

large number of important applications in various fields such as optimization, probability,

finance, control, signal processing, chemistry, cristallography, tomography, etc. For an

account of various methodologies as well as some of potential applications, the interested

reader is referred to [1, 2] and the nice collection of papers [5].

The present version of GloptiPoly 3 can handle moment problems with polynomial data.

Many important applications in e.g. optimization, probability, financial economics and
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optimal control, can be viewed as particular instances of the GPM, and (possibly after

some transformation) of the GPM with polynomial data.

The approach is similar to that used in the former version 2 of GloptiPoly [3]. The

software allows to build up a hierarchy of semidefinite programming (SDP), or linear

matrix inequality (LMI) relaxations of the GPM, whose associated monotone sequence of

optimal values converges to the global optimum. For more details on the approach, the

interested reader is referred to [8].

2 Installation

GloptiPoly 3 is a freeware subject to the General Public Licence (GPL) policy. It can be

downloaded at

www.laas.fr/∼henrion/software/gloptipoly3

The package, available as a compressed archive, consists of several m-files and subdirec-

tories, and it contains no binaries. Extracted files are placed in a gloptipoly3 directory

that should be declared in the Matlab working path, using e.g. Matlab’s command

>> addpath gloptipoly3

GloptiPoly 3 uses by default the semidefinite programming solver SeDuMi [11], so this

package should be properly installed. Other semidefinite solvers can also be used provided

they are installed and interfaced through YALMIP [10].

3 Getting started

Please type the command

>> gloptipolydemo
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to run interactively the basic example that follows.

Consider the classical problem of minimizing globally the two-dimensional six-hump camel

back function [3]

min
x∈R2

g0(x) = 4x2

1
+ x1x2 − 4x2

2
− 2.1x4

1
+ 4x4

2
+

1

3
x6

1
.

The function has six local minima, two of them being global minima.

Using GloptiPoly 3, this optimization problem can be modeled as a moment problem as

follows:

>> mpol x1 x2

>> g0 = 4*x1^2+x1*x2-4*x2^2-2.1*x1^4+4*x2^4+x1^6/3

Scalar polynomial

4x1^2+x1x2-4x2^2-2.1x1^4+4x2^4+0.33333x1^6

>> P = msdp(min(g0));

GloptiPoly 3.0

Define moment SDP problem

...

(GloptiPoly output suppressed)

...

Generate moment SDP problem

>> P

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 27

Semidefinite inequalities = 10x10

Once the moment problem is modeled, a semidefinite solver can be used to solve it nu-

merically. Here we use SeDuMi [11] which is assumed to be installed and accessible from

the Matlab working path:
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>> [status,obj] = msol(P)

GloptiPoly 3.0

Solve moment SDP problem

*****************************************************

Calling SeDuMi

SeDuMi 1.1R3 by AdvOL, 2006 and Jos F. Sturm, 1998-2003.

...

(SeDuMi output suppressed)

...

2 globally optimal solutions extracted

>> status

status =

1

>> obj

obj =

-1.0316

>> x = double([x1 x2]);

x(:,:,1) =

0.0898 -0.7127

x(:,:,2) =

-0.0898 0.7127

The flag status = 1 means that the moment problem is solved successfully and that

GloptiPoly can extract two globally optimal solutions reaching the objective function obj

= -1.0316.

4 From version 2 to version 3

The major changes incorporated into GloptiPoly when passing from version 2 to 3 can be

summarized as follows:
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• Use of native polynomial objects and object-oriented programming with specific

classes for multivariate polynomials, measures, moments, and corresponding over-

loaded operators. In contrast with version 2, the Symbolic Toolbox for Matlab

(gateway to the Maple kernel) is not required anymore to process polynomial data.

• Generalized problems of moments featuring several measures with semialgebraic

support constraints and linear moment constraints can be processed and solved.

Version 2 was limited to moment problems on a unique measure without moment

constraints.

• Explicit moment substitutions are carried out to reduce the number of variables and

constraints.

• The moment problems can be solved numerically with any semidefinite solver, pro-

vided it is interfaced through YALMIP. In contrast, version 2 used only the solver

SeDuMi.

5 Solving generalized problems of moments

GloptiPoly 3 uses advanced Matlab features for object-oriented programming and over-

loaded operators. The user should be familiar with the following basic objects.

