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Abstract. This paper is concerned with some nonlinear propagation phenomena for
reaction-advection-diffusion equations with Kolmogrov-Petrovsky-Piskunov (KPP) type non-
linearities in general periodic domains or in infinite cylinders with oscillating boundaries.
Having a variational formula for the minimal speed of propagation involving eigenvalue
problems ( proved in Berestycki, Hamel and Nadirashvili [3]), we consider the minimal speed
of propagation as a function of diffusion factors, reaction factors and periodicity parameters.
There we study the limits, the asymptotic behaviors and the variations of the considered
functions with respect to these parameters. Section 9 deals with homogenization problem as
an application of the results in the previous sections in order to find the limit of the minimal
speed when the periodicity cell is very small.
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1 Introduction

This paper is a continuation in the study of the propagation phenomena of pulsating travel-
ling fronts in a periodic framework corresponding to reaction-advection-diffusion equations
with heterogenous KPP (Kolmogrov, Petrovsky and Piskunov) nonlinearities. We will pre-
cisely describe the heterogenous-periodic setting, recall the extended notion of pulsating

travelling fronts, and then we move to announce the main results. Let us first recall some
of the basic features of the homogenous KPP equations.

Consider the Fisher-KPP equation:

ut − ∆u = f(u) in RN . (1.1)

It was introduced in the celebrated papers of Fisher (1937) and in [19] originally motivated
by models in biology. Here, the main assumption is that f is, say, a C1 function satisfying

{

f(0) = f(1) = 0, f ′(1) < 0, f ′(0) > 0,
f > 0 in (0, 1), f < 0 in (1,+∞),

(1.2)

f(s) ≤ f ′(0)s , ∀s ∈ [0, 1]. (1.3)

As examples of such nonlinearities, we have: f(s) = s(1 − s) and f(s) = s(1 − s2).
The important feature in (1.1) is that this equation has a family of planar travelling

fronts. These are solutions of the form
{

∀(t, x) ∈ R × RN , u(t, x) = φ(x · e+ ct),
φ(−∞) = 0 and φ(+∞) = 1,

(1.4)

where e ∈ RN is a fixed vector of unit norm which is the direction of propagation, and c > 0
is the speed of the front. The function φ : R 7→ R satisfies

{

−φ′′

+ c φ = f(φ),
φ(−∞) = 0 and φ(+∞) = 1.

(1.5)

In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that, under the
above assumptions, there is a threshold value c∗ = 2

√

f ′(0) > 0 for the speed c. Namely, no
fronts exist for c < c∗, and, for each c ≥ c∗, there is a unique front of the type (1.4-1.5).
Uniqueness is up to shift in space or time variables.

2



Later, the homogenous setting was extended to a general heterogenous periodic one.
The heterogenous character appeared both in the reaction-advection-diffusion equation and
in the underlying domain. The general form of these equations is

{

ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ R, z ∈ Ω,
ν · A ∇u(t, z) = 0, t ∈ R, z ∈ ∂Ω,

(1.6)

where ν(z) is the unit outward normal on ∂Ω at the point z.
The propagation phenomena attached with equation (1.6) has been widely studied in

many papers. Several properties of pulsating fronts in periodic media and their speed of
propagation were given in several papers ( Berestycki, Hamel [2], Berestycki, Hamel, Nadi-
rashvili [3], and Berestycki, Hamel, Roques [5, 6] and Xin [36]). In section 2, we will recall
the periodic framework and some known results which motivate our study. The main results
of this paper are presented in sections 3 to 6.

2 The periodic framework

2.1 Pulsating travelling fronts in periodic domains

In this section, we introduce the general setting with the precise assumptions. Concerning
the domain, let N ≥ 1 be the space dimension, and let d be an integer so that 1 ≤ d ≤ N.
For an element z = (x1, x2, · · · , xd, xd+1, · · · , xN) ∈ RN , we call x = (x1, x2, · · · , xd) and
y = (xd+1, · · · , xN) so that z = (x, y). Let L1, · · · , Ld be d positive real numbers, and let Ω
be a C3 nonempty connected open subset of RN satisfying











∃R ≥ 0 ; ∀ (x, y) ∈ Ω, |y| ≤ R,

∀ (k1, · · · , kd) ∈ L1Z × · · · × LdZ, Ω = Ω +

d
∑

k=1

kiei,
(2.1)

where (ei)1≤i≤N is the canonical basis of RN . In particular, since d ≥ 1, the set Ω is
unbounded.
In this periodic situation, we give the following definitions:

Definition 2.1 (Periodicity cell) The set C = { (x, y) ∈ Ω; x1 ∈ (0, L1), · · · , xd ∈
(0, Ld)} is called the periodicity cell of Ω.

Definition 2.2 (L-periodic flows ) A field w : Ω → RN is said to be L-periodic with
respect to x if w(x1 + k1, · · · , xd + kd , y) = w(x1, · · · , xd, y) almost everywhere in Ω, and for

all k = (k1, · · · , kd) ∈
d
∏

i=1

LiZ.

Before going further on, we point out that this framework includes several types of simpler
geometrical configurations. The case of the whole space RN corresponds to d = N, where
L1, . . . , LN are any positive numbers. The case of the whole space RN with a periodic array
of holes can also be considered. The case d = 1 corresponds to domains which have only one
unbounded dimension, namely infinite cylinders which may be straight or have oscillating
periodic boundaries, and which may or may not have periodic holes. The case 2 ≤ d ≤ N−1
corresponds to infinite slabs.
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We are concerned with propagation phenomena for the reaction-advection-diffusion equa-
tion (1.6) set in the periodic domain Ω. Such equations arise in combustion models for flame
propagation (see [27], [31] and [37]), as well as in models in biology and for population dy-
namics of a species (see [14], [18], [20] and [28]). These equations are used in modeling the
propagation of a flame or of an epidemics in a periodic heterogenous medium. The passive
quantity u typically stands for the temperature or a concentration which diffuses in a pe-
riodic excitable medium. However, in some sections we will ignore the advection and deal
only with reaction-diffusion equations.

Let us now detail the assumptions concerning the coefficients in (1.6). First, the diffu-
sion matrix A(x, y) = (Aij(x, y))1≤i,j≤N is a symmetric C2,δ( Ω ) (with δ > 0) matrix field
satisfying



















A is L-periodic with respect to x,

∃ 0 < α1 ≤ α2, ∀(x, y) ∈ Ω, ∀ ξ ∈ RN ,

α1|ξ|2 ≤
∑

1≤i,j≤N
Aij(x, y)ξiξj ≤ α2|ξ|2.

(2.2)

The boundary condition ν ·A∇u(x, y) = 0 stands for
∑

1≤ i,j≤N
νi(x, y)Aij(x, y)∂xj

u(t, x, y), and

ν stands for the unit outward normal on ∂Ω. We note that when A is the identity matrix,
then this boundary condition reduces to the usual Neumann condition ∂νu = 0.

The underlying advection q(x, y) = (q1(x, y), · · · , qN (x, y)) is a C1,δ(Ω) (with δ > 0)
vector field satisfying























q is L− periodic with respect to x,
∇ · q = 0 in Ω ,
q · ν = 0 on ∂Ω ,

∀ 1 ≤ i ≤ d,

∫

C

qi dx dy = 0.

(2.3)

Concerning the nonlinearity, let f = f(x, y, u) be a nonnegative function defined in
Ω × [0, 1], such that



































f ≥ 0, f is L-periodic with respect to x, and of class C1, δ(Ω × [0, 1]),

∀ (x, y) ∈ Ω, f(x, y, 0) = f(x, y, 1) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1 − ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

∀ (x, y) ∈ Ω, f ′
u(x, y, 0) = lim

u→ 0+

f(x, y, u)

u
> 0,

(2.4)

with the additional assumption

∀ (x, y, s) ∈ Ω × (0, 1), 0 < f(x, y, s) ≤ f ′
u(x, y, 0) × s. (2.5)

We denote by ζ(x, y) := f ′
u(x, y, 0), for each (x, y) ∈ Ω.

The set of such nonlinearities contains two particular types of functions:

• The homogeneous (KPP) type: f(x, y, u) = g(u), where g is a C1,δ function that
satisfies:
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g(0) = g(1) = 0, g > 0 on (0, 1), g′(0) > 0, g′(1) < 0 and 0 < g(s) ≤ g′(0)s in (0, 1).

