Didier Henrion

Jean-Bernard Lasserre

Johan Lofberg

Johan Löfberg

GloptiPoly 3: moments, optimization and semidefinite programming

Keywords: moments, optimization and semidefinite programming optimization, probability, financial economics and

come

to run interactively the basic example that follows.

Consider the classical problem of minimizing globally the two-dimensional six-hump camel back function [START_REF] Henrion | GloptiPoly: global optimization over polynomials with Matlab and SeDuMi[END_REF] min x∈R 2 g 0 (x) = 4x 2 1

+ x 1 x 2 -4x 2 2 -2.1x 4 1 + 4x 4 2 + 1 3 x 6 1 .
The function has six local minima, two of them being global minima.

Using GloptiPoly 3, this optimization problem can be modeled as a moment problem as follows:

>>

Semidefinite inequalities = 10x10

Once the moment problem is modeled, a semidefinite solver can be used to solve it numerically. Here we use SeDuMi [START_REF] Sturm | the Advanced Optimization Laboratory at[END_REF] which is assumed to be installed and accessible from the Matlab working path: x(:,:,1) = 0.0898 -0.7127

x(:,:,2) = -0.0898 0.7127

The flag status = 1 means that the moment problem is solved successfully and that GloptiPoly can extract two globally optimal solutions reaching the objective function obj = -1.0316.

From version 2 to version 3

The major changes incorporated into GloptiPoly when passing from version 2 to 3 can be summarized as follows:

• Use of native polynomial objects and object-oriented programming with specific classes for multivariate polynomials, measures, moments, and corresponding overloaded operators. In contrast with version 2, the Symbolic Toolbox for Matlab (gateway to the Maple kernel) is not required anymore to process polynomial data.

• Generalized problems of moments featuring several measures with semialgebraic support constraints and linear moment constraints can be processed and solved.

Version 2 was limited to moment problems on a unique measure without moment constraints.

• Explicit moment substitutions are carried out to reduce the number of variables and constraints.

• The moment problems can be solved numerically with any semidefinite solver, provided it is interfaced through YALMIP. In contrast, version 2 used only the solver SeDuMi.

Solving generalized problems of moments

GloptiPoly 3 uses advanced Matlab features for object-oriented programming and overloaded operators. The user should be familiar with the following basic objects.

Multivariate polynomials (mpol)

A multivariate polynomial is an affine combination of monomials, each monomial de- (2,1):z(2,1)

pending
(3,1):z(3,1) (1,2):z(1,2) (2,2):z(2,2) (3,2):z(3,2)
Variables, monomials and polynomials are defined as objects of class mpol.

All standard Matlab operators have been overloaded for mpol objects:

>> y*y'-z'*z+x^3 2-by-2 polynomial matrix (1,1):y(1)^2-z(1,1)^2-z(2,1)^2-z(3,1)^2+x^3 (2,1):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3,2)+x^3 (1,2):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3,2)+x^3 (2,2):y(2)^2-z(1,2)^2-z(2,2)^2-z(3,2)^2+x^3
Use the instruction

>> mset clear

to delete all existing GloptiPoly variables from the Matlab working space.

Measures (meas)

Variables can be associated with real-valued measures, and one variable is associated with only one measure. For GloptiPoly, measures are identified with a label, a positive integer.

When starting a GloptiPoly session, the default measure has label

>> m(1)

Measure number 1 on 1 variable: x

The above script creates a measure dµ 1 (x) on R and a measure dµ 2 (y) on R 2 .

Use the instruction

>> mset clearmeas

to delete all existing GloptiPoly measures from the working space. Note that this does not delete existing GloptiPoly variables.

Moments (mom)

Linear combinations of moments of a given measure can be manipulated with the mom class as follows:

>> mom(1+2*x+3*x^2) Scalar moment I[1+2x+3x^2]d[1]
>> mom(y*y') ??? Error using ==> mom.times

Invalid moment product

Note also the distinction between a constant term and the mass of a measure:

>> 1+mom(x) Scalar moment 1+I[x]d[1] >> mom(1+x) Scalar moment I[1+x]d[1]
>> mass(x)

Scalar moment I[1]d[1]
Finally, let us mention three equivalent notations to refer to the mass of a measure:

>> mass(meas(y))

Scalar moment

I[1]d[2]
>> mass(y)

Scalar moment I[1]d[2]
>> mass(2)

Scalar moment I[1]d[2]
The first command refers explicitly to the measure, the second command is a handy shortcut to refer to a measure via its variables, and the third command refers to GloptiPoly's labeling of measures.