5.1 Multivariate polynomials (mpol)

A multivariate polynomial is an affine combination of monomials, each monomial de-

pending on a set of variables. Variables can be declared in the Matlab working space as

follows:

>> clear

>> mpol x

>> x

Scalar polynomial
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x

>> mpol y 2

>> y

2-by-1 polynomial vector

(1,1):y(1)

(2,1):y(2)

>> mpol z 3 2

>> z

3-by-2 polynomial matrix

(1,1):z(1,1)

(2,1):z(2,1)

(3,1):z(3,1)

(1,2):z(1,2)

(2,2):z(2,2)

(3,2):z(3,2)

Variables, monomials and polynomials are defined as objects of class mpol.

All standard Matlab operators have been overloaded for mpol objects:

>> y*y’-z’*z+x^3

2-by-2 polynomial matrix

(1,1):y(1)^2-z(1,1)^2-z(2,1)^2-z(3,1)^2+x^3

(2,1):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3,2)+x^3

(1,2):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3,2)+x^3

(2,2):y(2)^2-z(1,2)^2-z(2,2)^2-z(3,2)^2+x^3

Use the instruction

>> mset clear

to delete all existing GloptiPoly variables from the Matlab working space.
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5.2 Measures (meas)

Variables can be associated with real-valued measures, and one variable is associated with

only one measure. For GloptiPoly, measures are identified with a label, a positive integer.

When starting a GloptiPoly session, the default measure has label 1. By default, all

created variables are associated with the current measure. Measures can be handled with

the class meas as follows:

>> mset clear

>> mpol x

>> mpol y 2

>> meas

Measure 1 on 3 variables: x,y(1),y(2)

>> meas(y) % create new measure

Measure 2 on 2 variables: y(1),y(2)

>> m = meas

1-by-2 vector of measures

1:Measure 1 on 1 variable: x

2:Measure 2 on 2 variables: y(1),y(2)

>> m(1)

Measure number 1 on 1 variable: x

The above script creates a measure dµ1(x) on R and a measure dµ2(y) on R
2.

Use the instruction

>> mset clearmeas

to delete all existing GloptiPoly measures from the working space. Note that this does

not delete existing GloptiPoly variables.
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5.3 Moments (mom)

Linear combinations of moments of a given measure can be manipulated with the mom

class as follows:

>> mom(1+2*x+3*x^2)

Scalar moment

I[1+2x+3x^2]d[1]

>> mom(y*y’)

2-by-2 moment matrix

(1,1):I[y(1)^2]d[2]

(2,1):I[y(1)y(2)]d[2]

(1,2):I[y(1)y(2)]d[2]

(2,2):I[y(2)^2]d[2]

The notation I[p]d[k] stands for
∫

p dµk where p is a polynomial of the variables asso-

ciated with measure dµk, and k is the measure label.

Note that it makes no sense to define moments over several measures, or nonlinear moment

expressions:

>> mom(x*y(1))

??? Error using ==> mom.mom

Invalid partitioning of measures in moments

>> mom(x)*mom(y(1))

??? Error using ==> mom.times

Invalid moment product

Note also the distinction between a constant term and the mass of a measure:

>> 1+mom(x)

Scalar moment

1+I[x]d[1]
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>> mom(1+x)

Scalar moment

I[1+x]d[1]

>> mass(x)

Scalar moment

I[1]d[1]

Finally, let us mention three equivalent notations to refer to the mass of a measure:

>> mass(meas(y))

Scalar moment

I[1]d[2]

>> mass(y)

Scalar moment

I[1]d[2]

>> mass(2)

Scalar moment

I[1]d[2]

The first command refers explicitly to the measure, the second command is a handy short-

cut to refer to a measure via its variables, and the third command refers to GloptiPoly’s

labeling of measures.

5.4 Support constraints (supcon)

By default, a measure on n variables is defined on the whole R
n. We can restrict the

support of a mesure to a given semialgebraic set as follows:

>> 2*x^2+x^3 == 2+x

Scalar measure support equality

2x^2+x^3 == 2+x

>> disk = (y’*y <= 1)
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Scalar measure support inequality

y(1)^2+y(2)^2 <= 1

Support constraints are modeled by objects of class supcon. The first command means

that variable x must satisfy x3 + 2x2 − x − 2 = (x − 1)(x + 1)(x + 2) = 0, i.e. measure

dµ1(x) must be discrete, a linear combination of three Dirac at 1, −1 and −2. The second

command restricts measure dµ2(y) within the unit disk.