• Another type of such nonlinearities consists of functions f(x, y, u) = h(x, y).f̃(u), such
that f̃ is of the previous type, while h lies in C1,δ(Ω), L -periodic with respect to x,
and positive in Ω.

Having this periodic framework, the notions of travelling fronts and propagation were
extended, in [2], [3], [18], [26] [28], [29], and [34] as follows:

Definition 2.3 Let e = (e1, · · · , ed) be an arbitrarily given vector in Rd. A function u =
u(t, x, y) is called a pulsating travelling front propagating in the direction of e with an effective
speed c 6= 0, if u is a classical solution of











































ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

∀ k ∈
d
∏

i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, u(t− k · e
c
, x, y) = u(t, x+ k, y),

lim
x·e→−∞

u(t, x, y) = 0, and lim
x·e→+∞

u(t, x, y) = 1,

0 ≤ u ≤ 1,

(2.6)

where the above limits hold locally in t and uniformly in y and in the directions of Rd which
are orthogonal to e .

2.2 Some important known results concerning the propagation

phenomena in a periodic framework

Under the assumptions (2.1), (2.2), (2.3), (2.4) and (2.5) set in the previous subsection,
Berestycki and Hamel [2] proved that: having a pre-fixed unit vector e ∈ Rd, there exists
c∗(e) > 0 such that pulsating travelling fronts propagating in the direction e (i.e satisfying
(2.6)) with a speed of propagation c exist if and only if c ≥ c∗(e); moreover, the pulsating
fronts (within a speed c ≥ c∗(e)) are increasing in the time t. The value c∗(e) = c∗Ω,A,q,f(e) is
called the minimal speed of propagation in the direction of e. Other nonlinearities have been
considered in the cases of the whole space RN or in the general periodic framework (see [2],
[28], [29], [32], [33], [34], [35]).

Having the threshold value c∗Ω,A,q,f(e), our paper aims to study the limits, the asymptotic
behaviors, and the variations of some parametric quantities. These parametric quantities in-
volve the parametric speeds of propagation of different reaction-advection-diffusion problems
within a diffusion factor ε > 0, a reaction factor B > 0, or a periodicity parameter L. Thus,
it is important to have a variational characterization which shows the dependance of the
minimal speed of propagation on the coefficients A, q and f and on the geometry of the do-
main Ω. In this context, Berestycki, Hamel, and Nadirashvili [3] gave such a formulation for
c∗Ω,A,q,f(e) involving elliptic eigenvalue problems. We recall this variational characterization
in the following theorem:

Theorem 2.4 (Berestycki, Hamel, and Nadirashvili [3]) Let e be a fixed unit vector
in Rd. Let ẽ = (e, 0, . . . , 0) ∈ RN . Assume that Ω, A and f satisfy (2.1),(2.2), (2.4), and
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(2.5). The minimal speed c∗(e) = c∗Ω,A,q,f(e) of pulsating fronts solving (2.6) and propagating
in the direction of e is given by

c∗(e) = c∗Ω,A,q,f(e) = min
λ>0

k(λ)

λ
, (2.7)

where k(λ) = kΩ,e,A,q,ζ(λ) is the principal eigenvalue of the operator LΩ,e,A,q,ζ,λ which is de-
fined by

LΩ,e,A,q,ζ,λψ := ∇ · (A∇ψ) − 2λẽ · A∇ψ + q · ∇ψ
+[λ2ẽAẽ− λ∇ · (Aẽ) − λq · ẽ+ ζ ]ψ

(2.8)

acting on the set

E = { ψ ∈ C2(Ω), ψ is L-periodic with respect to x and ν · A∇ψ = λ(νAẽψ) on ∂Ω } .

The proof of formula (2.7) is based on methods developed in [2], [7] and [9]. These are
techniques of sub and super-solutions, regularizing and approximations in bounded domains.

We note that in formula (2.7), the value of the minimal speed c∗(e) is given in terms of the
direction e, the domain Ω, and the coefficients A, q and f

′

u(., ., 0). Moreover, it is important
to notice that the dependence of c∗(e) on the nonlinearity f is only through the derivative
of f with respect to u at u = 0.

Before going further on, let us mention that formula (2.7) extends some earlier results
about front propagation. When Ω = RN , A = Id and f = f(u) (with f(u) ≤ f

′

(0)u
in [0, 1]), formula (2.7) then reduces to the well-known KPP formula c∗(e) = 2

√

f ′(0).
That is the value of the minimal speed of propagation of planar fronts for the homogenous

reaction-diffusion equation: ut − ∆u = f(u) in RN .1

The above variational characterization of the minimal speed of propagation of pulsating
fronts in general periodic excitable media will play the main role in studying the dependence
of the minimal speed c∗(e) = c∗Ω,A,q,f(e) on the coefficients of reaction, diffusion, advection
and on the geometry of the domain. In this context, we have:

Theorem 2.5 (Berestycki, Hamel, Nadirashvili [3]) Under the assumptions (2.1), (2.2),
and (2.3) on Ω, A, and q, let f = f(x, y, u) [respectively g = g(x, y, u)] be a nonnegative
nonlinearity satisfying (2.4) and (2.5). Let e be a fixed unit vector in Rd, where 1 ≤ d ≤ N,

a) If f
′

u(x, y, 0) ≤ g
′

u(x, y, 0) for all (x, y) ∈ Ω, then

c∗Ω,A,q,f(e) ≤ c∗Ω,A,q,g(e).

Moreover if f
′

u(x, y, 0) ≤ , 6≡ g
′

u(x, y, 0) in Ω, then c∗Ω,A,q,f(e) < c∗Ω,A,q,g(e).
b) The map B 7→ c∗Ω,A,q,Bf(e) is increasing in B > 0 and

lim sup
B→+∞

c∗Ω,A,q,Bf(e)√
B

< +∞.

1In fact, the uniqueness, up to multiplication by a non-zero real number, of the first eigenvalue
function of L

RN ,e,Id,f
′(0),λψ = k(λ)ψ together with this particular situation, yield that the princi-

pal eigenfunction ψ is constant and k(λ) = λ2 + f
′

(0) for all λ > 0. Therefore by (2.7), we have

c∗(e) = min
λ>0

(

λ+
f

′

(0)

λ

)

= 2
√

f
′(0).
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Furthermore, if Ω = RN or if νAẽ ≡ 0 on ∂Ω, then lim inf
B→+∞

c∗Ω,A,q,Bf(e)√
B

> 0.

c)

c∗Ω,A,q,f(e) ≤ ||(q.ẽ)−||∞ + 2
√

max
(x,y)∈Ω

ζ(x, y)
√

max
(x,y)∈Ω

ẽA(x, y)ẽ, (2.9)

where ||(q.ẽ)−||∞ = max
(x,y)∈Ω

(q(x, y).ẽ)− and s− = max (−s, 0) for each s ∈ R. Furthermore,

the equality holds in (2.9) if and only if ẽAẽ and ζ are constant, q.ẽ ≡ ∇ . (Aẽ) ≡ 0 in Ω
and ν.Aẽ = 0 on ∂Ω (in the case when ∂Ω 6= ∅).

d) Assume furthermore that f = f(u) and q ≡ 0 in Ω, then the map β 7→ c∗Ω,βA,0,f(e) is
increasing in β > 0.

As a corollary of (2.9), we see that lim sup
M→+∞

c∗Ω,MA,q,f(e)√
M

≤ C where C is a positive

constant. Furthermore, part d) implies that a larger diffusion speeds up the propagation in
the absence of the advection field.

We mention that the existence of pulsating travelling fronts in space-time periodic media
was proved in Nolen, Xin [23, 24], Nolen, Rudd, Xin [25] and recently in Nadin [21, 22]. In
[22], Nadin characterized the minimal speed of propagation and he studied the influence of
the diffusion, the amplitude of the reaction term and the drift on the characterized speed.

After reviewing some results in the study of the KPP propagation phenomena in a pe-
riodic framework, we pass now to announce new results concerning the limiting behavior of
the minimal speed of propagation within a small (resp. large) diffusion and reaction coeffi-
cients (in some particular situations of the general periodic framework) and we will study the
minimal speed as a function of the period of the coefficients in the KPP reaction-diffusion-
advection (or reaction-diffusion) equation in the case where Ω = RN . The proofs will be
shown in details in section 8. The announced results will be applied to find the homoge-
nization limit of the minimal speeds of propagation. We believe that this limit might help
to find the homogenized equation in the “KPP” periodic framework (see section 9 for more
details).

