Étant donné un groupe algébrique linéaire semi-simple G, on s'intéresse aux compactifications magnifiques des G-espaces homogènes symétriques. Si X est une telle compactification, si L est un fibré en droites G-linéarisé sur X et si C est une cellule de Bialynicki-Birula de X de codimension c, alors l'algèbre de Lie g de G opère naturellement sur le groupe de cohomologie à support H c C (L). On donne ici une condition nécessaire, portant sur la cellule C, pour que ce g-module possède un sous-quotient simple de dimension finie. On en déduit une formule pour la caractéristique d'Euler-Poincaré de L sur X et une estimation (exacte pour certains cas dont celui de la variété des coniques complètes) des groupes de cohomologie supérieure H d (X, L), d ≥ 0.

Table des matières Introduction

Considérons un groupe algébrique linéaire semi-simple G sur k et g son algèbre de Lie. Si X est une G-variété projective lisse et L un fibré en droites G-linéarisé sur X, alors tous les groupes de cohomologie H d (X, L), d ≥ 0, sont des G-modules de dimension finie.

Lorsque X possède une décomposition cellulaire :

X = i C i
où les cellules C i sont des sous-variétés de X, de codimension c i , isomorphes à des espaces affines, on dispose d'une suite spectrale, la suite spectrale de Grothendieck-Cousin (cf. [Kempf]), dont les premiers termes sont les groupes de cohomologie à support H c i C i (L) et qui converge vers les groupes de cohomologie globaux H d (X, L).

Remarquons que les H c i C i (L) sont seulement des g-modules alors que les H d (X, L) sont des G-modules.

Dans certains cas, la partie finie de la suite spectrale de Grothendieck-Cousin dégénère, i.e. les termes de la suite spectrale ont des multiplicités constantes selon chaque g-module simple de dimension finie. Cela permet alors de déterminer complètement les H d (X, L). Cela se produit si X est une variété de drapeaux (d'où le célèbre théorème de Borel-Weil-Bott) et plus généralement si X est une variété magnifique de rang minimal (ce sont des G-variétés projectives avec une seule G-orbite fermée et qui vérifient notamment la prpopriété d'avoir une déciomposition cellulaire dont toutes les cellules rencontrent cette orbite fermée), cf. [T2, th. 3.1]. On s'intéresse ici aux G-variétés symétriques complètes définies par De Concini et Procesi dans [DeConcini-Procesi]. Ces variétés ont aussi une seule orbite fermée. Lorsqu'une cellule C i rencontre cette orbite projective, le g-module H c i C i (L) possède une suite de composition finie dont les quotients successifs sont des g-modules bien étudiés : les modules de Verma tordus (cf. [T1, th. 4.1]).

Mais quand une cellule C i ne rencontre pas la G-orbite projective de X, on n'a pas de description aussi commode du g-module H c i C i (L). Néanmoins, nous allons montrer (avec une condition supplémentaire sur le fibré en droites L) que, dans ce cas, le g-module H c i C i (L) n'a pas de G-modules parmi ses sous-quotients simples (c'est le théorème 7.1). Ce résultat permet de simplifier la suite spectrale de Grothndieck-Cousin. Comme applications, on donnera une formule pour la caractéristique d'Euler-Poincaré global (cf. le théorème 8.1) : i (-1) i H i (X, L) (somme alternée dans l'anneau des représentations de G), une majoration des multiplicités des G-modules simples dans les H d (X, L) (cf. le théorème 8.3) avec, pour corollaire un résultat d'annulation en degré d = 1 (cf. le corollaire 8.3.1).

Enfin on déterminera complètement les H d (X, L) pour deux exemples de variétés symétriques complètes de rang 2 dont la variété des coniques complètes (cf. les théorèmes 8.5 et 8.6).

1 Énoncé du résultat principal

Variétés symétriques complètes

Soit G un groupe algébrique linéaire sur k. On suppose que G est semisimple adjoint et connexe sur k. Soit θ : G → G un automorphisme d'ordre 2. Notons H := G θ le sous-groupe des points fixes de θ.

L'espace homogène G/H est une variété symétrique affine. D'après th. 3.1], il existe une unique G-variété projective X telle que :

i) X contient G/H comme G-orbite ouverte ;
ii) X est lisse ;

iii) le diviseur X \ G/H = D 1 ∪ ... ∪ D r est un diviseur à croisements normaux (les composantes irréductibles D i de X \ G/H sont appelées les diviseurs limitrophes de X) ;

iv) pour tous x, x ′ ∈ X, G.x = G.x ′ ⇔ {i : x ∈ D i } = {i : x ′ ∈ D i } ;
v) il n'y a qu'une seule G-orbite fermée dans X :

F = D 1 ∩ ... ∩ D r .
L'entier r est le rang de X.

On dit que la variété X est la compactification magnifique de G/H. On appelle variétés symétriques complètes de telles variétés.

Remarque : Soit h l'algèbre de Lie de H. L'automorphisme θ induit un automorphisme d'algèbres de Lie g → g encore noté θ. On a :

h = g θ = {x ∈ g : θ(x) = x} .
Soit h := dim h. La variété X peut être définie comme l'adhérence de l'orbite G.h dans la grassmannienne G := Gr h (g) des sous-espaces de g de dimension h (cf. §6]).

Fixons pour la suite G, H comme ci-dessus et X la compactification magnifique de l'espace symétrique G/H. On notera G le revêtement universel de G et on considérera X comme une G-variété.

Exemple : Soit G := PGL 3 et soit θ l'involution :

θ : G → G , [g] → [(g t ) -1 ]
(on note [g] ∈ PGL 3 la classe modulo k * d'une matrice inversible g). On a dans ce cas H = G θ = SO 3 . Notons S 3 l'espace des matrices symétriques 3×3 à coefficients dans k. Soit C la variété algébrique affine des coniques non dégénérées de È 2 (vues comme des classes modulo k * de formes quadratiques non dégénérées sur k 3 , vues elles-mêmes comme des matrices symétriques 3 × 3 non singulières à coefficients dans k) :

C := {[q] ∈ È(S 3 ) : det q = 0} .

Comme le groupe G agit transitivement sur C, on peut identifiier l'espace homogène symétrique G/H à C via l'isomorphisme :

G/H → C , [g]H → [(g t ) -1 g] .
On peut dans ce cas décrire la compactification magnifique C de C comme une sous-variété fermée de È 5 × È 5 par :

C := {([q], [q ′ ]) ∈ È(S 3 ) × È(S 3 ) : qq ′ ∈ kId} où qq ′ est le produit usuel des matrices q, q ′ . En effet, C est lisse, contient C via l'inclusion :

[q] ∈ C → ([q], [q -1 ]) ∈ C
et le groupe G = SL 3 agit sur C par :

∀ g ∈ G, ∀ ([q], [q ′ ]) ∈ C, g.([q], [q ′ ]) = ([(g t ) -1 qg -1 ], [gq ′ g t ]) .
Pour cette action, les diviseurs limitrophes de C sont :

D 1 := {([q], [q ′ ]) ∈ C : rg q = 1} et D 2 := {([q], [q ′ ]) ∈ C : rg q ′ = 1}
et les axiomes de définition d'une variété G-magnifique sont bien vérifiés. Notons que C est de rang 2 ; c'est la variété des coniques complètes.

Remarque : On peut aussi définir C comme l'éclaté de È 5 le long de la surface de Veronese ν(È 2 ) où ν : È 2 → È 5 , [x : y : z] → [x 2 : y 2 : z 2 : xy :

xz : yz].

Faisceaux inversibles spéciaux

Le résultat principal de cet article concerne certains faisceaux inversibles sur X : Définition 1 On dit qu'un faisceau inversible L sur X est spécial s'il existe un entier n > 0 tel que :

L ⊗n ≃ O X (n 1 D 1 + ... + n r D r )
pour certains entiers n i .

Remarque : si la variété X n'est pas exceptionnelle i.e. si le rang du groupe de Picard de X est r, alors tous les faisceaux inversibles sur X sont spéciaux. C'est par exemple le cas pour la compactification magnifique de P GL n /P SO n (pour tout n ≥ 2).

Cellules et cohomologie à support

Soit ν un sous-groupe à un paramètre de G tel que l'ensemble des points fixes :

X ν := {x ∈ X : ∀ s ∈ k * , ν(s).x = x}
est fini. De tels sous-groupes à un paramètre existent toujours et sont appelés X-régulier.

Pour tout point fixe x ∈ X ν , on pose :

X + x ou X + (x) := {y ∈ X : lim s→0 s∈k * ν(s).y = x} .
D'après , chaque X + (x) est une sous-variété localement fermée de X, isomorphe à un espace affine. On obtient ainsi une décomposition : X = ⊔ x∈X ν X + (x). Les X + (x) sont les cellules de Bialynicki-Birula de X et on dit que x est le centre de la cellule X + (x).

Tous les faisceaux inversibles L sur X sont G-linéarisés (cf. [Steinberg]). Donc pour tout point x ∈ X ν et tout entier n, les groupes de cohomologie à support H n X + (x) (L ) sont des g-modules (cf. [START_REF] Kempf | The Grothendieck-Cousin complex of an induced representation[END_REF]lem. 11.1]). De plus, H n X + (x) (L ) = 0 sauf si la cellule X + (x) est de codimension n dans X.

Exemple :

Soient G := PGL 2 (k) et X la compactification magnifique de l'espace homogène PGL 2 /PSO 2 . On a : G = SL 2 (k) et la variété X est l'espace projectif È(V ) = È 2 où V est le SL 2 (k)-module simple k[T 0 , T 1 ] 2
des polynômes homogènes de degré 2. L'unique G-orbite fermée est formée des classes de polynômes [P ] de discriminant nul. On a :

T =         s 0 0 s -1    : s ∈ k *      et X = ω où ω :    s 0 0 s -1    → s .
Si on prend pour sous-groupe à un paramètre ν :

k * → G, s →    s 0 0 s -1   ,
alors on a :

X ν = [T 2 0 ], [T 0 T 1 ], [T 2 1 ] . Seul le point fixe x 0 := [T 0 T 1 ] n'est pas dans la G-orbite fermée. La cellule correspondante est : X + (x 0 ) = [bT 0 T 1 + cT 2 1 ] ∈ X : b, c ∈ k, b = 0 ≃ 1 Les faisceaux inversibles sur X sont les O È 2 (n) avec n entier.
Comme le point x 0 est N G ( T )-stable et comme tous les caractères du groupe N G ( T ) sont triviaux, le tore T agit trivialement sur la fibre O È 2 (n)| x 0 (pour chaque entier n). On a donc un isomorphisme de T -modules :

H 1 X + (x 0 ) (O È 2 (n)) ≃ H 1 X + (x 0 ) (O X ) pour chaque n ∈ .
Or, les poids de l'espace tangent T x 0 X sont -2ω, 0 et 2ω. On en déduit que tous les poids du T -module H 1

X + (x 0 ) (O È 2 (n)) sont de la forme 2nω avec n ∈ <0 . En particulier, aucun n'est dominant. En conséquence, le sl 2 -module H 1 X + (x 0 ) (O È 2 (n))
ne peut pas avoir de SL 2 (k)-modules parmi ses sous-quotients simples.

Le théorème qui suit est une généralisation de ce fait aux variétés symétriques complètes : Théorème 1.1 Soient L un faisceau inversible spécial sur X et C une cellule de Bialynicki-Birula de X de codimension d.

Si le g-module H d C (L ) admet un sous-quotient simple de dimension finie, alors le centre de la cellule C est dans l'orbite fermée de X.

Remarque : si X est de rang minimal, i.e. si r = rang(G)rang(H) (par exemple si X est la compactification magnifique de G × G/G), alors tous les points fixes x ∈ X ν sont dans F . Donc ce théorème n'apporte rien dans ce cas. En revanche si X n'est pas de rang minimal (par exemple si X est la compactification magnifique de P GL n /P SO n ), alors il existe des points fixes x ∈ X ν \ F .

Avant de démontrer ce théorème, nous allons rappeler quelques résultats concernant les variétés symétriques complètes.

2 Sous-groupe de Borel, tore maximal, système de racines, etc. adaptés à une variété symétrique

Nous suivons [DeConcini-Procesi, §1].

Fixons un tore T 1 de G, anisotrope (i.e. θ(t) = t -1 pour tout t dans T 1 ) et maximal. Soit T un tore maximal de G qui contient T 1 . Le tore T est forcément θ-stable. On notera T l'image réciproque de T dans G, X le réseau des caractères de T , •, • le crochet naturel entre caractères et sous-groupes à un paramètre de T .