Note that it makes no sense to define a support constraint on several measures:

>> x+y(1) <= 1

??? Error using ==> supcon.supcon

Invalid reference to several measures

5.5 Moment constraints (momcon)

We can constrain linearly the moments of several measures:

>> mom(x^2+2) == 1+mom(y(1)^3*y(2))

Scalar moment equality constraint

I[2+x^2]d[1] == 1+I[y(1)^3y(2)]d[2]

>> mass(x)+mass(y) <= 2

Scalar moment inequality constraint

I[1]d[1]+I[1]d[2] <= 2

Moment constraints are modeled by objects of class momcon.

For GloptiPoly an objective function to be minimized or maximized is considered as a

particular moment constraint:

>> min(mom(x^2+2))

Scalar moment objective function

min I[2+x^2]d[1]

10



>> max(x^2+2)

Scalar moment objective function

max I[2+x^2]d[1]

The latter syntax is a handy short-cut which directly converts an mpol object into an

momcon object.

5.6 Floating point numbers (double)

Variables in a measure can be assigned numerical values:

>> m1 = assign(x,2)

Measure 1 on 1 variable: x

supported on 1 point

which is equivalent to enforcing a discrete support for the measure. Here dµ1 is set to the

Dirac at the point 2.

The double operator converts a measure or its variables into a floating point number:

>> double(x)

ans =

2

>> double(m1)

ans =

2

Polynomials can be evaluated similarly:

>>double(1-2*x+3*x^2)

ans =

9
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Discrete measure supports consisting of several points can be specified in an array:

>> m2 = assign(y,[-1 2 0;1/3 1/4 -2])

Measure 2 on 2 variables: y(1),y(2)

supported on 3 points

>> double(m2)

ans(:,:,1) =

-1.0000

0.3333

ans(:,:,2) =

2.0000

0.2500

ans(:,:,3) =

0

-2

5.7 Moment SDP problems (msdp)

GloptiPoly 3 can manipulate and solve Generalized Problems of Moments (GPM) as

defined in [8]:

mindµ (or max)
∑

k

∫
Kk

g0k(x)dµk(x)

s.t.
∑

k

∫
Kk

hjk(x)dµk(x) ≥ (or =) bj , j = 0, 1, . . .

where measures dµk are supported on basic semialgebraic sets

Kk = {x ∈ R
nk : gik(x) ≥ 0, i = 1, 2 . . .}.

In the above notations, gik(x), hjk(x) are given real polynomials and bj are given real

constants. The decision variables in the GPM are measures dµk(x), and GloptiPoly 3

allows to optimize over them through their moments

yαk
=

∫
Kk

xαkdµk(x), αk ∈ N
nk

where the αk are multi-indices.

12



5.8 Solving moment problems msol

Once a moment problem is defined, it can be solved numerically with the instruction

msol. In the sequel we give several examples of GPMs handled with GloptiPoly 3.

5.8.1 Unconstrained minimization

Following [6], given a multivariate polynomial g0(x), the unconstrained optimization prob-

lem

min
x∈Rn

g0(x)

can be formulated as a linear moment optimization problem

mindµ

∫
g0(x)dµ(x)

s.t.
∫

dµ(x) = 1

where measure dµ lives in the space B
n of finite Borel signed measures on R

n. The

equality constraint indicates that the mass of dµ is equal to one, or equivalently, that dµ

is a probability measure.

In general, this linear (hence convex) reformulation of a (typically nonconvex) polynomial

problem is not helpful because there is no computationally efficient way to represent

measures and their underlying Borel spaces. The approach proposed in [6] consists in using

convex semidefinite representations of the space B
n truncated to finite degree moments.

GloptiPoly 3 allows to input such moment optimization problems in an user-friendly way,

and to solve them using existing software for semidefinite programming (SDP).

In Section 3 we already encountered an example of an unconstrained polynomial opti-

mization solved with GloptiPoly 3. Let us revisit this example:

>> mset clear

>> mpol x1 x2

>> g0 = 4*x1^2+x1*x2-4*x2^2-2.1*x1^4+4*x2^4+x1^6/3

Scalar polynomial

4x1^2+x1x2-4x2^2-2.1x1^4+4x2^4+0.33333x1^6
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>> P = msdp(min(g0));

...