3 The minimal speed within small diffusion factors or

within large period coefficients

In this section, our problem is a reaction-diffusion equation with absence of advection terms:

{

ut = β∇ · (A(x, y)∇u) + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,
(3.1)

where β > 0.
We mention that (3.1) is a reaction-diffusion problem within a diffusion matrix βA. Let e

be a unit direction in Rd. Under the assumptions (2.1), (2.2), (2.4) and (2.5), for each β > 0,
there corresponds a minimal speed of propagation c∗Ω,βA,0,f(e) so that a pulsating front with
a speed c and satisfying (3.1) exists if and only if c ≥ c∗Ω,βA,0,f(e).

7



Referring to part c) of Theorem 2.5, one gets 0 < c∗Ω,βA,0,f(e) ≤ 2
√

β
√

M0M, for any
β > 0, where M0 = max

(x,y)∈Ω
ζ(x, y) and M = max

(x,y)∈Ω
ẽA(x, y)ẽ .

Consequently, there exists C > 0 and independent of β such that

∀β > 0, 0 <
c∗Ω,βA,0,f(e)√

β
≤ C. (3.2)

The inequality (3.2) leads us to investigate the limits of
c∗Ω,βA,0,f(e)√

β
as β → 0 and as

β → +∞. The following theorem gives the precise limit when the diffusion factor tends
to zero. However, it will not be announced in the most general periodic setting. We will
describe the situation before the statement of the theorem:

The domain will be in the form Ω = R × ω ⊆ RN , where ω ⊆ Rd × RN−d−1 (d ≥ 0). If
d = 0, then ω is a C3 connected, open bounded subset of RN−1. While, in the case where
1 ≤ d ≤ N − 1, ω is a (L1, . . . , Ld)-periodic open domain of RN−1 which satisfies (2.1);
and hence, Ω is a (l, L1, . . . , Ld)−periodic subset of RN that satisfies (2.1) with l > 0 and
arbitrary. An element of Ω = R × ω will be represented as z = (x, y) where x ∈ R and
y ∈ ω ⊆ Rd × RN−1−d.

The nonlinearity f = f(x, y, u), in this section, is a KPP nonlinearity defined on Ω× [0, 1]
that satisfies







































f ≥ 0, and of class C1, δ(R × ω × [0, 1]),
f is (l, L1, . . . , Ld)-periodic with respect to (x, y1, . . . , yd), when d ≥ 1,

f is l-periodic in x, when d = 0,

∀ (x, y) ∈ Ω = R × ω, f(x, y, 0) = f(x, y, 1) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1 − ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

(3.3)

together with the assumptions










f ′
u(x, y, 0) depends only on y; we denote by ζ(y) = f ′

u(x, y, 0), ∀(x, y) ∈ Ω.

∀ (x, y) ∈ Ω = R × ω, f ′
u(x, y, 0) = ζ(y) > 0,

∀ (x, y, s) ∈ Ω × (0, 1), 0 < f(x, y, s) ≤ ζ(y) s.

(3.4)

Notice that f ′
u(x, y, u) is assumed to depend only on y, but f(x, y, u) may depend on x.

Lastly, concerning the diffusion matrix, A(x, y) = A(y) = (Aij(y))1≤i,j≤N is a C2,δ( Ω )
(with δ > 0) symmetric matrix field whose entries are depending only on y, and satisfying











A is (L1, . . . , Ld)-periodic with respect to (y1, . . . , yd),

∃ 0 < α1 ≤ α2, ∀ y ∈ ω, ∀ ξ ∈ RN ,

α1|ξ|2 ≤ ∑

Aij(y)ξiξj ≤ α2|ξ|2.
(3.5)

Theorem 3.1 Let e = (1, 0, . . . , 0) ∈ RN and ε > 0. Let Ω = R × ω ⊆ RN satisfy the form
described in the previous page. Under the assumptions (3.3), (3.4), and (3.5), consider the
reaction-diffusion equation

{

ut(t, x, y) = ε∇ · (A(y)∇u)(t, x, y) + f(x, y, u), for (t, x, y) ∈ R × Ω,

ν · A∇u = 0 on R × R × ∂ω.
(3.6)

8



Assume, furthermore, that A and f satisfy one of the following two alternatives:

{

∃α > 0, ∀y ∈ ω, A(y)e = αe,

f
′

u(x, y, 0) = ζ(y), for all (x, y) ∈ Ω,
(3.7)

or










f
′

u(x, y, 0) = ζ is constant,

∀y ∈ ω, A(y)e = α(y)e, where

y 7→ α(y) is a positive, (L1, . . . , Ld)−periodic function over ω.

(3.8)

Then,

lim
ε→0+

c∗Ω,εA,0,f(e)√
ε

= 2
√

max
ω

ζ
√

max
ω

eAe. (3.9)

Before going further on, we mention that the family of domains for which Theorem 3.1
holds is wide. An infinite cylinder R ×BRN−1(y0, R) (where R > 0, and BRN−1(y0, R) is the
Euclidian ball of center y0 and radius R) is an archetype of such domains. In these cylinders,
ω = BRN−1(y0, R), l is any positive real number, and d = 0. The whole space RN is another
archetype of the domain Ω where d = N − 1, ω = RN−1, and {l, L1, . . . , Ld} is any family
of positive real numbers.

Remark 3.2 In Theorem 3.1, the domain Ω = R × ω is invariant in the direction of e =
(1, 0 . . . , 0) which is parallel to Ae ( in both cases (3.7) and (3.8)). Also, the assumption
that the entries of A do not depend on x, yields that ∇.(Ae) ≡ 0 over Ω. On the other
hand, it is easy to find a diffusion matrix A and a nonlinearity f which satisfy, together, the
assumptions of Theorem 3.1 while one of eAe(y) and ζ(y) is not constant. Referring to
part c) of Theorem 2.5, one obtains:

∀ε > 0, 0 <
c∗Ω,εA,0,f(e)√

ε
� 2

√

max
y∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

However, Theorem 3.1 implies that

lim
ε→0+

c∗Ω,εA,0,f(e)√
ε

= 2
√

max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

On the other hand, if Ω = R×ω as in Theorem 3.1, A = Id and f = f(u), Theorem 2.5

yields that c∗
Ω,εId,0,f

(e) = 2
√
ε
√

f ′(0), for all ε > 0. �

In the same context, one can also find the limit when the diffusion factor goes to zero,
but in the presence of an advection field in the form of shear flows:

Theorem 3.3 Assume that e = (1, 0, · · · , 0) ∈ RN , the domain Ω = R × ω has the same
form as in Theorem 3.1, and the coefficients f and A satisfy (3.3-3.4) and (3.5) respectively.
Assume, furthermore, that for all y ∈ ω, there exists α(y) positive so that A(y)e = α(y)e
in ω. Consider, in addition, an advective shear flow q = (q

1
(y), 0, . . . , 0) (y ∈ ω) which is

9



(L1, · · · , Ld)−periodic with respect to y. Assume that ε is a positive parameter and consider
the parametric reaction-advection-diffusion problem

{

ut = ε∇ · (A(y)∇u) + q
1
(y) ∂xu(t, x, y) + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,
(3.10)

where q 6≡ 0 over R × ω and q has a zero average. Then,

lim
ε→0+

c∗Ω,εA,q,f(e) = max
y∈ω

(− q
1
(y)) = max

ω
(− q.e). (3.11)

Moreover, in the same setting together with the additional assumptions: eAe and ζ are both c

one has

lim
ε→0+

c∗
Ω,εA,

√
ε q,f

(e)
√
ε

= max
ω

(−q(y).e) + 2
√
α
√

ζ0, (3.12)

where ζ(y) = ζ0 and eA(y)e = α for all y ∈ ω.

The situation in this result is more general than that considered in part b) of Corollary 4.5
in [4]. In details, the coefficients A and f can be both non-constant. Meanwhile, in the result
of [4], the coefficients considered were assumed to satisfy the alternative (3.7).