Support constraints (supcon)

By default, a measure on n variables is defined on the whole R n . We can restrict the support of a mesure to a given semialgebraic set as follows: Note that it makes no sense to define a support constraint on several measures:

>> x+y(1) <= 1 ??? Error using ==> supcon.supcon Invalid reference to several measures

Moment constraints (momcon)

We can constrain linearly the moments of several measures:

>> mom(x^2+2) == 1+mom(y(1)^3*y(2))
Scalar moment equality constraint

I[2+x^2]d[1] == 1+I[y(1)^3y(2)]d[2]
>> mass(x)+mass(y) <= 2 Scalar moment inequality constraint

I[1]d[1]+I[1]d[2] <= 2
Moment constraints are modeled by objects of class momcon.

For GloptiPoly an objective function to be minimized or maximized is considered as a particular moment constraint:

>> min(mom(x^2+2)) Scalar moment objective function min I[2+x^2]d[1] >> max(x^2+2) Scalar moment objective function max I[2+x^2]d[1]
The latter syntax is a handy short-cut which directly converts an mpol object into an momcon object.

Floating point numbers (double)

Variables in a measure can be assigned numerical values:

>> m1 = assign(x,2)
Measure 1 on 1 variable: x supported on 1 point which is equivalent to enforcing a discrete support for the measure. Here dµ 1 is set to the Dirac at the point 2.

The double operator converts a measure or its variables into a floating point number:

Moment SDP problems (msdp)

GloptiPoly 3 can manipulate and solve Generalized Problems of Moments (GPM) as defined in [START_REF] Lasserre | A semidefinite programming approach to the generalized problem of moments[END_REF]:

min dµ (or max) k K k g 0k (x)dµ k (x) s.t. k K k h jk (x)dµ k (x) ≥ (or =) b j , j = 0, 1, . . .
where measures dµ k are supported on basic semialgebraic sets

K k = {x ∈ R n k : g ik (x) ≥ 0, i = 1, 2 . . .}.
In the above notations, g ik (x), h jk (x) are given real polynomials and b j are given real constants. The decision variables in the GPM are measures dµ k (x), and GloptiPoly 3 allows to optimize over them through their moments

y α k = K k x α k dµ k (x), α k ∈ N n k
where the α k are multi-indices.

Solving moment problems msol

Once a moment problem is defined, it can be solved numerically with the instruction msol. In the sequel we give several examples of GPMs handled with GloptiPoly 3.

Unconstrained minimization

Following [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], given a multivariate polynomial g 0 (x), the unconstrained optimization problem min x∈R n g 0 (x) can be formulated as a linear moment optimization problem min dµ g 0 (x)dµ(x)

s.t. dµ(x) = 1
where measure dµ lives in the space B n of finite Borel signed measures on R n . The equality constraint indicates that the mass of dµ is equal to one, or equivalently, that dµ is a probability measure.

In general, this linear (hence convex) reformulation of a (typically nonconvex) polynomial problem is not helpful because there is no computationally efficient way to represent measures and their underlying Borel spaces. The approach proposed in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF] consists in using convex semidefinite representations of the space B n truncated to finite degree moments.

GloptiPoly 3 allows to input such moment optimization problems in an user-friendly way, and to solve them using existing software for semidefinite programming (SDP).

In Section 3 we already encountered an example of an unconstrained polynomial optimization solved with GloptiPoly 3. Let us revisit this example: When converting to floating point numbers with the operator double, it is essential to make the distinction between mpol and mom objects: The first instruction mmon generates a vector of monomials v of class mpol, so the command double(v) calls the convertor @mpol/double which evaluates a polynomial expression on the discrete support of a measure (here two points). The last command double(mom(v))

>> v = mmon([x1 x2],2)'
calls the convertor @mom/double which returns the value of the moments obtained after solving the moment problem.

Note that when inputing moment problems on a unique measure whose mass is not constrained, GloptiPoly assumes by default that the measure has mass one, i.e. that we are seeking a probability measure. Therefore, if g0 is the polynomial defined previously, the two instructions >> P = msdp(min(g0));

and >> P = msdp(min(g0), mass(meas(g0))==1); are equivalent. See also Section 5.3 for handling masses of measures and Section 5.8.2 for more information on mass constraints.