Soit W le groupe de Weyl associé à ( G, T ). On choisit une forme bilinéaire (•, •) symétrique, non dégénérée et W -invariante sur X.

Si on note t l'algèbre de Lie de T , on a :

t = t 0 + t 1 où t 0 := ker(θ -1) ∩ t et t 1 := ker(θ + 1) ∩ t.
Soit Φ ⊆ t * le système de racines de (g, t). On note encore θ l'automorphisme induit par θ sur t * . Cet automorphisme θ préserve Φ et aussi

•, • et (•, •). Posons Φ 0 := {α ∈ Φ : θ(α) = α} et Φ 1 := Φ \ Φ 0 .
On peut choisir l'ensemble des racines positives Φ + de Φ tel que :

∀ α ∈ Φ + ∩ Φ 1 , θ(α) ∈ Φ -.
On notera ρ := 1 2 α∈Φ + α. Ce ρ est aussi un caractère de T .

Soient ∆ la base définie par

Φ + , ∆ 0 := ∆ ∩ Φ 0 et ∆ 1 := ∆ ∩ Φ 1 .
Il existe une bijection θ : ∆ 1 → ∆ 1 telle que :

∀ α ∈ ∆ 1 , θ(α) = -θ(α) - δ∈∆ 0 m δ,α δ
pour certains entiers m δ,α ≥ 0. Les entiers m δ,α sont entièrement déterminés par les équations :

θ(α), δ ∨ = α, δ ∨ (∀ α ∈ ∆ 1 , ∀ δ ∈ ∆ 0 ) .
Pour toute racine α ∈ Φ 1 , on pose α := αθ(α) et on numérote les racines de ∆ 1 : α 1 , ..., α d avec d ≥ r, de sorte que :

∆ 1 := { α : α ∈ ∆ 1 } = { α 1 , ..., α r } . Enfin, on note B (respectivement B -) le sous-groupe de Borel de G défini par Φ + (respectivement par Φ -) et B (respectivement B -) son image dans G.

Groupe de Picard

Nous rappelons ici la description du groupe de Picard de la variété X comme sous-réseau du réseau des poids de T .

Puisque X n'a qu'une seule G-orbite fermée, il existe un unique point fixe z ∈ X du sous-groupe de Borel B -. Soit Q le groupe d'isotropie de ce point z dans G. C'est un sous-groupe parabolique de G qui contient

B -et F = G.z ≃ G/Q.
Soit L un faisceau inversible sur X. Puisque le groupe G est simplement connexe le faisceau L admet une unique G-linéarisation (à isomorphisme près). On peut donc définir sans ambiguïté le caractère p(L ) :

Q → k * avec lequel Q agit sur la fibre L | z .
Si on note X(Q) le réseau des caractères de Q, on a :

Proposition 3.1 (pro 8.1 de [DeConcini-Procesi]) Le morphisme Pic (X) -→ X(Q) L -→ p(L ) est injectif.
Notons pic (X) l'image de Pic (X) dans le réseau X(Q) de sorte que : Pic (X) ≃ pic (X).

Désormais, pour tout λ ∈ pic (X), on notera L λ un faisceau inversible G-linéarisé sur X de poids p(L λ ) = λ et [L λ ] sa classe d'isomorphisme.

Quitte à renuméroter les diviseurs limitrophes

D i , 1 ≤ i ≤ l, on supposera que : O X (D i ) ≃ L α i .
Exemple : Dans le cas où X = C, on a G = SL 3 et on peut prendre pour tore maximal T le tore des matrices diagonales de SL 3 . On a z =

(       1 0 0 0 0 0 0 0 0       ,       0 0 0 0 0 0 0 0 1      
) et Q = B -, le sous-groupe des matrices triangulaires inférieures de SL 3 . Si on note α 1 , α 2 les racines simples définies par G, B et T et ω 1 , ω 2 , les poids fondamentaux correspondants, on a :

pic (C) = 2 ω 1 ⊕ 2 ω 2
et on peut décrire explicitement les faisceaux inversibles sur C par :

[L λ ] = O È(S 3 ) (m)2 ×O È(S 3 ) (n) C pour tout λ = 2mω 1 + 2nω 2 ∈ 2 ω 1 ⊕ 2 ω 2 .
* Dans la suite, on s'intéressera plus particulièrement aux faisceaux inversibles spéciaux : Définition 2 Un caractère λ de T est spécial si θ(λ) = -λ.

Remarque : Soient λ ∈ X et L λ le faisceau inversible associé. Le poids λ est spécial si et seulement si le faisceau L λ l'est.

Soient ω α , α ∈ ∆, les poids fondamentaux du système de racines Φ (considérés comme des caractères de T ).

Voici une description de ces faisceaux inversibles spéciaux à isomorphime près : Proposition 3.2 ( §2, th. 1 de [Ch-Ma]) Le réseau {λ ∈ pic (X) : θ(λ) = -λ} admet pour base les poids ω 1 , ..., ω r où :

ω i =            ω α i + ω θ(α i ) si θ(α i ) = α i ω α i si θ(α i ) = α i et θ(α i ) = -α i 2ω α i si θ(α i ) = -α i pour tout 1 ≤ i ≤ r.
Remarque : Si X est la compactification magnifique de PGL n /PSO n , on a r = n -

1 et ω i = 2ω α i pour tout 1 ≤ i ≤ n -1.

Variétés stables

Les variétés stables sont les sous-variétés irréductibles et G-stables de X ; ce sont les variétés X I := i∈I D i , I partie de {1, ..., r}.

Pour les variétés stables, nous allons fixer quelques notations.

Pour toute partie I ⊆ {1, ..., l}, on choisit un sous-groupe à un paramètre γ I : k * → T 1 tel que pour tout 1 ≤ i ≤ r :

α i , γ I > 0 si i ∈ I , α i , γ I > 0 si i ∈ I . Soit x 0 := H/H ∈ G/H ⊆ X.
Si on pose x I := lim t→0 γ I (t).x 0 , alors on a X I = G.x I . Remarque : Soient I c := {1, ..., r} \ I et Φ I c les éléments de Φ qui sont combinaisons linéaires (à coefficients entiers) des α i , i ∈ I c . Avec ces notations, x I est la sous-algèbre de Lie

t 0 ⊕ α∈Φ 0 g α ⊕ α∈Φ 1 α∈ Φ I c k.(X α + θ(X α )) ⊕ α∈Φ + 1 α ∈ Φ I c (g θ(α) ⊕ g -α )
vue comme point de X ⊆ G .

On aura besoin aussi des groupes suivants : Pour ce qui suit, on pose :

P I := g ∈ G : lim t→0 γ I (t) -1 gγ I (t) existe dans G L I := g ∈ G : ∀ t ∈ k * , γ I (t) -1 gγ I (t) = g .
W L I := {w ∈ W : ∀ α ∈ Φ L I ∩ Φ + , w(α) ∈ Φ + }
(Φ L I est l'ensemble des racines de L I ).

5 Poids des faisceaux inversibles en les points fixes du tore Soit x ∈ X T . Soit I ⊆ {1, ..., l} tel que G.x = X I . Comme le point π I (x) est un point fixe de T dans G/P I , il existe w ∈ W P I tel que π I (x) = wP I /P I .

Soient λ ∈ pic (X) et L λ le faisceau inversible et G-linéarisé sur X correspondant ; on note λ x le caractère avec lequel T agit sur la fibre L λ | x . En général, le point x n'est pas un point fixe du sous-groupe parabolique wP I w -1 mais on a : Lemme 5.1 Pour tout poids spécial λ ∈ pic (X), le caractère λ x se prolonge en un caractère de wP I w -1 . Démonstration : Comme le faisceau L λ est G-linéarisé, nous allons seulement traiter le cas où w = 1 i.e. π I (x) = P I /P I . * Supposons pour commencer que λ est un caractère de P I i.e. :

∀ α ∈ Φ, α, γ I = 0 ⇒ (λ, α) = 0 .
Dans ce cas, soit M λ le faisceau inversible induit par λ sur la variété de drapeaux G/P I . On note toujours π I : X I → G/P I la projection de la proposition 4.1. Si on note k λ la droite k munie de l'action du tore T via le caractère λ, alors on a les isomorphismes de T -modules :

L λ | z ≃ k λ ≃ M λ P I /P I = M λ π I (z) ≃ π * I M λ | z .
On en déduit d'après la proposition 3.1 que L λ ≃ π * I M λ . En particulier, L λ | x ≃ M λ P I /P I et le caractère λ x se prolonge en un caractère de P I . * Maintenant, ne supposons plus que λ est un caractère de P I :

Comme les α i , 1 ≤ i ≤ r sont -linéairement indépendants, il existe des entiers k i , i ∈ I c et un entier k > 0 tels que :

∀ j ∈ I c , k(λ, α j ) - i∈I c k i ( α i , α j ) = 0 . (1)
Posons µ := kλ -i∈I c k i α i . C'est un poids spécial de pic (X). De plus, pour toute racine α ∈ Φ, on a :

α, γ I = 0 ⇒ (µ, α) = 0 .
En effet, par exemple si α est une racine positive,

α = α 0 + d i=1 n i α i pour un α 0 ∈ Φ + 0 et certains entiers n i ≥ 0. Donc α = d i=1 n i α i = r i=1 n ′ i α i pour certains entiers n ′ i tels que n ′ i ≥ n i pour tout i.
Or θ(γ I ) = -γ I donc :

α, γ I = 0 ⇔ α, γ I = 0 ⇔ r i=1 n ′ i α i , γ I = 0 ⇔ ∀ i ∈ I, n ′ i = 0 (2) car si i ∈ I, α i , γ I > 0.
Mais puisque θ(µ) = -µ, on a pour chaque racine α :

(µ, α) = (µ, α 0 ) + d i=1 n i (µ, α i ) = 1 2 . d i=1 n i (µ, α i ) = 1 2 . r i=1 n ′ i (µ, α i ) = 1 2 . i∈I n ′ i (µ, α i ) d'après (1).
Par conséquent, on trouve grâce à (2) :

(α, γ I ) = 0 ⇒ (µ, α) = 0
autrement dit, µ est un caractère du sous-groupe parabolique P I .

Rappelons que µ = kλ -i∈I c k i α i . Ainsi :

L µ = L kλ ⊗ i∈I c O X (-D i ) ⊗k i .
Or le point x est dans la G-orbite ouverte de

X I = i∈I D i donc si i ∈ I c , x ∈ D i et O X (D i )| x = O X | x . Par conséquent : L µ | x I ≃ L kλ | x .
Mais alors, le caractère kλ x avec lequel T agit sur L kλ | x est un caractère de P I donc λ x aussi.

Q.e.d.

6 Espace tangent en un point fixe du tore Soit x ∈ X T . Comme dans la section précédente, on fixe I ⊆ {1, .., r} tel que X I = G.x. On note encore P I le sous-groupe parabolique correspondant, π I : X I → G/P I la projection associée et L I le sous-groupe de Levi de P I contenant T . Soit w ∈ W P I tel que π I (x) = wP I /P I .

Notons -δ 1 , ..., -δ u les racines de R u (P I ), le radical unipotent de P I .

Remarque : les δ j sont les racines positives de Φ telles que δ j , γ I = 0. L'espace tangent T x X I est un T -module et on a :

Lemme 6.1 Les poids de T x X I sont :

-w(δ 1 ), ..., -w(δ u ), ±w(β 1 ), ..., ±w(β v )

pour certaines racines positives β 1 , ..., β v de L I . De plus, 2v = dim X Idim G/P I .

Remarque : Le groupe d'isotropie G x est contenu dans wP I w -1 et 2v est aussi la codimension de G x dans wP I w -1 .

Démonstration : Il suffit de traiter le cas où w = 1. Dans ce cas,

x ∈ π -1 I (P I /P I ) ≃ L I /L I θ I . En particulier le stabilisateur de x dans L I est un groupe réductif car c'est un conjugué de L I θ I . Notons K ce stabilisateur. D'après la proposition 4.1, on a un isomorphisme de T -modules :

T x X I ≃ T P I /P I G/P I ⊕ T x L I .x ≃ T P I /P I G/P I ⊕ T 1 L I /T 1 K .
D'une part, les poids de T P I /P I G/P I sont les -δ 1 , ..., -δ u . D'autre part, comme le groupe K est réductif, si β est un poids de T 1 L I /T 1 K, -β aussi. Donc les poids de T 1 L I /T 1 K sont les ±β 1 , ..., ±β v où les β j sont les racines positives de L I qui ne sont pas racines de K.