After having the exact value of lim
ε→0+

c∗Ω,εA,0,f(e)√
ε

, we move now to investigate the limit of

the minimal speed of propagation, considered as a function of the period of the coefficients
of the reaction-diffusion equation set in the whole space RN , when the periodicity parameter
tends to +∞. By making some change in variables, we will find a link between this problem
and Theorem 3.1:

Theorem 3.4 Let e = (1, 0, . . . , 0) ∈ RN . An element z ∈ RN is represented as z = (x, y) ∈
R×RN−1. Assume that f = f(x, y, u) and A = A(y) satisfy (3.3), (3.4) and (3.5) with ω =
RN−1, d = N − 1, and l = L1 = . . . = LN−1 = 1. (That is, the domain and the coefficients
of the equation are (1, 1, . . . , 1) periodic with respect to y). Assume furthermore, that A and

f satisfy either (3.7) or (3.8). For each L > 0, and (x, y) ∈ RN , let A
L
(y) = A(

y

L
) and

f
L
(x, y, u) = f(

x

L
,
y

L
, u). Consider the reaction-diffusion problem

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ R × RN

= ∇ · (A(
y

L
)∇u)(t, x, y) + f(

x

L
,
y

L
, u), (t, x, y) ∈ R × RN ,

(3.13)

whose coefficients are (L, . . . , L) periodic with respect to (x, y) ∈ RN . Then,

lim
L→+∞

c∗
RN ,A

L
, 0, f

L

(e) = 2
√

max
y ∈RN−1

ζ(y)
√

max
y ∈RN−1

e.Ae(y). (3.14)

The above theorem gives the limit of the minimal speed of propagation in the direction
of e = (1, 0, · · · , 0) as the periodicity parameter L → +∞. The domain is the whole space
RN which is (L, · · · , L)−periodic whatever the positive number L. However, one can find

lim
L→+∞

c∗
RN ,A

L
, Lq

L
, f

L

(e) and lim
L→+∞

c∗
RN ,A

L
, q

L
, f

L

(e)

whenever q is a shear flow advection. Namely, in the same manner that Theorem 3.1 implies
Theorem 3.4, one can prove that Theorem 3.3 implies
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Theorem 3.5 Let e = (1, 0, . . . , 0) ∈ RN . Assume that f = f(x, y, u) and A = A(y) satisfy
(3.3), (3.4) and (3.5) with ω = RN−1, d = N − 1, and l = L1 = . . . = LN−1 = 1. (That
is, the domain and the coefficients of the equation are (1, 1, . . . , 1) periodic with respect to
y in RN−1). Assume, furthermore, that for all y ∈ RN−1, there exists α(y) positive so that
A(y)e = α(y)e in RN−1. Let q = (q

1
(y), 0, . . . , 0) for all y ∈ RN−1 such that q1 6≡ 0 over

RN−1, q is (1, · · · , 1)−periodic with respect to y and q1 has a zero average. Then,

lim
L→+∞

c∗
RN ,A

L
, Lq

L
, f

L

(e) = max
y∈RN−1

(− q
1
(y)) = max

y∈RN−1
(− q(y).e). (3.15)

Moreover, if eAe and ζ are both constant over RN−1, then

lim
L→+∞

c∗
RN ,A

L
, q

L
, f

L

(e) = max
y∈RN−1

(− q(y).e) + 2
√
α
√

ζ0, (3.16)

where ζ0 = ζ(y) and α = eA(y)e for all y ∈ RN−1.

In the proof of Theorem 3.3 (which implies Theorem 3.5), the assumption that the
advection q is in the form of shear flows plays an important role in reducing the elliptic
equation involved by the variational formula (8.13) below. Namely, since q = (q1(y), 0, · · · , 0)
and since e = (1, 0, · · · , 0), then the terms q(x, y) ·∇x,yψ and q(x, y) ·e (in the general elliptic
equation) become equal to q1(y)∂xψ and q1(y) respectively. As a consequence, and due the
uniqueness of the principal eigenfunction ψ up to multiplication by a constant, we are able to
choose ψ independent of x, and hence, obtain a symmetric elliptic operator (without drift)
whose principal eigenvalue was given by the variational formula (8.15) below (see section 8
for more details).

Remark 3.6 After the above explanations, we find that the techniques used to prove Theo-
rem 3.3 which implies 3.5, will no longer work in the presence a general periodic advection
field satisfying (2.3).

Concerning the influence of advection, we mention that the limit of
c∗Ω,A,Bq,f(e)

B
as

B → +∞ (in the general periodic setting) is not yet given explicitly as a function of the
direction e and the coefficients A, q and f. For more details one can see Theorem 4.1 in
[4]. However, the problem of front propagation in an infinite cylinder with an underly-
ing shear flow was widely studied in Berestycki [1], Berestycki and Nirenberg [8]. In the
case of strong advection, assume that Ω = R × ω, where ω is a bounded smooth subset of
RN−1, q = (q

1
(y), 0, · · · , 0), y ∈ ω, and f = f(u) is a (KPP) nonlinearity. It was proved,

in Heinze [16], that

lim
B→+∞

c∗Ω,A,Bq,f (e)

B
= γ, (3.17)

where

γ = sup
ψ∈D

∫

ω

q
1
(y)ψ2 dy,

D =

{

ψ ∈ H1(w),

∫

ω

|∇ψ|2 dy ≤ f
′

(0), and

∫

ω

ψ2 dy = 1

}

.
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4 The minimal speed within large diffusion factors or

within small period coefficients

After having the limit of c∗Ω,εA,0,f(e)/
√
ε as ε→ 0+, and after knowing that this limit depends

on max
y ∈w

ζ(y) and max
y ∈w

eAe(y), we investigate now the limit of c∗Ω,MA, q,f(e)/
√
M as the

diffusion factor M tends to +∞, and we try to answer this question in a situation which is
more general than that we considered in the previous section (in the case where the diffusion
factor was going to 0+). That is in the presence of an advection field and in a domain Ω which
satisfies (2.1) and which may take more forms other than those of section 3. We will find that

in the case of large diffusion, the limit will depend on −
∫

C

ζ(x, y)dx dy :=
1

|C|

∫

C

ζ(x, y)dx dy

and −
∫

C

ẽAẽ(x, y)dx dy :=
1

|C|

∫

C

ẽAẽ(x, y)dx dy, where C denotes the periodicity cell of the

domain Ω.

Theorem 4.1 Under the assumptions (2.1) for Ω, (2.3) for the advection q, (2.4) and (2.5)
for the nonlinearity f = f(x, y, u), let e be any unit direction of Rd. Assume that the diffusion
matrix A = A(x, y) satisfies (2.2) together with ∇ · Aẽ ≡ 0 over Ω, and ν · Aẽ = 0 over
∂Ω. For each M > 0 and 0 ≤ γ ≤ 1/2, consider the following reaction-advection-diffusion
equation

{

ut = M ∇ · (A(x, y)∇u) + M γ q(x, y) · ∇u + f(x, y, u), t ∈ R, (x, y) ∈ Ω,
ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then

lim
M→+∞

c∗
Ω,MA,Mγ q, f

(e)
√
M

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy,

where C is the periodicity cell of Ω.

Remarks 4.2

• The setting in Theorem 4.1 is more general than that in Theorem 3.1, where: Ω =
R × ω, ẽ = (1, 0, . . . , 0), and Aẽ = α(y)ẽ. Under the assumptions of Theorem 3.1, the
domain Ω is invariant in the direction of Aẽ, which is that of ẽ. Consequently, if ν
denotes the outward normal on ∂Ω = R× ∂ω, one gets ν ·Aẽ = α(y) ν · ẽ = 0 over ∂Ω,

while ∇ · (Aẽ) =
∂

∂x
α(y) = 0 over Ω. Moreover, in Theorem 3.1, we have only reaction

and diffusion terms. That is q ≡ 0. Therefore, considering the setting of Theorem 3.1,
and taking βA as a parametric diffusion matrix, one consequently knows the limits of
c∗

Ω,βA,0,f
(e)

√
β

as β → 0+ (Theorem 3.1) and as β → +∞ (Theorem 4.1).

• The other observation in Theorem 4.1 is that the limit does not depend on the advection
field q. This may play an important role in drawing counter examples to answer many
different questions. For example, the variation of the minimal speed of propagation
with respect to the diffusion factor and with respect to diffusion matrices which are
symmetric positive definite.
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• Another important feature, in Theorem 4.1, is that the order of M in the denominator

of the ratio
c∗
Ω,MA,Mγ q, f (e)

√
M

is equal to 1/2. It is independent of γ. Consequently,

the case where the advection is null and there is only a reaction-diffusion equation
follows, in particular, from the previous theorem. That is

lim
M→+∞

c∗
Ω,MA,0,f

(e)
√
M

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy.

• The previous point leads us to conclude that the presence of an advection with a factor

Mγ , where 0 ≤ γ ≤ 1/2, will have no more effect on the ratio
c∗
Ω,MA,Mγ q, f

(e)
√
M

as soon

as the diffusion factor M gets very large.