>> msol(P)

...

2 globally optimal solutions extracted

Global optimality certified numerically

This indicates that the global minimum is attained with a discrete measure supported on

two points. The measure can be constructed from the knowledge of its first moments of

degree up to 6:

>> meas

Measure 1 on 2 variables: x1,x2

with moments of degree up to 6, supported on 2 points

>> double(meas)

ans(:,:,1) =

0.0898

-0.7127

ans(:,:,2) =

-0.0898

0.7127

>> double(g0)

ans(:,:,1) =

-1.0316

ans(:,:,2) =

-1.0316

When converting to floating point numbers with the operator double, it is essential to

make the distinction between mpol and mom objects:

>> v = mmon([x1 x2],2)’

1-by-6 polynomial vector
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(1,1):1

(1,2):x1

(1,3):x2

(1,4):x1^2

(1,5):x1x2

(1,6):x2^2

>> double(v)

ans(:,:,1) =

1.0000 0.0898 -0.7127 0.0081 -0.0640 0.5079

ans(:,:,2) =

1.0000 -0.0898 0.7127 0.0081 -0.0640 0.5079

>> double(mom(v))

ans =

1.0000 0.0000 -0.0000 0.0081 -0.0640 0.5079

The first instruction mmon generates a vector of monomials v of class mpol, so the command

double(v) calls the convertor @mpol/double which evaluates a polynomial expression on

the discrete support of a measure (here two points). The last command double(mom(v))

calls the convertor @mom/double which returns the value of the moments obtained after

solving the moment problem.

Note that when inputing moment problems on a unique measure whose mass is not con-

strained, GloptiPoly assumes by default that the measure has mass one, i.e. that we are

seeking a probability measure. Therefore, if g0 is the polynomial defined previously, the

two instructions

>> P = msdp(min(g0));

and

>> P = msdp(min(g0), mass(meas(g0))==1);

are equivalent. See also Section 5.3 for handling masses of measures and Section 5.8.2 for
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more information on mass constraints.

5.8.2 Constrained minimization

Consider now the constrained polynomial optimization problem

min
x∈K

g0(x)

where

K = {x ∈ R
n : gi(x) ≥ 0, i = 1, 2, . . .}

is a basic semialgebraic set described by given polynomials gi(x). Following [6], this (non-

convex polynomial) problem can be formulated as the (convex linear) moment problem

mindµ

∫
K

g0(x)dµ(x)

s.t.
∫

K
dµ(x) = 1

where the indeterminate is a probability measure dµ of B
n which is now supported on set

K. In other words ∫
Rn/K

dµ(x) = 0.

As an example, consider the non-convex quadratic problem of Section 4.4 in [3]:

min −2x1 + x2 − x3

s.t. 24 − 20x1 + 9x2 − 13x3 + 4x2

1
− 4x1x2 + 4x1x3 + 2x2

2
− 2x2x3 + 2x2

3
≥ 0

x1 + x2 + x3 ≤ 4, 3x2 + x3 ≤ 6

0 ≤ x1 ≤ 2, 0 ≤ x2, 0 ≤ x3 ≤ 3

Each constraint in this problem is interpreted by GloptiPoly 3 as a support constraint on

the measure associated with variable x, see Section 5.4:

>> mpol x 3

>> x(1)+x(2)+x(3) <= 4

Scalar measure support inequality

x(1)+x(2)+x(3) <= 4

The whole problem can be entered as follows:
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>> mpol x 3

>> g0 = -2*x(1)+x(2)-x(3);

>> K = [24-20*x(1)+9*x(2)-13*x(3)+4*x(1)^2-4*x(1)*x(2) ...

+4*x(1)*x(3)+2*x(2)^2-2*x(2)*x(3)+2*x(3)^2 >= 0, ...

x(1)+x(2)+x(3) <= 4, 3*x(2)+x(3) <= 6, ...

0 <= x(1), x(1) <= 2, 0 <= x(2), 0 <= x(3), x(3) <= 3];

>> P = msdp(min(g0), K)

...