Constrained minimization

Consider now the constrained polynomial optimization problem min x∈K g 0 (x)

where

K = {x ∈ R n : g i (x) ≥ 0, i = 1, 2, . . .}
is a basic semialgebraic set described by given polynomials g i (x). Following [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], this (nonconvex polynomial) problem can be formulated as the (convex linear) moment problem min dµ K g 0 (x)dµ(x) s.t. K dµ(x) = 1 where the indeterminate is a probability measure dµ of B n which is now supported on set K. In other words

R n /K dµ(x) = 0.
As an example, consider the non-convex quadratic problem of Section 4.4 in [START_REF] Henrion | GloptiPoly: global optimization over polynomials with Matlab and SeDuMi[END_REF]: These moments are the decision variables of the SDP problem solved with the above msol command. Their numerical values can be retrieved as follows:

min -2x 1 + x 2 -x 3 s.t. 24 -20x 1 + 9x 2 -13x 3 + 4x 2 1 -4x 1 x 2 + 4x 1 x 3 + 2x 2 2 -2x 2 x 3 + 2x 2 3 ≥ 0 x 1 + x 2 + x 3 ≤ 4, 3x 2 + x 3 ≤ 6 0 ≤ x 1 ≤ 2, 0 ≤ x 2 , 0 ≤ x 3 ≤ 3 Each constraint in
>> double(mv) ans = 1.0000 As explained in [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], we can build a hierarchy of nested moment SDP problems, or relaxations, whose solutions converge monotically and asymptotically to the global optimum, under mild technical assumptions. By default the command msdp builds the relaxation of lowest order, equal to half the degree of the highest degree monomial in the polynomial data. An additional input argument can be specified to build higher order relaxations:

Rational minimization

Minimization of a rational function can also be formulated as a linear moment problem.

Given two polynomials g 0 (x) and h 0 (x), consider the rational optimization problem

min x∈K g 0 (x) h 0 (x)
where

K = {x ∈ R n : g i (x) ≥ 0, i = 1, 2, . . .}
is a basic semialgebraic set described by given polynomials g i (x). Following [START_REF] Jibetean | Global optimization of rational functions: a semidefinite programming approach[END_REF], the corresponding moment problem is given by

min dµ∈B n K g 0 (x)dµ(x) s.t. K h 0 (x)dµ(x) = 1.
In contrast with the polynomial optimization problem of Section 5.8.2, the optimal measure dµ supported on K is not necessarily a probability measure. Denoting h 0 (x) = α h 0α x α , the moments y α of dµ must satisfy a linear constraint

K h 0 (x)dµ(x) = α h 0α y α = 1.
As an example, consider the one-variable rational minimization problem [4, Ex. 2]:

min x 2 -x x 2 + 2x + 1 .
We can solve this problem with GloptiPoly 3 as follows: For example, consider the GPM arising when solving polynomial optimal control problems as detailed in [START_REF] Lasserre | Nonlinear optimal control: numerical approximation via moments and LMI relaxations[END_REF]. We are seeking two occupation measures dµ 1 (x, u) and dµ 2 (x) of a state vector x(t) and input vector u(t) whose time variation are governed by the differential equation dx(t) dt = f (x, u), x(0) = x 0 , u(0) = u 0 with f (x, u) a given polynomial mapping and x 0 , u 0 given initial conditions. Measure dµ 1 is supported on a given semialgebraic set K 1 corresponding to constraints on x and u.

>>
Measure dµ 2 is supported on a given semialgebraic set K 2 corresponding to performance requirements. For example K 2 = 0 indicates that state x must reach the origin.

Given a polynomial test function g(x) we can relax the dynamics constraint with the moment constraint

K 2 g(x)dµ 2 (x) -g(x 0) = K 1 dg(x) dx f (x, u)dµ 1 (x, u)
linking linearly moments of dµ 1 and dµ 2 . As explained in [START_REF] Lasserre | Nonlinear optimal control: numerical approximation via moments and LMI relaxations[END_REF], a lower bound on the minimum time achievable by any feedback control law u(x) is then obtained by minimizing the mass of dµ 1 over all possible measures dµ 1 , dµ 2 satisfying the support and moment constraints. The gap between the lower bound and the exact minimum time is narrowed by enlarging the class of test functions g.