Enfin, on a aussi :

2v = dim X I -u = dim X I -dim G/P I Q.e.d.
7 Théorème principal Théorème 7.1 Soient L un faisceau inversible spécial sur X et C une cellule de Bialynicki-Birula de X de codimension d.

Si le g-module H d C (L ) admet un sous-quotient simple de dimension finie, alors le centre de la cellule, x ∈ C T est dans l'orbite fermée de X.

Pour démontrer ce théorème on va calculer des caractères de T -modules. Rappelons d'abord les notations de [START_REF] Dixmier | Algèbres enveloppantes[END_REF]§7.5.1] et [Kempf] :

Soit M est un T -module tel que pour tout caractère ν : T → k * , le sous-espace M ν := {m ∈ M : ∀ t ∈ T , t.m = ν(t)m} est de dimension finie.
Le caractère de M est la fonction :

[M ] : X → , ν → dim M ν .
Soit une fonction f : X → . On la notera ν∈X f (ν)e ν . Son support est l'ensemble {ν ∈ X : f (ν) = 0}. Soit ≥0 Φ + le cône de X engendré Φ + . On notera X l'anneau des fonctions f : X → dont le support est contenu dans une réunion finie d'ensembles de la forme

ν i -≥0 Φ + , ν i ∈ X.
Démonstration du théorème : On peut supposer que la cellule C est de la forme :

C = X + (x) pour un certain point fixe x ∈ X T et un certain sous-groupe à un paramètre ζ dominant et régulier (i.e. α, ζ > 0 pour toute racine positive α) tel que X ζ(k * ) = X T ).
Dans toute la suite on notera pour tout caractère ν ∈ X :

|ν| := ν si ν, ζ ≥ 0 , -ν si ν, ζ < 0 .
Notons λ ∈ pic X le poids du faisceau L (de sorte que L ≃ L λ ).

Cohomologie à support sur les variétés stables

Soit I ⊆ {1, ..., r} tel que X I = G.x. On note

X + I (x) la cellule X + (x)∩X I et d I la codimension de X + I (x) dans X I . On va d'abord montrer que le g module H d I X + I (x) (L λ | X I ) n'
a pas de sous-quotient simple de dimension finie en calculant son caractère, comme T -module.

Calcul de caractères

Avec les notations du lemme 6.1, on a :

Proposition 7.2 Le T -module H d I X + I (x) (L λ | X I ) a pour caractère : e λ ′ u i=1 w(δ i )>0 (1 -e -w(δ i ) ) u i=1 w(δ i )<0 (1 -e w(δ i ) ) v j=1 (1 -e -w(β j ) ) 2 où λ ′ := λ x - u i=1 w(δ i )>0 w(δ i ) - v j=1 w(β j ) avec λ x le poids de la fibre L λ | x .
Démonstration : D'après [START_REF] Kempf | The Grothendieck-Cousin complex of an induced representation[END_REF]prop. 11.9] (cf. aussi [START_REF]Tchoudjem Représentations d'algèbres de Lie dans des groupes de cohomologie à support[END_REF]th. II.3.2]), on a un isomorphisme de Tmodules :

H d I X + I (x) (L λ | X I ) ≃ Sym((T x X I ) * + )⊗ k Sym((T x X I ) -)⊗ k d I (T x X I ) - (où Sym est l'algèbre symétrique et d la d-ième puissance extérieure).
Or, d'après le lemme 6.1, les poids de T x X I sont :

-w(δ 1 ), ..., -w(δ u ), ±w(β 1 ), ..., ±w(β v )

et en particulier, ce sont des racines. Parmi ces poids, ceux de (T x X I ) + (resp.

(T x X I ) -) sont les racines positives (resp. négatives) car le sous-groupe à un paramètre ζ est dominant. De plus, comme w ∈ W L I et comme les β j sont des racines positives de L I , les poids w(β j ) sont des racines positives. Q.e.d.

Remarque : Puisque le g-module

H d I X + I (x) (L λ ) a un caractère et puisque c'est aussi un B-module (car la cellule X + I (x) est B-invariante), c'est un g-module de longueur finie.
Nous allons voir que le caractère suffit pour déterminer la multiplicité des g-modules simples de dimension finie dans le g-module

H d I X + I (x) (L λ ).

Calcul de multiplicités à partir de caractères

On note U (•) l'algèbre enveloppante d'une algèbre de Lie. On notera Z(g) le centre de l'algèbre U (g). Soit n + l'algèbre de Lie de B.

On dit qu'un g-module M est U (n + )-fini si pour tout m ∈ M , le sousespace U (n + )m est de dimension finie. On dira que M est T -diagonalisable s'il est la somme directe de tous ses T -espaces propres.

Exemple : les g -B-modules sont U (n + )-finis et T -diagonalisables.

Le lemme qui suit montre en particulier comment vérifier la propriété d'avoir un sous-quotient simple de dimension finie à partir du caractère.

On notera, pour tout caractère λ ∈ X, L(λ) le g-module simple de plus haut poids λ et χ λ : Z(g) → k son caractère central (on remarque que L(λ) est de dimension finie si et seulement si λ est dominant).

Lemme 7.3 Soit M un g-module U (n + )-fini, T -diagonalisable et avec un caractère [M ] dans l'anneau X .
Alors pour tout caractère µ ∈ X dominant, la multiplicité du g-module simple de plus haut poids µ est donnée par :

[M : L(µ)] = α∈Φ + (1 -e -α ).[M ](µ) (la multiplicité du poids µ dans le caractère virtuel α∈Φ + (1 -e -α ).[M ]).
Démonstration : Pour chaque caractère central χ : Z(g) → Ã, on note M χ le sous-espace propre généralisé associé à χ :

M χ := m ∈ M : ∃ k > 0 : (ker χ) k .m = 0 .
Comme M a un caractère, on a la décomposition : [START_REF] Bernstein | Differential operators on the base affine space and a study of g-modules in Lie groups and their representations[END_REF]§8,pro. 8.6]).

M = ⊕ χ M χ (cf. par exemple
Il suffit donc de démontrer le lemme lorsque M = M χ . Dans ce cas, M = M χ admet une suite de Jordan-Hölder finie :

M = M 0 ⊇ ... ⊇ M N ⊇ M N +1 = 0
dont les sous-quotients simples sont tous de la forme : [START_REF] Dixmier | Algèbres enveloppantes[END_REF]pro. 7.6.1]).

M i /M i+1 ≃ L(λ (i) ) pour un certain λ (i) ∈ X tel que χ λ (i) = χ (cf.
Notons {λ 1 , ..., λ t } l'ensemble fini {λ ∈ X : χ λ = χ}.

Pour chaque i, soit n i la multiplicité du g-module simple L(λ i ) dans M . On a alors l'égalité de caractères :

[M ] = 1≤i≤t n i [L(λ i )] . (3)
Or, les caractères des modules simples à plus haut poids s'expriment avec les caractères des modules de Verma : pour tout i, il existe des entiers m i,j (éventuellement négatifs) tels que :

[L(λ i )] = [M (λ i )] + 1≤j≤t λ j <λ i m i,j [M (λ j )] . (4) 
L'ensemble {λ 1 , ..., λ t } contient au plus un poids dominant ; supposons par exemple que λ 1 est l'unique poids dominant de cet ensemble. Dans ce cas, λ j < λ 1 pour tout 2 ≤ j ≤ t et il résulte de (3) et (4) que :

[M ] = n 1 [M (λ 1 )] + 2≤j≤t p j [M (λ j )]
pour certains entiers p j .

Connaissant les caractères des modules de Verma, on trouve donc :

[M ] = n 1 e λ 1 α∈Φ + (1 -e -α ) + p 2 e λ 2 α∈Φ + (1 -e -α ) + ... + p t e λt α∈Φ + (1 -e -α ) c-à-d : α∈Φ + (1 -e -α
).

[M ] = n 1 e λ 1 + p 2 e λ 2 + ... + p t e λt . (5) En conséquence, n 1 est la multilicité de λ 1 dans le caractère virtuel :

α∈Φ + (1- e -α )[M ]. Soit maintenant µ ∈ X un caractère dominant. Si χ µ = χ, alors µ ∈ {λ 1 , ..., λ t } et donc µ = λ 1 , d'où : [M : L(µ)] = n 1 . Si χ µ = χ, alors d'une part [M : L(µ)] = 0 car M = M χ et d'autre part : µ ∈ {λ 1 , ..., λ t }, ce qui entraîne : α∈Φ + (1 -e -α ).[M ](µ) = 0 d'après (5).
Q.e.d.

Absence de sous-quotients-simples de dimension finie

Nous allons appliquer le lemme 7.3 au g-module

H d I X + I (x) (L λ | X I ) : Proposition 7.4 Si x n'est pas dans la G-orbite fermée de X, alors le g-module H d I X + I (x) (L λ
) n'a pas de sous-quotient simples de dimension finie. Démonstration :

Posons M := H d I X + I (x) (L λ | X I ).
Si M a un sous-quotient simple de dimension finie L(µ) avec µ ∈ X, alors forcément µ est dominant, et µ est un poids du caractère virtuel :

α∈Φ + (1 -e -α )[M ] = ( α∈Φ + (1 -e -α ))e λ ′ 1≤i≤u wδ i >0
(1e -wδ i )

1≤i≤u wδ i <0 (1 -e wδ i )
1≤j≤v

(1e -wβ j ) 2 .

Nous allons montrer que ce caractère virtuel n'a pas de poids dominant si v > 0.

Notons β 1 , ..., β t , avec t ≥ v les racines positives du sous-groupe de Levi L I . On a la décomposition suivante :

Φ + = {wδ i : 1 ≤ i ≤ u, wδ i > 0}⊔{-wδ i : 1 ≤ i ≤ u, wδ i < 0}⊔{wβ j : 1 ≤ j ≤ t}.
On a donc :

α∈Φ + (1 -e -α )[M ] = ( t j=v+1 (1 -e -wβ j ))e λ ′ v j=1 (1 -e -wβ j ) . Par conséquent les poids du caractère α∈Φ + (1 -e -α )[M ] sont de la forme ν = λ ′ - t j=1 n j wβ j = λ x - u i=1 wδ i >0 wδ i - v j=1 wβ j - t j=1
n j wβ j pour certains entiers n j ≥ 0 (rappelons que λ x désigne le poids de la fibre

L λ | x ).
Posons γ := v j=1 β j + t j=1 n j β j , de sorte que :

ν = λ x - u i=1 wδ i >0 wδ i -wγ (6)
.

Comme w ∈ W L I , wγ est une somme de racines positives. Donc, si on suppose que ν est un poids dominant, alors (ν, wγ) ≥ 0 ; cela signifie d'après (6) que :

(ν, wγ) = (λ x , wγ) -( u i=1 wδ i >0 wδ i , wγ) -(wγ, wγ) ≥ 0 . (7)
Mais, d'une part, on a :

(λ x , wγ) = 0 . (8)
En effet, d'après le lemme 5.1, λ x est un caractère du groupe wP I w -1 et γ est une combinaison linéaire de racines de L I .

D'autre part, on a aussi :

( u i=1 wδ i >0 wδ i , wγ) ≥ 0 . (9)
En effet, les δ i sont les racines de R u (P I ), c-à-d les racines positives qui ne sont pas racines de (L I , T ), et donc si on note ρ I la demi-somme des racines positives de L I , on trouve :

u i=1 wδ i >0 wδ i = α∈Φ + \ Φ + L I wα>0 wα = β>0 w -1 β∈Φ + \ Φ + L I β = β>0 w -1 β∈Φ + β - β>0 w -1 β∈Φ + L I β = β>0 w -1 β∈Φ + β - β∈wΦ + L I β = β>0 w -1 β∈Φ + β -2wρ I .
Or, on a :

ρ + wρ = 1 2 β>0 β + 1 2 β>0 wβ = 1 2 β>0 w -1 β>0 β + 1 2 β>0 w -1 β<0 β + 1 2 β w -1 β>0 β = β>0 w -1 β>0 β + 1 2 β>0 w -1 β<0 β + 1 2 β<0 w -1 β>0 β = β>0 w -1 β>0 β .
Il en résulte que :

u i=1 wδ i >0 wδ i = ρ + wρ -2wρ I .
Mais alors, on obtient :

( u i=1 wδ i >0 wδ i , wγ) = (ρ + wρ -2wρ I , wγ) .
Si β j est une racine simple de L I , alors on a :

ρ + wρ -2wρ I , wβ ∨ j = ρ, wβ ∨ j + ρ, β ∨ j -2 ρ I , β ∨ j = ρ, wβ ∨ j -1 ≥ 0 car wβ j est une racine positive. Donc : (ρ + wρ -2wρ I , wβ j ) ≥ 0
pour toute racine simple β j de L I et, par conséquent, aussi pour toute racine positive β j de L I .