As far as the limit of the minimal speed of propagation within small periodic coefficients
in the reaction-diffusion equation is concerned, the following theorem, which mainly depends
on Theorem 4.1, treats this problem:

Theorem 4.3 Let Ω = RN . Assume that A = A(x, y), q = q(x, y) and f = f(x, y, u) are
(1, . . . , 1)−periodic with respect to (x, y) ∈ RN , and that they satisfy (2.2), (2.3), (2.4),and
(2.5) with L1 = . . . = LN = 1. Let e be any unit direction of RN , such that ∇ ·
Aẽ ≡ 0 over RN . For each L > 0, let A

L
(x, y) = A(

x

L
,
y

L
), q

L
(x, y) = q(

x

L
,
y

L
), and

f
L
(x, y, u) = f(

x

L
,
y

L
, u), where (x, y) ∈ RN . Consider the problem

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + q

L
· ∇u(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ R × RN ,

= ∇ · (A(
x

L
,
y

L
)∇u)(t, x, y) + q(

x

L
,
y

L
) · ∇u(t, x, y) + f(

x

L
,
y

L
, u),

(4.1)

whose coefficients are (L, . . . , L) periodic with respect to (x, y) ∈ RN . Then,

lim
L→ 0+

c∗
RN ,A

L
, q

L
, f

L

(e) = 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy,

where, in this setting, C = [0, 1] × · · · × [0, 1] ⊂ RN .

The above result gives the limit in any space dimension. It depends on the assumption
∇ · (Aẽ) ≡ 0 in RN . However, if one takes N = 1, and denotes the diffusion coefficient by
a = a(x), x ∈ R, then the previous result holds under the assumptions that a satisfies (2.2)
and da/dx ≡ 0 in R. In other words, it holds when a is a positive constant. Thus, it is be
interesting to mention that, in the one-dimensional case, the above limit was given in [13]
and [17] within a general diffusion coefficient (which may be not constant over R). In details,
assume that f = f(x, u) = (ζ(x) − u)u is a 1-periodic (KPP) nonlinearity satisfying (2.4)
with (2.5), and R ∋ x 7→ a(x) is a 1−periodic function which satisfies 0 < α1 ≤ a(x) ≤ α2,
for all x ∈ R, where α1 and α2 are two positive constants. For each L > 0, consider the
reaction-diffusion equation

∂t u(t, x) =
∂

∂ x

(

a(
x

L
)
∂ u

∂x

)

(t, x) +
[

ζ(
x

L
) − u(t, x)

]

u(t, x) for (t, x) ∈ R × R. (4.2)
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It was derived in [13] and, formally, in [17] that

lim
L→ 0+

c∗
R, a

L
, 0, f

L

(e) = 2

√

< a >
H
.

∫ 1

0

ζ(x), (4.3)

where < a >
H

denotes the harmonic mean of the map x 7→ a(x) over [0, 1].

5 The minimal speed within small or large reaction

coefficients

In this section, the parameter of the reaction-advection-diffusion problem is the coefficient
B multiplied by the nonlinearity f. In fact, it follows from Theorem 1.6 in Berestycki,
Hamel and Nadirashvili [3] (recalled via Theorem 2.5 in the present paper) that the map

B 7→ c∗Ω,A,q,Bf(e)/
√
B remains, with the assumption ν.Aẽ = 0 on ∂Ω, bounded by two positive

constants as B gets very large. Therefore, it is interesting to find the limit of c∗Ω,A,q,Bf(e)/
√
B

as B → +∞ even in some particular situations. Moreover, it is important to find the limit
of the same quantity as B → 0+. We start with the case where B → +∞ and then we move
to that where B → 0+.

Theorem 5.1 Let e = (1, 0, . . . , 0) ∈ RN and B > 0. Assume that Ω = R × ω ⊆
RN , A, and f satisfy the same assumptions of Theorem 3.1. That is, f and A satisfy (3.3),
(3.4), and (3.5), and one of the two alternatives (3.7)-(3.8). Consider the reaction-diffusion
equation

{

ut(t, x, y) = ∇ · (A(y)∇u)(t, x, y) + B f(x, y, u), for (t, x, y) ∈ R × Ω,
ν · A∇u = 0 on R × R × ∂ω.

(5.1)

Then,

lim
B→+∞

c∗Ω,A,0,Bf(e)√
B

= 2
√

max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y). (5.2)

We mention that one can find the coefficients A, and f and the domain Ω of the problem
(5.1) satisfying all the assumptions of Theorem 5.1, which are the same of Theorem 3.1,
including one of the alternatives (3.7)-(3.8) while one of ζ and eAe is not constant. Owing
to Theorem 1.10 in [3], it follows that

∀B > 0, c∗Ω,A,0,Bf(e) � 2
√
B
√

max
y∈ω

ζ(y)
√

max
y∈ω

eAe(y),

which is equivalent to saying that

c∗Ω,A,0,Bf(e)√
B

� 2
√

max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

Therefore, there are heterogeneous settings in which the result found in Theorem 5.1
does not follow trivially.

We move now to study the limit when the reaction factor B tends to 0+. However, the
situation will be more general than that in Theorem 5.1 because it will consider reaction-
advection-diffusion equations rather than considering reaction-diffusion equations only:
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Theorem 5.2 Under the assumptions (2.1) for Ω, (2.3) for the advection q, (2.4) and (2.5)
for the nonlinearity f = f(x, y, u), let e be any unit direction of Rd. Assume that the diffusion
matrix A = A(x, y) satisfies (2.2) together with ∇ ·Aẽ ≡ 0 over Ω, and ν ·Aẽ = 0 over ∂Ω.
For each B > 0 and γ ≥ 1/2, consider the following reaction-advection-diffusion equation

{

ut = ∇ · (A(x, y)∇u) + B γ q(x, y) · ∇u + B f(x, y, u), t ∈ R, (x, y) ∈ Ω,
ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then

lim
B→0+

c∗
Ω,A,Bγ q, Bf (e)

√
B

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy,

where C is the periodicity cell of Ω.

Having the above result one can mark a sample of notes:
The order of B in the denominator of the ratio c∗

Ω,A,Bγ q, Bf (e)/
√
B is independent of

γ (it is equal to 1/2). Thus, whenever the advection is null, one gets

lim
B→0+

c∗Ω,A,0,Bf(e)√
B

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy.

Therefore, one concludes that the presence of an advection with a factor Bγ, where
γ ≥ 1/2, will have no more effect on the limit of the ratio c∗

Ω,A,Bγq, Bf (e)/
√
B as the

reaction factor B gets very small.
On the other hand, it is easy to check that the assumptions in Theorem 5.2 are more

general than those in Theorem 5.1. Consequently, once we are in the more strict setting,
which is that of Theorem 5.1, we are able to know both limits of c∗Ω,A,0,Bf(e)/

√
B as B → +∞

and as B → 0+.

6 Variations of the minimal speed with respect to dif-

fusion and reaction factors and with respect to peri-

odicity parameters

After having studied the limits and the asymptotic behaviors of the of the functions ε 7→ c∗Ω,εA,0,f(e)/
√
ε,

M 7→ c∗
Ω,MA,Mγ q, f (e)/

√
M (for very largeM and for 0 ≤ γ ≤ 1/2), B 7→ c∗

Ω,A,Bγ q, Bf (e)/
√
B

(γ ≥ 1/2) and L 7→ c∗
RN ,AL, qL ,fL

(e), where L is a periodicity parameter, we move now to

investigate the variations of these functions with respect to the diffusion and reaction factors
and with respect the periodicity parameter L. The present section will be devoted to discuss
and answer these questions.