In the following script we solve this moment problem in the case of a double integrator with state and input constraints: For the initial condition x 0 = [1 1] the exact minimum time is equal to 3.5. In Table 1 we report the monotically increasing sequence of lower bounds obtained by solving moment problems with test functions of increasing degrees. We used the above script and the semidefinite solver SeDuMi

Using YALMIP

By default GloptiPoly 3 uses the semidefinite solver SeDuMi [START_REF] Sturm | the Advanced Optimization Laboratory at[END_REF] for solving numerically SDP moment problems. It is however possible to use any solver interfaced through YALMIP [START_REF] Löfberg | YALMIP : a toolbox for modeling and optimization in Matlab[END_REF] by setting a configuration flag with the mset command:

>> mset('yalmip',true)

Parameters for YALMIP, handled with the YALMIP command sdpsettings, can be forwarded to GloptiPoly 3 with the mset command. For example, the following command tells YALMIP to use the SDPT3 solver (instead of SeDuMi) when solving moment problems with GloptiPoly:

>> mset(sdpsettings('solver','sdpt3'));

SeDuMi parameters settings

The default parameters settings of SeDuMi [START_REF] Sturm | the Advanced Optimization Laboratory at[END_REF] can be altered as follows:

>> pars.eps = 1e-10;

>> mset(pars)

where pars is a structure of parameters consistent with SeDuMi's format.

Exporting moment SDP problems

A moment problem P of class msdp can be converted into SeDuMi's input format:

>> [A,b,c,K] = msedumi(P);

The SDP problem can then be solved with SeDuMi as follows:

>> [x,y,info] = sedumi(A,b,c,K);

See [START_REF] Sturm | the Advanced Optimization Laboratory at[END_REF] for more information on SeDuMi's input data format.

Similarly, a moment SDP problem can be converted into YALMIP's input format:

>> [F,h,y] = myalmip(P);

where variable F contains the LMI constraints (YALMIP class lmi), h is the objective function (YALMIP class sdpvar) and y is the vector of moments (YALMIP class sdpvar).

The SDP problem can then be solved with any semidefinite solver interfaced through YALMIP as follows:

>> solvesdp(F,h); >> ysol = double(y);

Moment substitutions

By performing explicit moment substitutions it is often possible to reduce significantly the number of variables and constraints in moment SDP problems. Version 2 of GloptiPoly implemented these substitutions for mixed-integer 0-1 problems only [START_REF] Henrion | GloptiPoly: global optimization over polynomials with Matlab and SeDuMi[END_REF]. With version 3, these substitutions can be carried out in full generality.

GloptiPoly 3 carries out moment substitutions as soon as the left hand-side of a support or moment equality constraint consists of an isolated monic monomial. Otherwise, no substitution is achieved and the equality constraint is preserved.

For example, consider the AW

 mpol x1 x2 >> g0 = 4*x1^2+x1*x2-4*x2^2-2.1*x1^4+4*x2^4+x1^6/3 Scalar polynomial 4x1^2+x1x2-4x2^2-2.1x1^4+4x2^4+0.33333x1^6 >> P = msdp(min(g0)

 ** Calling SeDuMi SeDuMi 1.1R3 by AdvOL, 2006 and Jos F.Sturm, 1998Sturm, -2003. .

 on a set of variables. Variables can be declared in the Matlab working space as follows:

>> 2 *

 2 x^2+x^3 == 2+x Scalar measure support equality 2x^2+x^3 == 2+x >> disk = (y'*y <= 1) Scalar measure support inequality y(1)^2+y(2)^2 <= 1Support constraints are modeled by objects of class supcon. The first command means that variable x must satisfy x 3 + 2x 2x -2 = (x -1)(x + 1)(x + 2) = 0, i.e. measure dµ 1 (x) must be discrete, a linear combination of three Dirac at 1, -1 and -2. The second command restricts measure dµ 2 (y) within the unit disk.

9

 9 Discrete measure supports consisting of several points can be specified in an array: >> m2 = assign(y,[-1 2 0;1/3 1/4 -2]) Measure 2 on 2 variables: y(1),y(2