Et finalement :

( u i=1 wδ i >0 wδ i , wγ) = (ρ + wρ -2wρ I , wγ) = v j=1 (ρ + wρ -2wρ I , wβ j ) + t j=1 n j (ρ + wρ -2wρ L , wβ j ) ≥ 0 d'où (9).
On déduit de ( 7), ( 8) et ( 9) que si ν est un poids dominant, alors :

(wγ, wγ) ≤ 0 i.e. : γ = 0. Comme γ = v j=1 β j + t j=1 n j β j , on a nécessairement v = 0. ***
En conclusion, puisque 2v est la codimension du groupe d'isotropie G x dans le sous-groupe parabolique wP I w -1 (cf. le lemme 6.1), on a : G x = wP I w -1 et finalement G.x est projective donc fermée ; d'où la proposition 7.4.

Q.e.d.

Filtrations

Pour terminer la démonstration du théorème principal 7.1, on utilise le résultat suivant qui nous ramène à l'étude, faite ci-dessus, du g-module

H d I X + I (x) (L λ | X I ) :
Théorème 7.5 ([T1, th. 4.1]) Le g-module H d X + (x) (L λ ) est de longueur finie et possède une filtration de sous-g-modules :

H d X + (x) (L λ ) = M 0 ⊇ M 1 ⊇ ... ⊇ M n ⊇ ... telle que k≥0 M k = 0 et pour tout k ≥ 0 : M k /M k+1 = H d I X + I (x) (L λ ⊗ O X (D k )| X I ) où D k ∈ r i=1 D α est un diviseur de X.
Puisque les faisceaux inversibles L λ ⊗ O X (D k ) sont encore spéciaux, la proposition 7.4 s'applique : on en déduit que les quotients successifs de la filtration du théorème ci-dessus n'ont aucun sous-quotient simple de dimension finie lorsque le point x est hors de l'orbite fermée. Il en est donc de même pour le g-module H d X + (x) (L λ ). Cela achève la démonstration du théorème 7.1.

Applications

Nous allons appliquer le théorème 7.1 au problème du calcul des groupes de cohomologie H d (X, L λ ), d ≥ 0, λ ∈ pic (X).

Comme les faisceaux L λ sont G-linéarisés sur X, tous ces groupes de cohomologie sont des G-modules. Donc pour chaque entier d et chaque poids λ ∈ pic X, on a une décomposition en somme directe de G-modules simples :

H d (X, L λ ) = µ∈X µ dominant L(µ) ⊕m d λ (µ) où m d λ (µ) ∈ ≥0 est la multiplicité du module simple L(µ) dans le G-module H d (X, L λ ).

Suite spectrale de Grothendieck-Cousin

Pour estimer les entiers m d λ (µ), on dispose d'une suite spectrale qui fait intervenir des groupes de cohomologie à support dans des cellules de Bialynicki-Birula de X.

Fixons une décomposition cellulaire de X :

X = N i=0
X + i c-à-d que l'on note x 0 , ..., x N les points fixes de T dans X, que l'on choisit un sous-groupe à un paramètre ζ de T tel que X ζ(k * ) = X T et que l'on pose X + i := X + (x i ) la cellule de Bialynicki-Birula centrée en x i . On supposera de plus que ζ est dominant et régulier i.e. :

∀ α ∈ Φ + , α, ζ > 0 .
D'après th. 3], il existe une suite décroissante de sousespaces fermés de X :

X = Z 0 ⊇ ... ⊇ Z N ⊇ Z N +1 = ∅ telle que pour chaque i, Z i \ Z i+1 = X + i (quitte à renuméroter les points fixes x i ).
D'après [Kempf], on a alors une suite spectrale de g-modules qui converge :

E p,q 1 = H p+q X + p (L λ ) ⇒ H p+q (X, L λ ) . ( 10 
)
Les termes initiaux sont seulement des g-modules mais les termes finaux sont des G-modules, c-à-d des sommes directes de g-modules de dimension finie.

A priori cette suite spectrale ne dégénère pas mais on peut la simplifier. en effet, tous les termes E p,q 1 tels que p + q = codim X (X + p ) sont nuls. D'un autre côté, grâce au théorème 7.1, une autre simplification est possible : on va pouvoir ne tenir compte que des E p,q 1 tels que le point fixe x p est dans l'orbite fermée. En effet, les autres termes E p,q 1 n'ont pas de G-modules parmi leurs sous-quotients simples.

En ce qui concerne les caractères de T , on utilisera les notations suivantes : pour tout µ ∈ X, il existe au plus un w ∈ W tel que w(µ + ρ)ρ soit dominant ; dans ce cas, on note :

µ + := w(µ + ρ) -ρ et l(µ) := l(w) = | α ∈ Φ + : µ + ρ, α ∨ < 0 | .

Caractéristique d'Euler-Poincaré

Si V est un G-module rationnel, on note cl(V ) la classe des G-modules isomorphes à V . Le groupe de Grothendieck des G-modules rationnels, noté K( G), est le groupe commutatif défini par les générateurs : cl(V ) et par les relations :

cl(V ) = cl(V ′ )+cl(V ′′ ) pour chaque suite exacte courte 0 → V ′ → V → V ′′ de G-modules. Pour tout G-module V , on note [V ] l'image de V dans K( G). Pour tout λ ∈ pic X, notons χ(X, L λ ) l'élément d≥0 (-1) d [H d (X, L λ )]
de K( G) ; c'est la caractéristique d'Euler-Poincaré globale du faisceau inversible L λ . Pour tout λ ∈ pic X et tout µ ∈ X dominant, notons :

χ λ (µ) := d≥0 (-1) d m d λ (µ) , c'est la multiplicité selon [L(µ)] du G-module virtuel χ(X, L λ ). Théorème 8.1 Pour tout 1 ≤ i ≤ l, soit ρ i := (ρ, α i ) ( ω i , α i ) .
Pour toute partie J de {1, ..., r}, soient :

R J := r i=1 i∈J >0 α i + r i=1 i ∈J ≤0 α i Ω J := r i=1 i∈J <-ρ i ω i + r i=1 i ∈J >-ρ i ω i .
Si λ est un poids spécial de pic (X), alors on a :

χ(X, L λ ) = J⊆{1,...,r} ν ν+ρ régulier (-1) l(ν)+|J| [L(ν + )]
où dans la deuxième somme, ν décrit l'ensemble de caractères λ + R J ∩ Ω J .

Autrement dit, pour tout poids dominant µ ∈ X :

χ λ (µ) = J⊆{1,...,r} ν (-1) l(ν)+|J|
où cette fois, ν décrit l'ensemble fini de caractères λ + R J ∩ Ω J ∩ W * µ.

Remarque : Sur les figures 1,2 et 3, on a représenté les ensembles Ω J et R J dans le cas de la compactification magnifique de l'espace homogène Sp 2n /Sp 4 × Sp 2n-4 , n ≥ 4 (cf. §8.4 pour les notations).

Démonstration : Pour calculer la caractéristique d'Euler-Poincaré globale des faisceaux L λ , on a seulement besoin des premiers termes de la suite spectrale (10).

On veut calculer :

χ λ (µ) = d≥0 (-1) d [H d (X, L λ ) : L(µ)] .
D'après (10), on a :

χ λ (µ) = p,q (-1) p+q [E p,q 1 : L(µ)] = d≥0 (-1) d p≥0 [H d X + p (L λ ) : L(µ)]
(rappelons que les cellules X + p sont définies par un sous-groupe à un paramètre ζ dominant et régulier, cf. §8.1).

Or, d'après le théorème principal 7.1, si la cellule X + p n'est pas centrée en un point de l'orbite fermée, alors la multiplicité [H d X + p (L ) λ ) : L(µ)] est nulle. Donc, si l'on note X + w la cellule de Bialynicki-Birula centrée en le point wQ/Q, on trouve :

χ λ (µ) = d≥0 (-1) d w∈W Q [H d X + w (L λ ) : L(µ)]
(Rappelons que les points fixes de l'orbite fermée F = G/Q sont paramétrés par W Q , l'ensemble des représentants de longueur minimale de W/W Q ).

D'un autre côté, le groupe de cohomologie à support [T1, pro. 4.6 et th. 4.4] :

H d X + w (L λ ) est nul si d = codim X X + w et si d = codim X X + w , on a d'après
[H d X + w (L ) λ ) : L(µ)] (11) =            1 si w -1 (µ + ρ) ∈ λ + ρ + r i=1 X + w ⊆D i >0 α i + r i=1 X + w ⊆D i ≤0 α i 0 sinon.
Or, pour chaque cellule X + w et chaque diviseur D i , le tore T agit sur la fibre O X (D i ) wQ/Q via le caractère w( α i ). On obtient donc les équivalences suivantes :

X + w ⊆ D i ⇔ w( α i ), ζ < 0 X + w ⊆ D i ⇔ w( α i ), ζ > 0 . De plus, comme X + w ∩ r i=1 D i = BwQ/Q, on a : codim X X + w = |{1 ≤ i ≤ r : w( α i ), ζ < 0}| + l(w) . ( 12 
)
Posons J w := {1 ≤ i ≤ r : w( α i ), ζ < 0} + l(w)}. On déduit de ce qui précède que :

χ λ (µ) = w (-1) l(w)+|Jw|
où w décrit l'ensemble, que nous noterons W λ,µ , des éléments w de W tels que :

w -1 (µ + ρ) ∈ λ + ρ + r i=1 i∈Jw >0 α i + r i=1 i ∈Jw ≤0 α i .
Si on admet le lemme suivant : Lemme 8.2 Pour tout poids spécial λ tel que λ + ρ est régulier et pour tout α ∈ ∆ 1 :

w λ ( α), ζ < 0 ⇔ (λ + ρ, α) < 0 .
alors on remarque que l'application

W λ,µ -→ {(J, ν) : J ⊆ {1, ..., r}, ν ∈ λ + R J ∩ Ω J ∩ W * µ} w -→ (J, w -1 (µ + ρ) -ρ)
est une bijection. D'où les formules de l'énoncé. Démontrons maintenant le lemme 8.2 : L'équivalence à démontrer n'est pas immédiate car a priori, w λ ( α) n'est pas un élément de Φ 1 . Néanmoins, on va montrer que w λ ( α) est une somme de 2 racines positives ou de 2 racines négatives.

Pour cela, on vérifie qu'il existe des entiers n δ ≥ 0, δ ∈ ∆ 0 tels que :

α ′ := α + δ∈∆ 0 n δ δ ∈ Φ + 1 et | ρ, α ′∨ + ρ, θ(α ′ ) ∨ | ≤ 1 . (13)
Il suffit, en effet, de traiter le cas où X est de rang 1 avec Φ 1 = {± α}. Cela fait seulement huit possibilités ; dans le tableau suivant, chaque variété symétrique complète est représentée par le diagramme de Satake de l'espace homogène G/H (c'est le diagramme de Dynkyn de G où les sommets correspondant aux éléments de ∆ 0 sont noircis et où les racines simples α i et -θ(α i ) distinctes sont reliées par ⌢ ˇ). Pour chaque exemple, on donne θ(α) et une racine α ′ qui vérifie (13) :

X θ α ′ α 1 • -θ(α 1 )=α 1 α ′ =α 1 α 1 • u u ) ) α 2 • θ(α 1 )=α 2 α ′ =α 1 α 1 • α 2 • α 3 • -θ(α 2 )=α 1 +α 2 +α 3 α ′ =α 1 +α 2 α 1 • α 2 • α n-1 • + 3 αn • n ≥ 2 -θ(α 1 )=α 1 +2 n i=2 α i α ′ =α 1 + n i=2 α i α n-1 • α 1 • α 2 • α n-2 • w w w w w w w w G G G G G G G G G n ≥ 4 αn • -θ(α 1 )=α 1 +2 n-2 i=2 α i +α n-1 +αn α ′ = n i=1 α i α 1 • s s + + α 2 • α n-2 • αn • n ≥ 3 -θ(α 1 )= n i=2 α i α ′ = [ n 2 ] i=1 α i α 1 • α 2 • α 3 • α n-1 • k s αn • n ≥ 2 -θ(α 2 )=α 1 +α 2 +2 n-1 i=3 α i +αn α ′ = n-1 i=1 α i α 1 • α 2 • + 3 α 3 • α 4 • -θ(α 4 )=α 1 +2α 2 +3α 3 +α 4 α ′ =α 1 +α 2 +α 3 +α 4
On choisit donc α ′ qui vérifie (13) : on a alors α = α ′ et w λ ( α) = w λ (α ′ )w λ (θ(α ′ )).