We sketch first the form of the domain. Ω ⊆ RN is assumed to be in the form R × ω
which was taken in section 3. As a review, Ω = R × ω ⊆ RN , where ω ⊆ Rd × RN−d−1

(d ≥ 0). If d = 0, the subset ω is a bounded open subset of RN−1. While, in the case where
1 ≤ d ≤ N − 1, ω is a (L1, . . . , Ld)-periodic open domain of RN−1 which satisfies (2.1);
and hence, Ω is a (l, L1, . . . , Ld)− periodic subset of RN that satisfies (2.1) with l > 0. An
element of Ω = R× ω will be represented as z = (x, y) where y ∈ ω ⊆ Rd ×RN−1−d. With a
domain of such form, we have:
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Theorem 6.1 Let e = (1, 0, . . . , 0) ∈ RN . Assume that Ω has the form R × ω which is
described above, and that the diffusion matrix A = A(y) satisfies (3.5) together with the
assumption

A(x, y)e = A(y)e = α(y)e, for all (x, y) ∈ R × ω; (6.1)

where y 7→ α(y) is a positive (L1, . . . , Ld)− periodic function defined over ω. The nonlinearity
f is assumed to satisfy (3.3) and (3.4). Moreover, one assumes that, at least, one of ẽ · Aẽ
and ζ is not constant. Besides, the advection field q (when it exists) is in the form q(x, y) =
(q

1
(y), 0, . . . , 0) where q

1
has a zero average over C, the periodicity cell of ω. For each β > 0

consider the reaction-advection-diffusion problem

{

ut = β∇ · (A(y)∇u) +
√
β q

1
(y) ∂xu + f(x, y, u), t ∈ R, (x, y) ∈ R × ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then the map β 7→
c∗
Ω,βA,

√
β q,f

(e)
√
β

is decreasing in β > 0, and by Theorem 4.1, one has

lim
β→+∞

c∗
Ω,βA,

√
β q,f

(e)
√
β

= 2

√

−
∫

C

ẽAẽ(y)dy

√

−
∫

C

ζ(y)dy,

where C is the periodicity cell of ω.

Remark 6.2 In the same setting of Theorem 6.1 but with no advection, that is q
1
≡ 0, we

still have β 7→
c∗Ω,βA,0,f(e)√

β
as a decreasing map in β > 0. Moreover, if one of the alternatives

(3.7)-(3.8) holds and there is no advection, Theorem 3.1 yields that

lim
β→0+

c∗Ω,βA,0,f(e)√
β

= 2
√

max
y∈ω

ẽAẽ(y)
√

max
y∈ω

ζ(y).

The preceding result yields another one concerned in the variation of the minimal speeds
with respect to the periodicity parameter L. In the following, the domain will be the whole
space RN . We choose the diffusion matrix A(x, y) = A(y), the shear flow q and reaction
term f to be (1, . . . , 1)-periodic and to satisfy some restrictions. For each L > 0, we assign

the diffusion matrix AL(x, y) = A(
x

L
,
y

L
), the advection field q

L
(x, y) = q(

x

L
,
y

L
) and the

nonlinearity fL = f(
x

L
,
y

L
, u) and we are going to study the variation, with respect to the

periodicity parameter L, of the minimal speed c∗
RN ,AL,qL ,fL

(e), which corresponds to the

reaction-advection-diffusion equation within the (L, · · · , L)−periodic coefficients A
L
, q

L
and

f
L

:

Theorem 6.3 Let e = (1, 0, . . . , 0) ∈ RN . An element z ∈ RN is represented as z =
(x, y) ∈ R × RN−1. Assume that A(x, y) = A(y) (for all (x, y) ∈ RN ) and f(x, y, u) sat-
isfy ( (3.3), (3.4) and 3.5) with ω = RN−1, d = N − 1, and l = L1 = . . . = LN−1 = 1.
Assume furthermore, that for all y ∈ RN−1, A(x, y)e = A(y)e = α(y)e, where y 7→ α(y)
is a positive (1, . . . , 1)-periodic function defined over RN−1 and that, at least, one of ẽ · Aẽ
and ζ is not constant. Let q be an advection field satisfying (2.3) and having the form
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q(x, y) = (q
1
(y), 0 . . . , 0) for each (x, y) ∈ RN . Consider the reaction-advection-diffusion

problem,

∀ (t, x, y) ∈ R × RN ,

ut(t, x, y) = ∇ · (A
L
(y)∇u)(t, x, y) + (q

1
)

L
(y)∂xu(t, x, y) + f

L
(x, y, u),

(6.2)

whose coefficients are (L, . . . , L)−periodic with respect to (x, y) ∈ RN .
Then, the map L 7→ c∗

RN ,A
L
, q

L
,f

L
(e) is increasing in L > 0.

Remark 6.4 The assumptions of Theorem 6.3 can not be fulfilled whenever N = 1. How-
ever, assuming that N = 1 and that the function

ζ

< ζ >A

+
< a >H

a

is not identically equal to 2 (where a(x) is the diffusion factor, < a >H and < ζ >A are,
respectively, the harmonic mean of x 7→ a(x) and arithmetic mean of x 7→ ζ(x) over [0, 1]),
it was proved, in [13], that L 7→ c∗

RN ,a
L
, q

L
,f

L
(e) is increasing in L when L is close to 0. In

particular, if a is constant and ζ is not constant, or if µ is constant and a is not constant,
then L 7→ c∗

RN ,a
L
, q

L
,f

L

(e) is increasing when L is close to 0.

Concerning now the variation with respect to the reaction factor B, we have the following:

Theorem 6.5 Assume that Ω = R × ω and the coefficients A, q and f satisfy the same
assumptions of Theorem 6.1. Let e = (1, 0 . . . , 0) and for each B > 0, consider the reaction-
advection-diffusion problem

{

ut = ∇ · (A(y)∇u) +
√
B q

1
(y) ∂xu + Bf(x, y, u), t ∈ R, (x, y) ∈ R × ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then, the map B 7→
c∗
Ω,A,

√
B q,Bf

(e)
√
B

is increasing in B > 0.

As a first note, we mention that Theorem 6.5 holds also in the case where there is no
advection. On the other hand, Berestycki, Hamel and Nadirashvili [3] proved that the map
B 7→ c∗Ω,A, q,Bf(e) is increasing in B > 0 under the assumptions (2.1), (2.2), (2.3), (2.4), and
(2.5) which are less strict than the assumptions considered in our present theorem. However,

the present theorem is concerned in the variation of the map B 7→
c∗
Ω,A,

√
B q,Bf

(e)
√
B

rather than

that of B 7→ c∗Ω,A, q,Bf (e).

Remark 6.6 Owing to the same justifications given after Theorem 3.5, one concludes the
importance of taking, in section 6, an advection in the form of shear flows. To study the
variations of the minimal speeds as in Theorems 6.1, 6.3 and 6.5, but in a more general
framework (general advection fields, general diffusion, etc...), formula 2.7 remains an im-
portant tool. However, we will no longer have variational formulations as (8.65) below.
These problems remains open in the general periodic framework.
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7 The minimal speed as a function of the positive def-

inite diffusion matrix, Counter examples

We studied the variation of the function β 7→
c∗
Ω,βA,

√
β q,f

(e)
√
β

in the case where Ω = R×ω, q
is a shear flow of the form q(x, y) = (q1(y), 0, . . . , 0) on Ω, while A and f satisfy (3.5), (6.1),

(3.3) and (3.4). We obtained that the map β 7→
c∗
Ω,βA,

√
β q,f

(e)
√
β

is decreasing with respect to

β > 0 in both cases: q1 6≡ 0 or q1 ≡ 0 over ω.
On the other hand, Berestycki, Hamel, and Nadirashvili [3] proved ( in part 2 of Theorem

1.10) that: having any periodic domain Ω ⊆ RN satisfying (2.1), q ≡ 0 and f = f(u), then
the map β 7→ c∗Ω,βA,0,f(e) is increasing in β > 0.

Having the two preceding results, there arise naturally the following two questions:

• First: Do we still have the increasing behavior of the minimal speed with respect to
the diffusion factor β in the presence of an advection, even if the nonlinearity is
homogenous?

• Second: Owing to Theorem 2.4 (Theorem 1.1 in [3]), the map D : A 7→ c∗Ω,A,q,f(e),
where A describes the ordered family of positive definite matrices satisfying (2.2)(we
say that A = A(x, y) ≤ B = B(x, y) if and only if for each (x, y) ∈ Ω and for each
z ∈ RN , we have zA(x, y)z ≤ zB(x, y)z. Also, we say that A < B if and only if
for each (x, y) ∈ Ω and for each z ∈ RN , we have zA(x, y)z < zB(x, y)z.) is well
defined (provided that Ω, q and f satisfy (2.1), (2.3), (2.4) and (2.5)). We investigate
the variation of the minimal speed of propagation with respect to that of the matrix
of diffusion. More precisely, if A = A(x, y) and B = B(x, y) are two positive definite
matrices satisfying (2.2) and if A < B, do we still have c∗Ω,A,q,f(e) < c∗Ω,B,q,f(e)?

In fact and as it was mentioned above, we have: β 7→ c∗Ω,βA,0,f(e) is increasing in
β > 0. In other words, the map D restricted to the sub-family PDA = {β A, β > 0} which
is generated by a prefixed matrix A is increasing. So the question becomes now: Does the
previous conclusion remain true over the sub-family PDA in the presence of an advection ?