Moment SDP problem

Measure label = 1

Relaxation order = 1

Decision variables = 9

Linear inequalities = 8

Semidefinite inequalities = 4x4

The moment problem can then be solved:

>> [status,obj] = msol(P)

GloptiPoly 3.0

Solve moment SDP problem

...

Global optimality cannot be ensured

status =

0

obj =

-6.0000

Since status=0 the moment SDP problem can be solved but it is impossible to detect

global optimality. The value obj=-6.0000 is then a lower bound on the global minimum

of the quadratic problem.

The measure associated with the problem variables can be retrieved as follows:
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>> mu = meas

Measure 1 on 3 variables: x(1),x(2),x(3)

with moments of degree up to 2

Its vector of moments can be built as follows:

>> mv = mvec(mu)

10-by-1 moment vector

(1,1):I[1]d[1]

(2,1):I[x(1)]d[1]

(3,1):I[x(2)]d[1]

(4,1):I[x(3)]d[1]

(5,1):I[x(1)^2]d[1]

(6,1):I[x(1)x(2)]d[1]

(7,1):I[x(1)x(3)]d[1]

(8,1):I[x(2)^2]d[1]

(9,1):I[x(2)x(3)]d[1]

(10,1):I[x(3)^2]d[1]

These moments are the decision variables of the SDP problem solved with the above msol

command. Their numerical values can be retrieved as follows:

>> double(mv)

ans =

1.0000

2.0000

-0.0000

2.0000

7.6106

1.4671

2.3363

4.8335
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0.5008

8.7247

The numerical moment matrix can be obtained using the following commands:

>> double(mmat(mu))

ans =

1.0000 2.0000 -0.0000 2.0000

2.0000 7.6106 1.4671 2.3363

-0.0000 1.4671 4.8335 0.5008

2.0000 2.3363 0.5008 8.7247

As explained in [6], we can build a hierarchy of nested moment SDP problems, or relax-

ations, whose solutions converge monotically and asymptotically to the global optimum,

under mild technical assumptions. By default the command msdp builds the relaxation of

lowest order, equal to half the degree of the highest degree monomial in the polynomial

data. An additional input argument can be specified to build higher order relaxations:

>> P = msdp(min(g0), K, 2)

...

Moment SDP problem

Measure label = 1

Relaxation order = 2

Decision variables = 34

Semidefinite inequalities = 10x10+8x(4x4)

>> [status,obj] = msol(P)

...

Global optimality cannot be ensured

status =

0

obj =

-5.6922
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>> P = msdp(min(g0), K, 3)

...

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 83

Semidefinite inequalities = 20x20+8x(10x10)

>> [status,obj] = msol(P)

...

Global optimality cannot be ensured

status =

0

obj =

-4.0684

We observe that the moment SDP problems feature an increasing number of variables

and constraints. They generate a mononotically increasing sequence of lower bounds on

the global optimum, which is eventually reached numerically at the fourth relaxation:

>> P = msdp(min(g0), K, 4)

...

Moment SDP problem

Measure label = 1

Relaxation order = 4

Decision variables = 164

Semidefinite inequalities = 35x35+8x(20x20)

>> [status,obj] = msol(P)

...

2 globally optimal solutions extracted

Global optimality certified numerically

status =

1
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obj =

-4.0000

>> double(x)

ans(:,:,1) =

2.0000

0.0000

0.0000

ans(:,:,2) =

0.5000

0.0000

3.0000

>> double(g0)

ans(:,:,1) =

-4.0000

ans(:,:,2) =

-4.0000

5.8.3 Rational minimization

Minimization of a rational function can also be formulated as a linear moment problem.

Given two polynomials g0(x) and h0(x), consider the rational optimization problem

min
x∈K

g0(x)

h0(x)

where

K = {x ∈ R
n : gi(x) ≥ 0, i = 1, 2, . . .}

is a basic semialgebraic set described by given polynomials gi(x). Following [4], the

corresponding moment problem is given by

mindµ∈Bn

∫
K

g0(x)dµ(x)

s.t.
∫

K
h0(x)dµ(x) = 1.

In contrast with the polynomial optimization problem of Section 5.8.2, the optimal mea-

sure dµ supported on K is not necessarily a probability measure. Denoting h0(x) =
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∑
α h0αxα, the moments yα of dµ must satisfy a linear constraint

∫
K

h0(x)dµ(x) =
∑

α

h0αyα = 1.