Or, comme le caractère w λ (λ + ρ) est dominant régulier et comme θ(λ) = -λ, on a les équivalences suivantes :

w λ (α ′ ) ∈ Φ + ⇔ w λ (λ + ρ), w λ (α ′ ) ∨ > 0 ⇔ λ, α ′∨ + ρ, α ′∨ > 0 et : -w λ (θ(α ′ )) ∈ Φ + ⇔ λ + ρ, -θ(α ′ ) ∨ > 0 ⇔ λ, -θ(α ′ ) ∨ + ρ, -θ(α ′ ) ∨ > 0 ⇔ λ, α ′∨ -ρ, θ(α ′ ) ∨ > 0 .
Mais puisque, le poids λ + ρ est entier et régulier, les nombres

λ, α ′∨ + ρ, α ′∨ et λ, α ′∨ -ρ, θ(α ′ ) ∨
sont des entiers non nuls, dont la différence est en valeur absolue inférieure ou égale à 1, d'après (13). Ce sont donc des entiers de mêmes signes.

Comme le sous-groupe à un paramètre ζ est dominant régulier, on peut conclure :

w λ ( α), ζ > 0 ⇔ w λ (α ′ ) et w λ (-θ(α ′ )) ∈ Φ + ⇔ λ + ρ, α ′∨ et λ + ρ -θ(α ′ ) ∨ > 0 ⇔ (λ + ρ, α ′ ) et (λ + ρ, -θ(α ′ )) > 0 ⇔ (λ + ρ, α ′ ) > 0 ⇔ (λ + ρ, α) > 0 .
Q.e.d.

Remarque : En particulier, les codimensions des cellules de Bialynicki-Birula qui interviennent dans le calcul de la caractéristique d'Euler-Poincaré sont indépendantes du sous-groupe à un paramètre ζ choisi.

Estimée des multiplicités

Pour deux G-modules V 1 , V 2 de dimension finie, la notation V 1 ≤ V 2 signifiera que pour tout caractère dominant µ : [V 1 : L(µ)] ≤ [V 2 : L(µ)] .
On obtient grâce à la suite spectrale (10) et avec les notations du théorème 8.1 la majoration suivante des multiplicités m d λ (µ) :

Théorème 8.3 Pour tout poids spécial λ ∈ pic (X) et pour tout entier d :

H d (X, L λ ) ≤ J⊆{1,...,r} ν∈λ+R J ∩Ω J ν+ρ régulier l(ν)+|J |=d L(ν + ) . (14)
Remarque : Lorsque X est de rang minimal, i.e. lorsque r = rg (G)rg (H), cette inégalité est une égalité (cf. [T2, th. 3.1]). Nous donnerons dans la section suivante un exemple, qui n'est pas de rang minimal, pour lequel on peut aussi démontrer l'égalité. En revanche, nous verrons que cette inégalité peut devenir stricte dans le cas de la variété des coniques complètes (cf. le théorème 8.6).

Démonstration : On déduit de (10) que pour tout poids dominant µ :

[H d (X, L λ ) : L(µ)] ≤ p,q p+q=d [E p,q 1 : L(µ)] ≤ p,q p+q=d [H d X + p (L λ ) : L(µ)] .
Or, d'après le théorème 7.1, la multiplicité [H d X + p (L λ ) : L(µ)] est nulle si la cellule X + p n'est pas centrée en un point de l'orbite fermée

F ≃ G/Q. Donc : [H d (X, L λ ) : L(µ)] ≤ w∈W Q [H d X + w (L λ ) : L(µ)] .
L'inégalité de l'énoncé résulte alors de (11) et du lemme 8.2.

Q.e.d.

On déduit de ce théorème le résultat d'annulation suivant :

Corollaire 8.3.1 Pour tout poids spécial λ ∈ pic (X), H 1 (X, L λ ) = 0.
Remarque : En particulier, si X est une variété symétrique complète non exceptionnelle (i.e. si tous les poids de pic X sont spéciaux ) alors, pour tout faisceau invercible L sur X, on a : H 1 (X, L ) = 0. C'est le cas par exemple pour la variété des quadriques complètes, la compactification magnifique de P GL n /P SO n .

Démonstration du corollaire : Soient J ⊆ {1, ..., r} et ν ∈ λ+R J ∩Ω J tel que ν + ρ est régulier.

Nous allons montrer que l(ν) + |J| ne vaut jamais 1 : Remarquons que :

ν ∈ λ + R J ⇒ θ(ν) = -ν .
On en déduit :

∀ δ ∈ ∆ 0 , ν, δ ∨ = θ(ν), θ(δ) ∨ = -ν, δ ∨ ⇒ ∀ δ ∈ ∆ 0 , ν, δ ∨ = 0 . ( 15 
)
On a :

J = {1 ≤ i ≤ r : (ν + ρ, α i ) < 0} et l(ν) = {α ∈ Φ + : (ν + ρ, α) < 0} . Donc : |J| ≤ l(ν). Mais alors : l(ν) + |J| = 1 ⇒ |J| = 0 et l(ν) = 1 .
Nous allons voir que dans ce cas, on a en fait l(ν) ≥ 2 : absurde. D'une part, il existe un unique α ∈ ∆ tel que w ν (α) ∈ Φ -i.e. : ν + ρ, α ∨ < 0 ou encore :

ν, α ∨ + 1 < 0 (16) (en particulier, α ∈ ∆ 1 ). D'autre part, comme |J| = 0, on a : (ν + ρ, α) > 0 et donc ν + ρ, -θ(α) ∨ > 0. Par conséquent : ρ, -θ(α) ∨ > -ν, -θ(α) ∨ ⇒ ρ, -θ(α) ∨ > -ν, α ∨ > 1 .
On est donc sous l'hypothèse du lemme suivant :

Lemme 8.4 Soit α ∈ ∆ 1 tel que ρ, -θ(α) ∨ > 2. Alors il existe δ ∈ ∆ 0 tel que : α + δ ∈ Φ + , ρ, (α + δ) ∨ = 1 ou 2, (α + δ, α + δ) = (α, α) .
Avec ( 15) et ( 16), ce lemme permet de conclure :

ν + ρ, (α + δ) ∨ ≤ ν, (α + δ) ∨ + 2 ≤ 2 (ν, α + δ) (α + δ, α + δ) + 2 ≤ 2 (ν, α) (α + δ, α + δ) + 2 ≤ ν, α ∨ + 2 ≤ 0 ⇒ ν + ρ, (α + δ) ∨ < 0 car ν + ρ est régulier ; et donc, l(ν) ≥ 2.
Il reste à démontrer le lemme 8.4 : il suffit de traiter les 6 cas où X est de rang 1 et où ∆ 0 = ∅. On le fait dans le tableau suivant en donnant pour chaque exemple, une racine α + δ qui vérifie l'énoncé du lemme :

X α α + δ ρ, (α + δ) ∨ α 1 • α 2 • α 3 • α 2 α 1 + α 2 α 1 • α 2 • α n-1 • + 3 αn • n ≥ 3 α 1 α 1 + α 2 α n-1 • α 1 • α 2 • α n-2 • w w w w w w w w G G G G G G G G G n ≥ 4 αn • α 1 α 1 + α 2 α 1 • s s + + α 2 • α n-2 • αn • n ≥ 3 α 1 ou α n α 1 + α 2 ou α n-1 + α n α 1 • α 2 • α 3 • α n-1 • k s αn • n ≥ 3 α 2 α 1 + α 2 α 1 • α 2 • + 3 α 3 • α 4 • α 4 α 3 + α 4 Q.e.d.
Remarque : Plus généralement, si d n'est pas de la forme l(ν) + |J ν |, pour un poids spécial ν (on note J ν l'ensemble {1 ≤ i ≤ r : (ν + ρ, α i ) < 0}), alors H d (X, L λ ) = 0 pour tout poids spécial λ de pic X.

Cas d'égalité

En général, le théorème 7.1 ne suffit pas pour améliorer les inégalités ( 14). Néanmoins, nous allons voir un exemple de variété symétrique complète X pour lequel ce théorème 7.1 permet de transformer en égalités les inégalités ( 14) et donc de déterminer tous les groupes de cohomologie de tous les fibrés en droites sur X.

Cet exemple sera la compactification magnifique de l'espace symétrique Sp 2n /Sp 4 × Sp 2n-4 , pour n ≥ 4. Cet espace symétrique est appelé C H,4 n dans [START_REF] Loos | Symmetric spaces II[END_REF]tab. 8] et son diagramme de Satake est :

α 1 • α 2 • α 3 • α 4 • α 5 • α n-1 • k s αn • . ( 17 
)
Il se trouve en effet que pour cet exemple de variété symétrique complète X on a une décomposition cellulaire qui « s'adapte bien » à l'étude de la suite spectrale de Grothendieck-Cousin.

Fixons d'abord quelques notations :

Soient J la matrice    0 I n -I n 0    et J 0 la matrice diagonale :          -I 2 I n-2 I 2 I n-2         
(où I p est la matrice identité de taille p × p).

Le groupe G sera dorénavant le groupe Sp 2n (k) i.e. le sous-groupe des matrices g ∈ GL 2n (k) telles que : t gJg = J.

L'automorphisme θ : G → G, g → J 0 gJ 0 est une involution dont le groupe des points fixes vérifie : G θ ≃ Sp 4 × Sp 2n-4 . Nous noterons X la compactification magnifique de G/G θ . C'est une variété symétrique complète de rang 2. En particulier, X n'est pas de rang minimal car rangG-rangG θ = 0 ; le résultat que nous énonçons ci-dessous (cf. le théorème 8.5) n'est donc pas contenu dans [T2].

On choisit Φ, Φ 0 , Φ 1 , ... comme dans la section 2. On a :

∆ 1 = {α 2 , α 4 } , θ(α 2 ) = -α 1 -α 2 -α 3 , θ(α 4 ) =      -2α 3 -α 4 si n = 4 -α 3 -α 4 -2α 5 -... -2α n-1 -α n si n ≥ 5
(la numérotation des racines est donnée par le diagramme ( 17)). On a donc : pic X = ω 2 ⊕ ω 4 . Théorème 8.5 Soit X la compactification magnifique de l'espace symétrique Sp 2n /Sp 4 × Sp 2n-4 , n ≥ 4. Pour tout faisceau inversible L λ sur X, de poids λ ∈ ω 2 + ω 4 , on a :

H d (X, L λ ) = J⊆{2,4} ν∈λ+R J ∩Ω J ν+ρ régulier l(ν)+|J |=d L(ν + )
(les notations sont celles du théorème 8.1).