The answer of the two preceding questions is negative in general. First, we prove that
the answer to the second question is negative in general for matrices A and B such that
A ≤ B. We then prove, in section 7.2 that, actually, the answer is negative, in general, even
when the diffusion matrices A and B are proportional.

7.1 A counter example devoted to answer the second question

Notation 7.1 For each real number b, let Ab denote the N ×N matrix having the form

Ab =

















1 0 . . . . . . 0

0 b
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 . . . . . . 0 b

















.
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Proposition 7.2 Let e = (1, 0, . . . , 0) ∈ RN , Ω = R × ω ⊆ RN , where ω may or may not
be bounded, and let q = (q

1
(y), 0, . . . , 0) be a shear flow with a zero average where q

1
6≡ 0 on

ω. Assume that the nonlinearity f depend only on y. For each ε > 0, consider the reaction-
diffusion-advection problem










ut(t, x, y) = ∂x xu+ b∆yu+ q
1
(y)∂xu(t, x, y) + f(y, u) in R × Ω,

= ∇ · (Ab∇u) + q
1
(y)∂xu + f(y, u),

ν
Ω
(x, y) · Ab∇x,yu(t, x, y) = νω(y) · ∇yu(t, x, y) = 0 for (t, x, y) ∈ R × R × ∂ω,

(7.1)

where νω(y) denotes the outward unit normal on ∂ω at the point y ∈ ∂ω ( ν
Ω
(x, y) = (0, νω(y))

is the outward unit normal on ∂Ω at the point (x, y)) and Ab is the matrix introduced in
Notation 7.1. Then,

•

lim
b→+∞

c∗
Ω,Ab, q, f

(e) = 2

√

−
∫

C

ζ(y)dy,

where C is the periodicity cell of ω.

• Moreover, if ζ is constant over ω (say ζ ≡ ζ0), then

lim
b→0+

c∗
Ω,Ab, q, f

(e) = max
ω

(−q
1
(y)) + 2

√

ζ0.

• In particular, if f = f(u), then

lim
b→+∞

c∗
Ω,Ab, q, f

(e) = 2
√

f ′(0) and

lim
b→0+

c∗
Ω,Ab, q, f

(e) = max
ω

(−q
1
(y)) + 2

√

f ′(0).

Proof. Consider the following change of variables:

∀ (t, x, y) ∈ R × R × ω, v(t, x, y) = u(t,
x√
b
, y).

One then has: ∀(t, x, y) ∈ R × R × ω,

vt(t, x, y) = ut(t,
x√
b
, y), ∂xv(t, x, y) =

1√
b
∂x u(t,

x√
b
, y)

∂xxv(t, x, y) =
1

b
∂x xu(t,

x√
b
, y) and ∆y v(t, x, y) = ∆y u(t,

x√
b
, y).

Owing to the invariance of Ω in the x−direction, we have the boundary condition:
∀ (t, x, y) ∈ R × ∂Ω, ν

Ω
(x, y) · ∇x,yv(t, x, y) = 0. Consequently, the problem (7.1) is equiv-

alent to the problem























∀(t, x, y) ∈ R × R × ω

vt(t, x, y) = b ∂x x v + b∆yv +
√
b q1(y)∂xv(t, x, y) + f(y, v),

= b∆x,yv +
√
b q1(y)∂xv + f(y, v) in R × R × ω,

ν
Ω
(x, y) · ∇x,yv(t, x, y) = 0 for (t, x, y) ∈ R × R × ∂ω.

(7.2)
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Let α∗
Ω, b Id,

√
b q, f

(e) denote the minimal speed of propagation corresponding to prob-

lem (7.2). Referring to Theorem 4.1, and choosing γ = 1/2, one gets

lim
b→+∞

α∗
Ω, b Id,

√
b q, f

(e)

√
b

= 2

√

−
∫

C

ζ(y)dy. (7.3)

On the other hand, α∗
Ω, b Id,

√
b q, f

(e) =
√
b c∗

Ω,Ab, q, f
(e). Together with (7.3), we

obtain that lim
b→+∞

c∗
Ω,Ab, q, f

(e) = 2

√

−
∫

C

ζ(y)dy.

For the limit as b→ 0+, it follows from (3.12) in Theorem 3.3 that

lim
b→0+

c∗
Ω,Ab, q, f

(e) = lim
b→0+

α∗
Ω, b Id,

√
b q, f

(e)

√
b

= max
ω

(−q
1
(y)) + 2

√

ζ0

whenever ζ ≡ ζ0 (ζ0 is a positive constant).
In particular, if f = f(u) is a homogenous KPP nonlinearity, then ζ(y) = ζ0 = f ′(0) for

all y ∈ ω. �

Conclusion: Let e = (1, 0, . . . , 0) and Ω = R × ω. Choose f = f(u), and q =

(q
1
(y), 0, · · · , 0) with

∫

C

q
1
(y)dy = 0, and so that there exists δ > 0 satisfying

2
√

f ′(0) + δ < max
y∈ω

(−q
1
(y)) + 2

√

f ′(0) − δ.

It follows, from Propositions (7.2), that there exist ε0 > 0 and M0 > 0 such that:

∀ 0 < ε ≤ ε0, c∗
Ω,Aε, q, f

(e) > max
y∈ω

(−q
1
(y)) + 2

√

f ′(0) − δ and

∀M ≥M0 > 0, c∗
Ω,AM , q, f

(e) < 2
√

f ′(0) + δ.

Consequently, choosing ε small enough and M large enough, it follows that AM ≥ Aε in
the sense of the order relation on positive definite matrices; however,

c∗
Ω,AM , q, f

(e) < c∗
Ω,Aε, q, f

(e).

Therefore the answer of the second question is negative, in general, even when the non
linearity f is homogenous.

7.2 A counter example devoted to answer the first question

In this subsection, we will show an example of a reaction-advection-diffusion problem whose
diffusion matrix varies in the sub-family of positive definite matrices PDId = {β Id, β > 0},
where Id stands for the N ×N identity matrix. In this example, we will apply an advection
field which will destruct, even if the nonlinearity f is homogenous, the increasing behavior
of the minimal speed with respect to β > 0 (part (d) of Theorem 2.5).
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The counter example

Let e = (1, 0, . . . , 0) ∈ RN , Ω = R × ω ⊆ RN , where ω may or may not be bounded, and
let q = (q

1
(y), 0, . . . , 0) be a shear flow with a zero average where q

1
6≡ 0 on ω. Assume that

the nonlinearity f = f(u) is a homogenous “KPP” nonlinearity so that

0 < 2
√

f ′(0) + δ < max
y∈ω

(−q
1
(y)) − δ, (7.4)

for some δ > 0.
Step 1. Using Theorem 4.1, with γ = 1/2, we have

lim
M→+∞

c∗
Ω,M Id,

√
M q, f

(e)

√
M

= 2
√

f ′(0).

Thus, there exists M0 := M0(δ) > 0 such that

∀M ≥M0(δ), 0 < c∗
Ω,M Id,

√
M q, f

(e) <
√
M
(

2
√

f ′(0) + δ
)

Step 2. We fix M1 ≥ max(1,M0(δ)). Then,

0 < c∗
Ω,M1 Id,

√

M1 q, f
(e) <

√

M1

(

2
√

f ′(0) + δ
)

. (7.5)

Step 3. For the fixed number M1, we also have
√
M1 q in the form of shear flows. Theorem

3.3 yields that

lim
ε→0+

c∗
Ω, ε Id,

√

M1 q, f
(e) = max

y∈ω
(−
√

M1 q1(y)) =
√

M1 max
y∈ω

(−q1(y)).

Consequently, there exists ε0 = ε0(δ) > 0 such that

∀ ε ≤ ε0, c∗
Ω, ε Id,

√

M1 q, f
(e) >

√

M1

[

max
y∈ω

(−q1(y)) − δ

]

> 0. (7.6)

Step 4. Choosing 0 < ε1 ≪ min(1, ε0), and owing to (7.4), (7.5) and (7.6), one then gets

c∗
Ω, ε1 Id,

√

M1 q, f
(e) > c∗

Ω,M1 Id,
√

M1 q, f
(e),

with 0 < ε1 < M1.
This shows that the result of part 4 in Theorem 2.5 is no longer valid in the presence of

an advection field, even if one chooses the nonlinearity f as f = f(u).