As an example, consider the one-variable rational minimization problem [4, Ex. 2]:

min
x2 − x

x2 + 2x + 1
.

We can solve this problem with GloptiPoly 3 as follows:

>> mpol x

>> g0 = x^2-2*x; h0 = x^2+2*x+1;

>> P = msdp(min(g0), mom(h0) == 1);

>> [status,obj] = msol(P)

...

Global optimality certified numerically

status =

1

obj =

-0.3333

>> double(x)

ans =

0.4999

5.8.4 Several measures

GloptiPoly 3 can handle several measures whose moments are linearly related.

For example, consider the GPM arising when solving polynomial optimal control problems

as detailed in [7]. We are seeking two occupation measures dµ1(x, u) and dµ2(x) of a state

vector x(t) and input vector u(t) whose time variation are governed by the differential

equation
dx(t)

dt
= f(x, u), x(0) = x0, u(0) = u0
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with f(x, u) a given polynomial mapping and x0, u0 given initial conditions. Measure dµ1

is supported on a given semialgebraic set K1 corresponding to constraints on x and u.

Measure dµ2 is supported on a given semialgebraic set K2 corresponding to performance

requirements. For example K2 = 0 indicates that state x must reach the origin.

Given a polynomial test function g(x) we can relax the dynamics constraint with the

moment constraint∫
K2

g(x)dµ2(x) − g(x0) =

∫
K1

dg(x)

dx
f(x, u)dµ1(x, u)

linking linearly moments of dµ1 and dµ2. As explained in [7], a lower bound on the

minimum time achievable by any feedback control law u(x) is then obtained by minimizing

the mass of dµ1 over all possible measures dµ1, dµ2 satisfying the support and moment

constraints. The gap between the lower bound and the exact minimum time is narrowed

by enlarging the class of test functions g.

In the following script we solve this moment problem in the case of a double integrator

with state and input constraints:

% bounds on minimal achievable time for optimal control of

% double integrator with state and input constraints

x0 = [1; 1]; u0 = 0; % initial conditions

d = 6; % maximum degree of test function

% analytic minimum time

if x0(1) >= -(x0(2)^2-2)/2

tmin = 1+x0(1)+x0(2)+x0(2)^2/2;

elseif x0(1) >= -x0(2)^2/2*sign(x0(2))

tmin = 2*sqrt(x0(1)+x0(2)^2/2)+x0(2);

else

tmin = 2*sqrt(-x0(1)+x0(2)^2/2)-x0(2);

end
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% occupation measure for constraints

mpol x1 2

mpol u1

m1 = meas([x1;u1]);

% occupation measure for performance

mpol x2 2

m2 = meas(x2);

% dynamics

scaling = tmin; % time scaling

f = scaling*[x1(2);u1];

% test function

g1 = mmon(x1,d);

g2 = mmon(x2,d);

% initial condition

assign([x1;u1],[x0;u0]);

g0 = double(g1);

% moment problem

P = msdp(min(mass(m1)),...

u1^2 <= 1,... % input constraint

x1(2) >= -1,... % state constraint

x2’*x2 <= 0,... % performance = reach the origin

mom(g2) - g0 == mom(diff(g1,x1)*f)); % linear moment constraints

% solve

[status,obj] = msol(P);

obj = scaling*obj;

24



disp([’Minimum time = ’ num2str(tmin)]);

disp([’LMI ’ int2str(d) ’ lower bound = ’ num2str(obj)])

For the initial condition x0 = [1 1] the exact minimum time is equal to 3.5. In Table 1 we

report the monotically increasing sequence of lower bounds obtained by solving moment

problems with test functions of increasing degrees. We used the above script and the

semidefinite solver SeDuMi 1.1R3.

degree 2 4 6 8 10 12 14 16

bound 1.0019 2.3700 2.5640 2.9941 3.3635 3.4813 3.4964 3.4991

Table 1: Minimum time optimal control for double integrator with state and input con-

straints: lower bounds on exact minimal time 3.5 achieved by solving moment problems

with test functions of increasing degrees.