Plus concrètement :

H d (X, L λ ) = 0 si d ∈ {0
, 5, 4n -12, 4n -8, 4n -4, 8n -21, 8n -16} et si d = 0, 5, 4n -12, 4n -8, 4n -4, 8n -21 ou 8n -16 alors :

H d (X, L λ ) = µ∈E d λ L(µ + )
pour les ensembles de poids E d λ qui sont donnés dans le tableau suivant :

d E d λ 0 {xω 2 + yω 4 : x, y ≥ 0} ∩ λ + ≤0 α 2 + ≤0 α 4 5 {xω 2 + yω 4 : x ≤ -4, x + y ≥ -2} ∩ λ + >0 α 2 + ≤0 α 4 4n -12 {xω 2 + yω 4 : y ≤ -2n + 5, x + 2y ≥ -2n + 5} ∩ λ + ≤0 α 2 + >0 α 4 4n -8 {xω 2 +yω 4 : -2y-2n+5≤x≤-y-2n+3}∩λ+ >0 α 2 + ≤0 α 4 ∪{xω 2 +yω 4 : -y-2≤x≤-2y-2n+1}∩λ+ ≤0 α 2 + >0 α 4 4n -4 {xω 2 + yω 4 : y ≥ 0, x + 2y ≤ -2n + 1} ∩ λ + >0 α 2 + ≤0 α 4 8n -21 {xω 2 + yω 4 : x ≥ 0, x + y ≤ -2n + 3} ∩ λ + ≤0 α 2 + >0 α 4 8n -16 {xω 2 + yω 4 : x ≤ -4, y ≤ -2n + 5} ∩ λ + >0 α 2 + >0 α 4
remarques : i) la dimension de X est 8n -16 ; ii) si on pose pour tout d ≥ 0 et tout J ⊆ {2, 4} :

Ω d J := {ν ∈ Ω J : ν + ρ régulier et l(ν) + |J| = d}
alors on a :

E d λ = J⊆{2,4} Ω d J ∩ λ + R J .
On a représenté les ensembles Ω d J dans le cas où n = 4 sur la figure 4. Démonstration : Soit L λ un faisceau inversible sur X, de poids λ ∈ pic X, tel que : H d (X, L λ ) = 0. D'après le théorème 8.3, il existe alors un poids ν ∈ pic X tel que : ν + ρ est régulier et l(ν)

+ |J ν | = d (où l(ν) = |{α ∈ Φ + 1 : ν + ρ, α ∨ < 0}| et J ν = {i ∈ {2, 4} : (ν + ρ, α i ) < 0}).
Or, on a :

Φ + 1 =    i≤k<j α k : i = 1, 2 et j ≥ 3 ou i = 3, 4 et j ≥ 5    ⊔    i≤k<j α k + 2 j≤k<n α k + α n : i = 1, 2, 3, 4 et i < j ≤ n    ⊔    2 i≤k≤n α k + α n : i = 1, 2, 3, 4    .
Pour un poids ν = xω 2 + yω 4 ∈ pic X, x, y ∈ , lorsque α décrit l'ensemble Φ + 1 , voici les valeurs prises par ν + ρ, α ∨ :

α ∈ Φ + 1 ν + ρ, α ∨ i≤k<j α k            x + j -i si i = 1, 2 et j = 3, 4 x + y + j -i si i = 1, 2 et 5 ≤ j ≤ n y + j -i si i = 3, 4 et 5 ≤ j ≤ n i≤k<j α k + 2 j≤k<n α k + α n                          2x + 2y + 2n -1 si i = 1, j = 2 x + 2y + 2n + 2 -i -j si i = 1, 2 et j = 3, 4 2y + 2n -5 si i = 3 et j = 4 x + y + 2n + 2 -i -j si i = 1, 2 et 5 ≤ j ≤ n y + 2n + 2 -i -j si i = 3, 4 et 5 ≤ j ≤ n 2 i≤k<n α k + α n      x + y + n + 1 -i si i = 1, 2 y + n + 1 -i si i = 3, 4
Tab. 1 -On déduit de ce tableau que le poids ν + ρ est régulier (i.e. : ν + ρ, α ∨ = 0 ) si et seulement si les quatre conditions suivantes sont vérifiées :

                 x = -1, -2, -3 y = -1, -2, ..., -2n + 6
x + y = -3, -4, ..., -2n + 4

x + 2y = -2n + 4, -2n + 3, -2n + 2 . Puisque de plus :

(ν + ρ, α 2 ) = c n (x + 2) et (ν + ρ, α 4 ) = c ′ n (y + n - 5 2 ) (18) 
(pour des constantes c n , c ′ n > 0), on obtient que d = l(ν) + |J ν | ne peut prendre que les valeurs 0, 5, 4n -12, 4n -8, 4n -4, 8n -21, 8n -16 comme dans l'énoncé.

Pour terminer la démonstration, il reste à vérifier que la « composante finie » de la suite spectrale :

E p,q 1 = H p+q X + p (L λ ) ⇒ H p+q (X, L λ ) dégénère i.e. : [E p,q r : L(µ)] = [E p,q 1 : L(µ)] (19) 
pour tout poids dominant µ et pour tous p, q ∈ et tout r ≥ 1.

On aura alors :

[H d (X, L λ ) : L(µ)] = p,q p+q=d [E p,q 1 : L(µ)] .
Fixons un poids dominant µ.

Nous allons montrer (19) par récurrence sur r.

On suppose donc que [E p,q r : L(µ)] = [E p,q 1 : L(µ)] et on considére les morphismes de g-modules de la suite spectrale :

d p,q
r : E p,q r → E p+r,q-r+1 r .

Puisque E p,q r+1 = ker d p,q r /Im d p-r,q+r-1 r , il s'agit de démontrer que pour tous p, q ∈ , le g-module Im (d p,q r ) est de multiplicité nulle selon L(µ). Raisonnons par l'absurde : supposons que :

[Im d p,q r : L(µ)] = 0 . (20)
On a alors :

[E p,q r : L(µ)] = 0 et [E p+r,q-r+1 r : L(µ)] = 0 .
Comme E p,q r est un sous-quotient de E p,q 1 , on a donc aussi :

[E p,q 1 : L(µ)] = [H p+q X + p (L λ ) : L(µ)] = 0 .
En conséquence, d'une part, la cellule X + p est de codimension p + q et d'autre part, X + p est centrée en un point de l'orbite fermée F de X de la forme x p = w ν Q/Q pour un certain poids ν ∈ pic X (d'après le théorème 7.1 et ( 11)). D'où : p + q = l(ν) + |J ν | avec ν ∈ pic X ; en particulier :

p + q = 0, 5, 4n -12, 4n -8, 4n -4 ou 8n -16 . (21)
De même, la cellule X + p+r est centrée en un point x p+r = w ν ′ Q/Q pour un certain poids ν ′ ∈ pic X et on aurait :

p + q + 1 = 0, 5, 4n -12, 4n -8, 4n -4 ou 8n -16 . ( 22 
)
Il résulte alors de ( 21) et ( 22) que 1 = a-b pour certains a, b ∈ {0, 5, 4n-12, 4n -8, 4n -4, 8n -16} : cela est impossible si n ≥ 5.

Il reste donc à traiter le cas de la compactification magnifique de Sp 8 /Sp 4 × Sp 4 i.e. le cas où n = 4.

Dans ce cas, il se peut que ( 21) et ( 22) soient vérifiées, on a donc besoin d'un argument supplémentaire pour conclure. Les seuls cas possibles sont :

( * )      p + q = 4n -12 = 4 p + q + 1 = 5 et ( * * )      p + q = 8n -21 = 11 p + q + 1 = 4n -4 = 12 .
Ces deux cas se traitent de la même façon ; on va par exemple supposer ( * ), c'est-à-dire que : l(ν)

+ |J ν | = p + q = 4 et l(ν ′ ) + |J ν ′ | = 5.
Comme n = 4, le tableau 1 devient : Mais alors,d'après (18), on a forcément :

α ∈ Φ + 1 ν + ρ, α ∨ i≤k<j α k x + j -i si i = 1, 2 et j = 3, 4 i≤k<j α k + 2 j≤k<4 α k + α 4            2x + 2y + 7 si i = 1, j = 2 x + 2y + 10 -i -j si i = 1, 2 et j = 3, 4 2y + 3 si i = 3 et j = 4 2 i≤k<4 α k + α n      x + y + 5 -i si i = 1, 2 y + 5 -i si i = 3, 4 On a : l(ν)+|J ν | = 4 ⇒ |J ν | = 1.
J ν = { α 4 }. De même, l(ν ′ ) + |J ν ′ | = 5 ⇒ J ν ′ = { α 2 }.
En particulier, en posant D := D α 4 :

X + p ⊆ D et X + p+r ∩ D ⊂ = X + p+r .
Soit I D le faisceau d'idéaux définissant le diviseur D (c'est un faisceau inversible). Le morphisme L ⊗I D → L induit un morphisme entre les suites spectrales associées à L ⊗ I D et à L . On a donc le diagramme commutatif de g-modules suivant :

E p,q r (L λ ) d p,q r / / E p+r,q-r+1 r (L λ ) E p,q r (L λ ⊗ I D ) α p,q r O O d p,q r,D / / E p+r,q-r+1 r (L λ ⊗ I D ) α p+r,q-r+1 r O O D'un autre côté, la suite exacte courte 0 → L λ ⊗ I D → L λ → L λ | D → 0 induit une longue suite exacte : ... → H 4 X + p (L λ ⊗ I D ) → H 4 X + p (L λ ) → H 4 X + p (L λ | D ) → ... Si X + p ⊆ D , la cellule X + p est de codimension 3 dans D et H 4 X + p (L λ | D ) = 0. Le mor- phisme : H 4 X + p (L λ ⊗ I D ) = E p,q 1 (L ⊗ I D ) → E p,q 1 (L λ ) = H 4 X + p (L λ )
est donc surjectif. Cela n'entraînerait pas forcément que le morphisme α p,q r du diagramme précédent soit surjectif mais puisque, par hypothèse de récurrence,

[E p,q 1 (L ) : L(µ)] = [E p,q r (L ) : L(µ)]
pour tout faisceau inversible L sur X, on a néanmoins :

[Im α p,q r : L(µ)] = [E p,q r : L(µ)] d'où : [Im (d p,q r ) : L(µ)] = [Im (d p,q r • α) : L(µ)] . En conséquence : [Im (d p,q r ) : L(µ)] = [Im (α p+r,q-r+1 r • d p,q r,D ) : L(µ)] ≤ [E p+r,q-r+1 r (L ⊗ I D ) : L(µ)] ≤ [H 5 X + p+r (L λ ⊗ I D ) : L(µ)] .
En raisonnant de même à partir du diagramme commutatif :

E p,q r (L λ ⊗ I n-1 D ) / / E p+r,q-r+1 r (L λ ⊗ I n-1 D ) E p,q r (L λ ⊗ I n D ) O O / / E p+r,q-r+1 r (L λ ⊗ I n D ) O O
on obtient que :

[Im (d p,q r ) : L(µ)] ≤ [H 5 X + p+r (L λ ⊗ I n D ) : L(µ)] pour tout n ≥ 1. Or, si D ∩ X + p+r ⊂ = X + p+r , on a : lim ←- n H 5 X + p+r (L λ ⊗ I n D ) = 0 .
On a donc : [Im (d p,q r ) : L(µ)] = 0 ; d'où la contradiction (cf. ( 20)).

Q.e.d.

Cas de la variété des coniques complètes

Nous allons démontrer le résultat suivant :

Théorème 8.6 Soient R 1 := 2 >0 α 1 -2 ≥0 α 2 et R 2 := -2 ≥0 (α 1 + 2 >0 α 2 . On note s 1 , s 2 les réflexions simples s α 1 et s α 2 et ρ = α 1 + α 2 . Pour tout λ ∈ 2 ω 1 + 2 ω 2 , on a : i) H 0 (C, L λ ) = µ∈λ-2 ≥0 α 1 -2 ≥0 α 2 µ dominant L(µ) et H 5 (C, L λ ) = µ∈w 0 λ-2 ≥4 α 1 -2 ≥4 α 2 µ dominant L(µ) ii) H 1 (C, L λ ) = H 4 (C, L λ ) = 0 iii) H 2 (C, L λ ) = µ dominant µ+ρ∈s 1 (λ+ρ+R 1 )\(s 2 s 1 )(λ+ρ+R 1 ) L(µ)⊕ µ dominant µ+ρ∈s 2 (λ+ρ+R 2 )\(s 1 s 2 )(λ+ρ+R 2 ) L(µ) H 3 (C, L λ ) = µ dominant µ∈(s 2 s 1 )(λ+ρ+R 1 )\s 1 (λ+ρ+R 1 ) L(µ) ⊕ µ dominant µ∈(s 1 s 2 )(λ+ρ+R 2 )\s 2 (λ+ρ+R 2 ) L(µ)

Démonstration :

On va montrer iii). On traite le cas de H 2 (C, L λ ) : Nous verrons d'abord que si µ + ρ ∈ s 1 (λ+ ρ+ R 1 ) \ (s 2 s 1 )(λ+ ρ+ R 1 ) ou si µ ∈ s 2 (λ + ρ + R 2 ) \ (s 1 s 2 )(λ + ρ + R 2 ) alors L(µ) apparaît dans la décomposition de H 2 (C, L λ ) avec la multiplicité 1 puis que H 2 (C, L λ ) : L(µ) = 0 dans tous les autres cas.