 This indicates that the global minimum is attained with a discrete measure supported on two points. The measure can be constructed from the knowledge of its first moments of degree up to 6: >> meas Measure 1 on 2 variables: x1,x2 with moments of degree up to 6, supported on 2

 this problem is interpreted by GloptiPoly 3 as a support constraint on the measure associated with variable x, see Section 5.4:The whole problem can be entered as follows: >> mpol x 3 >> g0 = -2*x(1)+x(2)-x(3); >> K = [24-20*x(1)+9*x(2)-13*x(3)+4*x(1)^2-4*x(1)*x(2) ... +4*x(1)*x(3)+2*x(2)^2-2*x(2)*x(3)+2*x(3)^2 >= 0, ... x(1)+x(2)+x(3) <= 4, 3*x(2)+x(3) <= 6, ... 0 <= x(1), x(1) <= 2, 0 <= x(2), 0 <= x(3), x(3) <= 3]; >> P = msdp(min(g0), K) Since status=0 the moment SDP problem can be solved but it is impossible to detect global optimality. The value obj=-6.0000 is then a lower bound on the global minimum of the quadratic problem.The measure associated with the problem variables can be retrieved as follows:>> mu = meas Measure 1 on 3 variables: x(1),x(2),x[START_REF] Henrion | GloptiPoly: global optimization over polynomials with Matlab and SeDuMi[END_REF] with moments of degree up to 2 Its vector of moments can be built as follows: 1):I[x(2)]d[START_REF] Akhiezer | The classical moment problem[END_REF] (4,1):I[x(3)]d[START_REF] Akhiezer | The classical moment problem[END_REF] (5,1):I[x(1)^2]d[START_REF] Akhiezer | The classical moment problem[END_REF] (6,1):I[x(1)x(2)]d[START_REF] Akhiezer | The classical moment problem[END_REF]

 We observe that the moment SDP problems feature an increasing number of variables and constraints. They generate a mononotically increasing sequence of lower bounds on the global optimum, which is eventually reached numerically at the fourth relaxation: >> P = msdp(min(g0), K, 4)

 mpol x >> g0 = x^2-2*x; h0 = x^2+2*x+1; >> P = msdp(min(g0), mom(h0) == 1); >> [status,obj] = msol(P) handle several measures whose moments are linearly related.

%

 bounds on minimal achievable time for optimal control of % double integrator with state and input constraints x0 = [1; 1]; u0 = 0; % initial conditions d = 6; % maximum degree of test function % analytic minimum time if x0(1) >= -(x0(2)^2-2)/2 tmin = 1+x0(1)+x0(2)+x0(2)^2/2; elseif x0(1) >= -x0(2)^2/2*sign(x0(2)) tmin = 2*sqrt(x0(1)+x0(2)^2/2)+x0(2); else tmin = 2*sqrt(-x0(1)+x0(2)^2/2)-x0(2); end disp(['Minimum time = ' num2str(tmin)]); disp(['LMI ' int2str(d) ' lower bound = ' num2str(obj)])

9 2

 9 Max-Cut problem studied in [3, §4.7], with variables x i taking values -1 or +1 for i = 1, . . . , 9. These integer constraints can be expressed algebraically as x 2 i = 1. The following piece of code builds up the third relaxation of this problem: >> W = diag(ones(8,1),1)+diag(ones(7,1),2)+diag([1 1],7)+diag(1,8); >> W = W+W'; n = size(W,1); e = ones(1,n); Q = (diag(e*W)-W)/4; >> mset clear >> mpol('x', n) >> P = msdp(max(x'*Q*x), x.^2 == 1We see that out of the 5005 moments (corresponding to all the monomials of 9 variables of degree up to 6), only 465 linearly independent moments appear in a reduced moment matrix of dimension 130.With the following syntax, moment substitutions are not carried out: >> P = msdp(max(x'*Q*x), x.^2-1 == 0

 The notation I[p]d[k] stands for p dµ k where p is a polynomial of the variables associated with measure dµ k , and k is the measure label.

	2-by-2 moment matrix
	(1,1):I[y(1)^2]d[2]
	(2,1):I[y(1)y(2)]d[2]
	(1,2):I[y(1)y(2)]d[2]
	(2,2):I[y(2)^2]d[2]
	Note that it makes no sense to define moments over several measures, or nonlinear moment
	expressions:
	>> mom(x*y(1))
	??? Error using ==> mom.mom
	Invalid partitioning of measures in moments
	>> mom(x)*mom(y(1))

Table 1 :

 1 Minimum time optimal control for double integrator with state and input constraints: lower bounds on exact minimal time 3.5 achieved by solving moment problems with test functions of increasing degrees.

			1.1R3.						
	degree	2	4	6	8	10	12	14	16
	bound 1.0019 2.3700 2.5640 2.9941 3.3635 3.4813 3.4964 3.4991

Semidefinite inequalities = 220x220

Only the mass is substituted, and the remaining 5004 moments linked by 6435 linear equalities (many of which are redundant) now appear explicitly in a full-size moment matrix of dimension 220.