5.9 Using YALMIP

By default GloptiPoly 3 uses the semidefinite solver SeDuMi [11] for solving numeri-

cally SDP moment problems. It is however possible to use any solver interfaced through

YALMIP [10] by setting a configuration flag with the mset command:

>> mset(’yalmip’,true)

Parameters for YALMIP, handled with the YALMIP command sdpsettings, can be

forwarded to GloptiPoly 3 with the mset command. For example, the following com-

mand tells YALMIP to use the SDPT3 solver (instead of SeDuMi) when solving moment

problems with GloptiPoly:

>> mset(sdpsettings(’solver’,’sdpt3’));

25



5.10 SeDuMi parameters settings

The default parameters settings of SeDuMi [11] can be altered as follows:

>> pars.eps = 1e-10;

>> mset(pars)

where pars is a structure of parameters consistent with SeDuMi’s format.

5.11 Exporting moment SDP problems

A moment problem P of class msdp can be converted into SeDuMi’s input format:

>> [A,b,c,K] = msedumi(P);

The SDP problem can then be solved with SeDuMi as follows:

>> [x,y,info] = sedumi(A,b,c,K);

See [11] for more information on SeDuMi’s input data format.

Similarly, a moment SDP problem can be converted into YALMIP’s input format:

>> [F,h,y] = myalmip(P);

where variable F contains the LMI constraints (YALMIP class lmi), h is the objective

function (YALMIP class sdpvar) and y is the vector of moments (YALMIP class sdpvar).

The SDP problem can then be solved with any semidefinite solver interfaced through

YALMIP as follows:

>> solvesdp(F,h);

>> ysol = double(y);
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5.12 Moment substitutions

By performing explicit moment substitutions it is often possible to reduce significantly the

number of variables and constraints in moment SDP problems. Version 2 of GloptiPoly

implemented these substitutions for mixed-integer 0-1 problems only [3]. With version 3,

these substitutions can be carried out in full generality.

GloptiPoly 3 carries out moment substitutions as soon as the left hand-side of a support

or moment equality constraint consists of an isolated monic monomial. Otherwise, no

substitution is achieved and the equality constraint is preserved.

For example, consider the AW 9

2
Max-Cut problem studied in [3, §4.7], with variables

xi taking values −1 or +1 for i = 1, . . . , 9. These integer constraints can be expressed

algebraically as x2

i = 1. The following piece of code builds up the third relaxation of this

problem:

>> W = diag(ones(8,1),1)+diag(ones(7,1),2)+diag([1 1],7)+diag(1,8);

>> W = W+W’; n = size(W,1); e = ones(1,n); Q = (diag(e*W)-W)/4;

>> mset clear

>> mpol(’x’, n)

>> P = msdp(max(x’*Q*x), x.^2 == 1, 3)

GloptiPoly 3.0

Define moment SDP problem

Valid objective function

Number of support constraints = 9 including 9 substitutions

Number of moment constraints = 0

Measure #1

Maximum degree = 2

Number of variables = 9

Number of moments = 5005

Order of SDP relaxation = 3

Mass of measure 1 set to one

Total number of monomials = 5005
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Perform moment substitutions

Perform support substitutions

Number of monomials after substitution = 465

Generate moment and support constraints

Generate moment SDP problem

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 465

Semidefinite inequalities = 130x130

We see that out of the 5005 moments (corresponding to all the monomials of 9 variables

of degree up to 6), only 465 linearly independent moments appear in a reduced moment

matrix of dimension 130.

With the following syntax, moment substitutions are not carried out:

>> P = msdp(max(x’*Q*x), x.^2-1 == 0, 3)

...

Mass of measure 1 set to one

Total number of monomials = 5005

Perform moment substitutions

Number of monomials after substitution = 5004

Generate moment and support constraints

Generate moment SDP problem

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 5004

Linear equalities = 6435
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Semidefinite inequalities = 220x220

Only the mass is substituted, and the remaining 5004 moments linked by 6435 linear

equalities (many of which are redundant) now appear explicitly in a full-size moment

matrix of dimension 220.
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[10] J. Löfberg. YALMIP : a toolbox for modeling and optimization in Matlab. Proceed-

ings of the IEEE Symposium on Computer-Aided Control System Design (CACSD),

Taipei, Taiwan, 2004. See control.ee.ethz.ch/∼joloef/yalmip.php

[11] J. F. Sturm and the Advanced Optimization Laboratory at McMaster University,

Canada. SeDuMi version 1.1R3, October 2006. See sedumi.mcmaster.ca

30