Remarquons que si µ + ρ ∈ s 1 (λ + ρ + +R 1 ), il existe m, n ∈ tels que :

µ = s 1 (λ + ρ + 2mα 1 + 2nα 2 ) -ρ = λ + (2m -λ, α ∨ 1 -1)α 1 + 2nα 2 . Or, λ ∈ pic (C) = 2 ω 1 + 2 ω 2 donc λ, α ∨ 1 ∈ 2 . Donc µ ∈ λ + (2 + 1)α 1 + 2 α 2 . De même, si µ + ρ ∈ s 2 (λ + ρ + R 2 ) ou si µ + ρ ∈ (s 1 s 2 )(λ + ρ + R 2 ), on a µ ∈ λ + 2 α 1 + (2 + 1)α 2 .
En particulier, on a :

( * ) s 1 (λ + ρ + R 1 ) ∩ s 2 (λ + ρR 2 ) = s 1 (λ + ρ + R 1 ) ∩ (s 1 s 2 )(λ + ρ + R 2 ) = ∅ . 1ère étape : Si µ + ρ ∈ s 1 (λ + ρ + R 1 ) \ (s 2 s 1 )(λ + ρ + R 2 ), alors H 2 (C, L λ ) : L(µ) = 1.
On se donne une décomposition de C en cellules de Bialynicki-Birula :

C = x∈C T C + x .
On a une suite spectrale convergente :E p,q 1 ⇒ H p+q (C, L λ ) pour une certaine numérotation x 1 , x 2 , ... des points fixes x ∈ C

T et où E p,q 1 = H p+q

C + xp (L λ ). Soit p 0 ≥ 1 tel que x p 0 = s 1 z. Comme X + s 1 ⊆ D α 1 et X + s 1 ⊆ D α 2
, on a d'après [T1, pro. 4.6 et th. 4.4] :

E p 0 ,2-p 0 1 : L(µ) = H 2 X + s 1 (L λ : L(µ) = 1 .
En revanche, si p = p 0 , on a pour tout r ≥ 0 : On en déduit que [H 2 (C, L λ ) :

E p,2-p r : L(µ) ≤ E p,2-p 1 : L(µ) = 0 .
L(µ)] = E p 0 ,2-p 0 ∞ : L(µ) .
Or, si r ≥ 1,

E p 0 ,2-p 0 r+1 = ker(E p 0 ,2-p 0 r → E p 0 +r,3-p 0 -r r )
Im (E p 0 -r,1-p 0 +r r → E p 0 ,2-p 0 r

) .

Mais d'une part : On en déduit que :

[E p 0 -r,1-p 0 -r r : L(µ)] ≤ [E p 0 -r,1-p 0 -r 1 : L(µ)] = [H 1 C + x p 0 -r ( 
E p 0 ,2-p 0 r+1 : L(µ) = E p 0 ,2-p 0 r : L(µ)
pour tout r ≥ 1 et donc que :

H 2 (C, L λ ) : L(µ) = E p 0 ,2-p 0 ∞ : L(µ) = E p 0 ,2-p 0 1 : L(µ) = 1 .
De la même façon, on montre que si µ

+ ρ ∈ s 2 (λ + ρ + R 2 ) \ (s 1 s 2 )(λ + ρ + R 2 ), [H 2 (C, L λ ) : L(µ)] = 1. 2ème étape Si par exemple * µ ∈ (s 2 s 1 )(λ + ρ + R 1 ) ∩ s 1 (λ + ρ + R 1 ), alors [H 2 (C, L λ ) : L(µ)] = 0.
Pour le démontrer, on choisit la décomposition cellulaire de Bialynicki-Birula de C donnée par le sous-groupe à un paramètre :

ν : k * → T, z →       z 3 0 0 0 z -1 0 0 0 z -2      
.

Pour ce sous-groupe à un paramètre, on a : C = 

E p,2-p r : L(µ) = 0 ⇒ H 2 C + p (L λ ) : L(µ) = 0 ⇒ x p = s 1 z ⇒ p = 5 . Ainsi, pour tout r ≥ 1, H 2 (C, L λ ) : L(µ) ≤ E 5,-3 r : L(µ) . On va montrer que E 5,-3 2 : L(µ) = 0. Puisque E 5,-3 2 = ker(E 5,-3 1 d 5,-3 1 ) -→ E 6,-3 1 Im (E 4,-3 1 d 4,-3 1 -→ E 5,- 3 1 ) 
, il suffit de vérifier que ker d 5,-3 1 : L(µ) = 0.

Or, d 5,-3 1 est le morphisme

d 5,-3 1 : H 2 C + s 1 (L λ ) → H 3 C + s 2 s 1 (L λ ) induit par la décomposition C + s 1 = C + s 2 s 1 ⊔ C + s 1 \ C + s 2 s 1 où C + s 2 s 1 est fermé dans C + s 1 .
Pour tout g module M et tout caractère central χ : Z(g) → k (Z(g) est le centre de l'algèbre enveloppante de g) rappelons que :

M χ := {m ∈ M : ∃ n > 0, (ker χ) n m = 0}
est l'espace-propre généralisé associé à χ.

On note encore χ µ le caractère central par lequel Z(g) agit sur L(µ) et :

M [µ] := m ∈ M χµ : ∀ t ∈ T, t.m = µ(t)m
le T -espace-propre de M χµ de poids µ.

On va utiliser que [M :

L(µ)] = dim k M [µ] pour tout g -B-module. On sait que H 2 C + s 1 (L λ )[µ] est de dimension 1 autrement dit : H 2 C + s 1 (L λ )[µ] = kf µ pour un certain élément f µ non nul de H 2 C + s 1 (L λ ).
On a donc ker(d 5,-3 1 )[µ] = kf µ ou 0. Or, on peut déterminer f µ et montrer que d 5,-3 1 (f µ ) = 0 (cf. les annexes). On a donc ker(d 5,-3 1

)[µ] = 0 d'où : ker d 5,-3 1 : L(µ) = 0. De même, si µ + ρ ∈ s 2 (λ + ρ + R 2 ) ∩ (s 1 s 2 )(λ + ρ + R 2 ), on peut montrer que [H 2 (C, L λ ) : L(µ)] = 0. Enfin, si µ + ρ ∈ s 1 (λ + ρ + R 1 ) ∪ s 2 (λ + ρ + R 2 ), on a [H 2 (C, L λ ) : L(µ)] ≤ [H 2 C + s 1 (L λ ) : L(µ)] + [H 2 C + s 2 (L λ ) : L(µ)] = 0 .
Le cas de H 3 (C, L λ ) se démontre avec les mêmes arguments.

Voici une conséquence du théorème 8.6 :

Corollaire 8.6.1 Soient λ 1 , λ 2 ∈ et λ := 2λ 1 ω 1 + 2λ 2 ω 2 ∈ pic (C). On a : H 0 (C, L λ ) = 0 ⇔      λ 1 + 2λ 2 ≥ 0 2λ 1 + λ 2 ≥ 0 H 2 (C, L λ ) = 0 ⇔      λ 1 + 3 ≤ 0 λ 1 + λ 2 + 1 ≥ 0 ou      λ 2 + 3 ≤ 0 λ 1 + λ 2 + 1 ≥ 0 H 3 (C, L λ ) = 0 ⇔      λ 1 -1 ≥ 0 λ 1 + λ 2 + 3 ≤ 0 ou      λ 2 -1 ≥ 0 λ 1 + λ 2 + 3 ≤ 0 H 5 (C, L λ ) = 0 ⇔      λ 1 + 2λ 2 + 6 ≤ 0 2λ 1 + λ 2 + 6 ≤ 0 . (cf. la figure 8.5) Par exemple, si λ = 12ω 1 -6ω 2 , H 0 (C, L λ ) et H 0 (C, L λ ) sont non nuls. Mais, pour tout λ ∈ pic C, on a H 2 (C, L λ ) ou H 3 (C, L λ ) = 0. Annexes Calcul de [ker(H 2 C + s 1 (L λ ) : L(µ)] : Notons S 3 l'espace des matrices symétriques 3 × 3 à coefficients dans k et π : S 3 \ {0} × S 3 \ {0} → È(S 3 ) × È(S 3 ) la surjection standard. Si λ = 2λ 1 ω 1 + 2λ 2 ω 2 ∈ pic C, (λ 1 , λ 2 ∈ ), alors : L λ = O È(S 3 ) (λ 1 )2 ×O È(S 3 ) (λ 2 ) C .
Donc, pour tout ouvert V de C, L λ (V ) est l'espace des fonctions f régulières sur π -1 V telles que :

∀ s, s ′ ∈ k, ∀ Q, Q ′ ∈ S 3 , f (sQ, s ′ Q ′ ) = s λ 1 s ′λ 2 f (Q, Q ′ ) .
Nous allons introduire certaines fonctions rationnelles X i , Y i sur C. Pour cela rappelons la description de la cellule ouverte de C associée au sousgroupe à un paramètre :

ν : k * → T, z →       z 3 0 0 0 z -1 0 0 0 z -2       ; Pour tout z ∈ k * et pour tout ([Q], [Q ′ ]) ∈ C, on a : ν(z).([Q], [Q ′ ]) =             z -6 Q 1,1 z -2 Q 1,2 z -1 Q 1,3 z -2 Q 1,2 z 2 Q 2,2 z 3 Q 2,3 z -1 Q 1,3 z 3 Q 2,3 z 4 Q 3,3       ,       z 6 Q ′ 1,1 z 2 Q ′ 1,2 zQ ′ 1,3 z 2 Q ′ 1,2 z -2 Q ′ 2,2 z -3 Q ′ 2,3 zQ ′ 1,3 z -3 Q ′ 2,3 z -4 Q ′ 3,3            
.

Puisque l'on a :

z =             1 0 0 0 0 0 0 0 0       ,       0 0 0 0 0 0 0 0 1             la cellule ouverte C + 0 est définie par : C + 0 = ([Q], [Q ′ ]) ∈ C : Q 1,1 = 0, Q ′ 3,3 = 0 .
Cette cellule ouverte est isomorphe à l'espace affine 5 :

5 ≃ C 0 (x i ) 1≤i≤5 →       1 x 1 x 3 0 1 x 2 0 0 1       •             1 0 0 0 x 4 0 0 0 x 4 x 5       ,       x 4 x 5 0 0 0 x 5 0 0 0 1             .
Pour chaque 1 ≤ i ≤ 5, on définit alors X i (respectivement Y i ) comme une fonction régulière sur l'ouvert s 1 C + 0 (respectivement s 2 s 1 C + 0 ) par :

X i : s 1 •             1 x 1 x 3 0 1 x 2 0 0 1       •             1 0 0 0 x 4 0 0 0 x 4 x 5       ,       x 4 x 5 0 0 0 x 5 0 0 0 1                   → x i (respectivement : Y i : (s 2 s 1 )•             1 y 1 y 3 0 1 y 2 0 0 1       •             1 0 0 0 y 4 0 0 0 y 4 y 5       ,       y 4 y 5 0 0 0 y 5 0 0 0 1                   → y i ).
Or, comme on a :

s 1 z =             0 0 0 0 1 0 0 0 0       ,       0 0 0 0 0 0 0 0 1             s 2 s 1 z =             0 0 0 0 0 0 0 0 1       ,       0 0 0 0 1 0 0 0 0             , les cellules C + s 1 et C + s 2 s 1 sont données par : C + s 1 = ([Q], [Q ′ ]) ∈ C : Q 1,1 = Q 1,2 = Q 1,3 = 0, Q 2,2 = 0, Q ′ 3,3 = 0 C + s 2 s 1 = ([Q], [Q ′ ]) ∈ C : Q 1,1 = Q 1,2 = Q 1,3 = Q 2,2 = Q 2,3 = 0, Q 3,3 = 0, Q ′ 2,3 = Q ′ 3,3 = 0, Q ′ 2,2 = 0 .
On peut aussi vérifier que :

C + s 1 = ([Q], [Q ′ ]) ∈ s 1 C + 0 : X 1 = X 4 = 0 C + s 2 s 1 = ([Q], [Q ′ ]) ∈ s 2 s 1 C + 0 : Y 1 = Y 3 = Y 4 = 0 .
En notant, pour 1 ≤ i ≤ 5, x i := X i • π, fonction régulière sur π -1 C + 0 , et, pour 1 ≤ i, j ≤ 3, q i,j (respectivement q ′ i,j la fonction régulière sur S 3 × S 3 :

q i,j : (Q, Q ′ ) → Q i,j (respectivement q i,j : (Q, Q ′ ) → Q ′ i,j ) ,
on a :

H 2 C + s 1 (L λ ) = L λ (s 1 C + 0 ∩ (X 1 = 0) ∩ (X 4 = 0)) L λ (s 1 C + 0 ∩ (X 1 = 0)) + L λ (s 1 C + 0 ∩ (X 4 = 0)) ≃ n 2 ,n 3 ,n 5 ≥0 n 1 ,n 4 >0 k x n 2 2 x n 3 3 x n 5 5 x n 1 1 x n 4 4 q λ 1 2,2 q ′ 3,3 λ 2 .
Or, on a une réunion décroissante :

H 2 C + s 1 (L λ ) = n≥O H 2 C + s 1 (L λ ⊗ O C (-nD 2 )) .
Soient M, N ≥ 0 deux entiers tels que :

µ + ρ = s 1 (λ + ρ + 2(M + 1)α 1 -2N α 2 ) . ( 23 
)
On a alors :

H 2 C + s 1 (L λ ⊗ O C (-nD 2 )) = H 2 C + s 1 (L λ ) = kf µ si n ≤ N et H 2 C + s 1 (L λ ⊗ O C (-nD 2 )) = 0 si n > N .
On en déduit que :

f µ ∈ H 2 C + s 1 (L λ ⊗ O C (-N D 2 )) \ H 2 C + s 1 (L λ ⊗ O C (-(N + 1)D 2 )) . Comme D 2 ∩ s 1 C + 0 = s 1 C
+ 0 ∩ (X 5 = 0), cela signifie que :

f µ ∈ n 2 ,n 3 ≥0 n 5 ≥N n 1 ,n 4 >0 k
x n 2 2 x n 3 3 x n 5 5

x n 1 1 x n 4 4 q λ 1 2,2 q ′ λ 2 3,3 \ n 2 ,n 3 ≥0 n 5 ≥N+1 n 1 ,n 4 >0 k x n 2 2 x n 3 3 x n 5 5

x n 1 1 x n 4 4 q λ 1 2,2 q ′ λ 2 3,3 .

Or, les fonctions x i , 1 ≤ i ≤ 5, q 2,2 , q ′ 3,3 sont des T -vecteurs propres de poids respectifs : s 1 (-α 1 ), s 1 (-α 2 ), s 1 (-α 1α 2 ), s 1 (-2α 1 ), s 1 (-2α 2 ), s 1 (-2ω 1 ), s 1 (-2ω 2 ) .

Il s'ensuit que, pour n 1 , n 4 > 0, n 2 , n 3 ≥ 0 et n 5 ≥ N , le monôme Ainsi :

f µ ∈ M +1 n 4 =1 k x N 5
x 2(M -n 4 )+3 1

x n 4 4 .

De même, en utilisant la filtration croissante :

H 2 C + s 1 (L λ ) = ∪ m≥0 ker H 2 C + s 1 (L λ ) → H 2 C + s 1 (L λ ⊗ O C (mD 1 ))
on trouve aussi que :

f µ ∈ n 2 ,n 3 ,n 5 ≥0 n 1 >0 1≤n 4 ≤M +1
x n 2 2 x n 3 3 x n 5 5

x n 1 1 x n 4 4 q λ 1 2,2 q ′ λ 2 3,3 \ n 2 ,n 3 ,n 5 ≥0 n 1 >0 1≤n 4 ≤M

x n 2 2 x n 3 3 x n 5 5

x n 1 1 x n 4 4 q λ 1 2,2 q ′ λ 2 3,3 .

Finalement, à multiplication par un scalaire non nul près, f µ est de la forme :

f µ = x N 5
x 1 x M +1 4 q λ 1 2,2 q ′ λ 2 3,3

+ une combinaison linéaire des x N

5

x 2(M -n 4 )+3 1

x n 4 4 q λ 1 2,2 q ′ λ 2 3,3 où 1 ≤ n 4 ≤ M . On peut montrer de la même façon que si M ′ , N ′ sont les entiers ≥ 0 tels que : q λ 1 3,3 q ′ λ 2 2,2 + une combinaison linéaire des y n 2 2 y n 5 5 y n 1 1 y n 3 3 y n 4 4 q λ 1 3,3 q ′ λ 2 2,2 où les n i sont des entiers vérifiant :

µ + ρ = (s 2 s 1 )(λ + ρ + 2(M ′ + 1)α 1 -2N ′ α 2 ) ( 
n 1 > 0, n 2 ≥ 0, n 3 > 0, 0 < n 4 ≤ M ′ + 1, n 5 ≥ N ′ et n 4 ≤ M ′ ou n 5 > N ′ .
Soient µ 1 , µ 2 ≥ 0 les entiers tels que : µ = µ 1 ω 1 + µ 2 ω 2 . Remarquons que les relations ( 23) et ( 25) entraînent que

M ′ = M - µ 2 + 1 2 et N ′ = N + µ 2 + 1 2 (26)
(on sait déjà que µ 2 est impair).

Pour déterminer d 5,-3 1

(f µ ) ∈ H 3 C + s 2 s 1
(L λ ), remarquons que la restriction :

L λ → L λ s 2 s 1 C 0 induit le diagramme commutatif suivant : x 2 = y 1 y 5 + O(y 2 ) y 2 3 + y 4 y 5 + y 2 1 y 5

H 2 C + s 1 (L λ ) d 5,-3 1 / / H 3 C + s 2 s 1 (L λ ) H 2 C + s 1 ∩s 2 s 1 C 0 (L λ ) d ′
x 3 = -y 3 y 2 3 + y 4 y 5 + y 2 1 y 5

x 4 = y 4 (y 2 3 + y 4 y 5 + y 2 1 y 5 ) (y 2 3 + y 4 y 5 ) 2 + O(y 2 )

x 5 = y 5 (y 2 3 + y 4 y 5 ) + O(y 2 ) (y 2 3 + y 4 y 5 + y 2 1 y 5 ) 2 (ces relations proviennent de l'égalité « matricielle » :

s 1 •             1 x 1 x 3 0 1 x 2 0 0 1       •             1 0 0 0 x 4 0 0 0 x 4 x 5       ,      
x 4 x 0 0

0 x 5 0 0 0 1                   = (s 2 s 1 ) •             1 y 1 y 3 0 1 y 2 0 0 1       •             1 0 0 0 y 4 0 0 0 y 4 y 5       ,      
y 4 y 5 0 0 y 5 0 0 1

                 
sur s 1 C 0 ∩ s 2 s 1 C 0 ). D'un autre côté, comme on a les égalités suivantes :

C + s 1 ∩ s 2 s 1 C 0 = (s 2 s 1 C 0 ∩ s 1 C 0 ) ∩ (X 1 = X 4 = 0) = (s 2 s 1 C 0 ∩ (Y 3 = 0)) ∩ (Y 1 = Y 4 = 0) = (s 2 s 1 C 0 ∩ s 1 C 0 ) ∩ (X 4 = X 1 Y 1 = 0) ,
on a les isomorphismes suivants (de g-modules) :

H 2 C + s 1 ∩s 2 s 1 C 0 (L λ ) ≃ H 1 ((s 2 s 1 C 0 ∩ s 1 C 0 ) \ (X 1 = X 4 = 0), L λ ) ≃ H 1 ((s 2 s 1 C 0 ∩ (Y 3 = 0)) \ (Y 1 = Y 4 = 0), L λ ) ≃ H 1 ((s 2 s 1 C 0 ∩ s 1 C 0 ) \ (X 4 = X 1 Y 1 = 0), L λ ) ≃ L λ (s 2 s 1 C 0 ∩ s 1 C 0 ∩ (X 1 X 4 = 0)) L λ ((s 2 s 1 C 0 ∩ s 1 C 0 ) ∩ (X 1 = 0)) + L λ ((s 2 s 1 C 0 ∩ s 1 C 0 ) ∩ (X 4 = 0)) ≃ L λ (s 2 s 1 C 0 ∩ (Y 1 Y 3 Y 4 = 0)) L λ (s 2 s 1 C 0 ∩ (Y 1 Y 3 = 0)) + L λ (s 2 s 1 C 0 ∩ (Y 3 Y 4 = 0)) ≃ L λ (s 2 s 1 C 0 ∩ s 1 C 0 ∩ (X 1 X 4 Y 1 = 0)) L λ (s 2 s 1 C 0 ∩ s 1 C 0 ∩ (X 1 Y 1 = 0)) + L λ (s 2 s 1 C 0 ∩ s C 0 ∩ (X 4 = 0))
. 

  Le groupe P I est un sous-groupe parabolique de G contenant Q ⊇ B -et L I est son sous-groupe de Levi par rapport à T . Soit L I le quotient de L I par son centre. L'automorphisme θ de G induit un automorphisme θ I de L I et on pose H I := L I θ I . Tout cela étant posé, si X(θ I ) est la compactification magnifique de l'espace symétrique L I /L I θ I , on a X I = G × P I X(θ I ) ce qui signifie : Proposition 4.1 (cf. [DeConcini-Procesi] §5) Il existe un morphisme surjectif et G-équivariant : P I x I → P I /P I tel que π -1 I (P I /P I ) ≃ X(θ I ) comme L I -variétés. Remarque : Il résulte de cette proposition que x I est fixé par le tore T si et seulement si L I θ I contient le tore T , l'image de T dans L I .

  En effet, sinon, d'une part on aurait d'après le théorème 7.1 x p de la formex p = wz pour un certain w ∈ W tel que codim C C + w = 2 et donc x p = s 2 z (car x p = x p 0 = s 1 z). Mais d'autre part, on aurait aussi µ + ρ ∈ s 2 (λ + ρ + R 2 )ce qui est impossible d'après ( * ).

  L λ ) : L(µ)] = 0 car si la cellule C + x p 0 -r est de codimension 1, x p 0 -r ∈ F ; d'autre part, on a aussi :[E p 0 +r,3-p 0 +r r : L(µ)] ≤ [E p 0 +r,3-p 0 +r 1 : L(µ)] = [H 3 C + x p 0 +r (L λ ) : L(µ)] = 0car si x p 0 +r est de la forme x p 0 +r = wz pour un certain w ∈ W , et si la cellule correspondante C + w est de codimension 3, on a w = s 1 s 2 ou s 2 s 1 et µ + ρ ∈ w(λ + ρ + R w ) (cf. (*)).

  1 . * Cela peut arriver, e.g. : µ := ω2, λ := -14ω1 + 8ω2On sait déjà que :H 2 (C, L λ ) : L(µ)pour tout r ≥ 1. Or, comme les seuls points fixes x p ∈ CT tels quex p ∈ F et C + p soit de codimension 2 dans C sont s 1 z et s 2 z et comme µ + ρ ∈ s 2 (λ + ρ + R 2 ) (cf. (*)), on a forcément :

  de T -poids µ si et seulement si :s 1 (λ + (n 1 + 2n 4n 3 )α 1 -(2n 5 + n 2 + n 3 )α 2 ) = µ ⇔ λ + (n 1 + 2n 4n 3 )α 1 -(2n 5 + n 2 + n 3 )α 2 = s 1 µ ⇔ λ + (n 1 + 2n 4n 3 )α 1 -(2n 5 + n 2 + n 3 )α 2 = λ + (2M + 3)α 1 -2N α 2 Mn 4 ) + 3 n 5 = N, n 2 = n 3 = 0 .

  25) et si on pose y i := Y i • π, fonctions régulières sur π -1

.

  Il est plus facile de décrire le morphisme d ′ que de décrire directementd 5s 2 s 1 C 0 = (s 2 s 1 C 0 ∩ (Y 3 = 0)) ∩ (Y 2 = Y 4 = 0) donc : 2 s 1 C 0 (L λ ) ≃ H 1 (s 2 s 1 C 0 ∩ (Y 3 = 0) \ (Y 2 = Y 4 = 0), L λ ) ≃ L λ (s 2 s 1 C 0 ∩ (Y 1 Y 3 Y 4 = 0)) L λ (s 2 s 1 C 0 ∩ (Y 1 Y 3 = 0)) + L λ (s 2 s 1 C 0 ∩ (Y 3 Y 4 = 0)) et le morphisme d ′ est donné par : d ′ : H 2 C + s 1 ∩s 2 s 1 C 0 (L λ ) → H 3 C + s 2 s 1 (L λ ) ∀ n 2 , n 5 ≥ 0, n 1 , n 4 > 0, n 3 ∈ , l'image de f µ dans H 2 C + s 1 ∩s 2 s 1 C 0 (L λ ).Pour cela, on exprime les x i en fonction des y i dans le corps des fonctions rationnelles sur S 3 × S 3 † :x 1 = y 1 y 3 + O(y 2 ) y 2 3 + y 4 y 5 + O(y 2 ) † la notation « O(y2) »signifie « y2 × un polynôme en les yi »
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En utilisant ces isomorphismes, en remplaçant dans la formule (24) de f µ les x i par leur expression en les y i , et en utilisant les relations (26), on trouve que l'image de f µ dans H 2 C + s 1 ∩s 2 s 1 C 0 (L λ ) est de la forme :

3,3 q ′ λ 2 2,2 + une combinaison linéaire de

En conséquence :

a un coefficient 1 devant 0 1 0 0 1 1 00 11 0 1 0 1 0 0 1 1 0 1 0 1 0 1 0 0 1 1 00 11 0 1 0 0 1 1 0 1