Remark 7.3 To meet with the motivation done in the beginning of section 7, we mention
that there appears two important features in the two counter examples which were announced
in this section. In the counter example of subsection 7.1, the two matrices A = AM and
B = Aε, with M (resp. ε) chosen sufficiently large (resp. sufficiently small), satisfy the
properties A ≥ B and c∗Ω,A,q,f(e) < c∗Ω,B,q,f(e); however, they are not proportional (that is:
there exists no real number α such that A = αB). Meanwhile, in the counter example of
subsection 7.2, the matrices A = Id and B = ε Id (ε sufficiently small) are proportional and,
in addition, they satisfy: A > B and c∗Ω,A,q,f(e) < c∗Ω,B,q,f(e).

21



8 Proofs of the announced results

In this section, we are going to demonstrate the Theorems announced in sections 3, 4, 5,
and 6. We will proceed in 4 subsections, each devoted to proving the results announced in
a corresponding section.

8.1 Proofs of Theorems 3.1, 3.3 and 3.4

Proof of Theorem 3.1. Under the assumptions of Theorem 3.1, we can apply the varia-
tional formula (2.7) of the minimal speed. Consequently,

c∗Ω,εA,0,f(e) = min
λ> 0

k
Ω,e, εA, 0, ζ(λ)

λ
, (8.1)

where kΩ,e,εA,0,ζ(λ) is the first eigenvalue (for each λ, ε > 0) of the eigenvalue problem

{

L
Ω,e, εA, 0, ζ, λ ψ = k

Ω,e, εA, 0, ζ(λ) ψ(x, y) over R × ω;

ν · A∇ψ = 0 on R × ∂ω,
(8.2)

and

L
Ω,e, εA, 0, ζ, λψ(x, y) = ε∇ · (A(y)∇ψ(x, y)) − 2 ε λAe · ∇ψ(x, y) +

[

ε λ2eA(y)e − λ ε∇ · (A(y)e) + ζ(y)
]

ψ(x, y),

for all (x, y) ∈ R × ω.
Initially, the boundary condition in (8.2) is ν · A∇ψ = λ ν ·Ae on ∂Ω = R × ∂ω; where

ν(x, y) is the unit outward normal at (x, y) ∈ ∂Ω. However, Ω = R × ω is invariant in
the direction of e which is that of Ae in both alternatives (3.7) and (3.8). Consequently,
ν ·Ae ≡ 0 on ∂Ω.

We recall that for all λ > 0, and for all ε > 0, we have k
Ω,e, εA, 0, ζ(λ) > 0. Also, the

first eigenfunction of (8.2) is positive over Ω = R × ω, and it is unique up to multiplication
by a non zero constant.

In our present setting, whether in (3.7) or (3.8) and due to the assumption (3.4), one
concludes that the coefficients in L

Ω,e, εA, 0, ζ, λ are independent of x. Moreover, in both

alternatives (3.7) and (3.8), the direction of Ae is the same of e = (1, 0, · · · , 0). On the
other hand, since Ω = R × ω, then for each (x, y) ∈ ∂Ω, we have ν(x, y) = (0; νω(y)), where
νω(y) is the outward unit normal on ∂ω at y. Consequently, the first eigenfunction of (8.2)
is independent of x and the eigenvalue problem (8.2) is reduced to







L
Ω,e, εA, 0, ζ, λφ : = ε∇ · (A(y)∇φ(y)) + [ε λ2eA(y)e + ζ(y)]φ(y)

= k
Ω,e, εA, 0, ζ(λ)φ over ω;

ν(x, y) · A(y)∇φ(y) = (0; νω(y)) ·A(y)∇φ(y) = 0 on R × ∂ω,

(8.3)

where φ = φ(y) is positive over ω, L−periodic (since the domain ω and the coefficients of
L

Ω,e, εA, 0, ζ, λ are L−periodic), unique up to multiplication by a constant, and belongs to

C 2(ω).
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In the case where d ≥ 1, let C ⊆ RN−1 denote the periodicity cell of ω. Otherwise, d = 0
and one takes C = ω. In both cases, C is bounded. Multiplying the first line of (8.3) by φ,
and integrating by parts over C, one gets

− k
Ω,e, εA, 0, ζ(λ) =

ε

∫

C

∇φ · A(y)∇φ dy −
∫

C

[

ελ2eA(y)e + ζ(y)
]

φ2(y) dy
∫

C

φ2(y) dy
. (8.4)

One also notes that, in this present setting, the operator LΩ,e, εA,0,ζ,λ is self-adjoint and its
coefficients are (L1, . . . , Ld)−periodic with respect (y1, . . . , yd). Consequently, − k

Ω,e, εA, 0, ζ(λ)

has the following variational characterization:

− k
Ω,e, εA, 0, ζ(λ) = min

ϕ∈H1(C)\{0}

ε

∫

C

∇ϕ ·A(y)∇ϕdy −
∫

C

[

ελ2eA(y)e + ζ(y)
]

ϕ2(y) dy
∫

C

ϕ2(y) dy
.

(8.5)
In what follows, we will assume that (3.7) is the alternative that holds. That is, eAe = α

is constant. The proof can be imitated easily whenever we assume that (3.8) holds.
The function y 7→ ζ(y) is continuous and (L1, . . . , Ld)−periodic over ω, whose periodicity

cell C is a bounded subset of RN−1 (whether d = 0 or d ≥ 1). Let y0 ∈ C ⊆ ω such that
max
y∈w

ζ(y) = ζ(y0) (trivially, this also holds when ζ is constant). Consequently, we have

∀ ϕ ∈ H1(C) \ {0},
ε

∫

C

∇ϕ · A∇ϕ−
∫

C

(εαλ2 + ζ(y))ϕ2

∫

C

ϕ2(y) dy

≥ −
[

εαλ2 + ζ(y0)
]

.

This yields that

∀ ε > 0, ∀λ > 0, − k
Ω,e, εA, 0, ζ(λ) ≥ −

[

εαλ2 + ζ(y0)
]

. (8.6)

Consequently,

∀ ε > 0, ∀λ > 0,
k

Ω,e, εA, 0, ζ(λ)

λ
≤ λαε +

ζ(y0)

λ
. (8.7)

However, the function λ 7→ λαε +
ζ(y0)

λ
attains its minimum, over R+, at λ(ε) =

√

ζ(y0)

αε
. This minimum is equal to 2

√

ζ(y0) ×
√
α ε. From (8.7), we conclude that

k
Ω,e, εA, 0, ζ(λ(ε))

λ(ε)
≤ 2

√
αε
√

ζ(y0).

Finally, (2.7) implies that c∗Ω,εA,0,f(e) = min
λ> 0

k
Ω,e, εA, 0, ζ(λ)

λ
≤ 2

√
α ε
√

ζ(y0), or equiv-

alently

∀ε > 0,
c∗Ω,εA,0,f(e)√

ε
≤ 2

√
α
√

ζ(y0). (8.8)
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We pass now to prove the other sense of the inequality for lim inf
ε→0+

c∗Ω,εA,0,f(e)√
ε

. We will

consider formula (8.5), and then organize a suitable function ψ which leads us to a lower

bound of lim inf
ε→0+

c∗Ω,εA,0,f(e)√
ε

.

We have ζ(y0) > 0. Let δ be such that 0 < δ < ζ(y0). Thus 0 < ζ(y0) − δ < max
ω

ζ(y).

The continuity of ζ, over C ⊆ ω, yields that there exists an open and bounded set U ⊂ C
such that

∀ y ∈ U, ζ(y0) − δ ≤ ζ(y). (8.9)

Designate by ψ, a function in D(C) (a C∞(C) function whose support is compact), with

suppψ ⊆ U, and

∫

U

ψ2 = 1. One will have,

∀λ > 0, ∀ ε > 0,

− k
Ω,e, εA, 0, ζ(λ) ≤ ε

∫

U

∇ψ · A(y)∇ψ dy −
∫

U

[

ελ2eA(y)e + ζ(y)
]

ψ2(y) dy

≤ ε

∫

U

∇ψ · A(y)∇ψ dy −
[

ελ2α + ζ(y0) − δ
]

∫

U

ψ2(y) dy

≤ ε

∫

U

α2|∇ψ|2 −
[

ελ2α + ζ(y0) − δ
]

, by (3.5),

or equivalently
k

Ω,e, εA, 0, ζ(λ)

λ
≥ λαε +

1

λ
β(ε), (8.10)

where β(ε) = ζ(y0)− δ− ε

∫

U

α2|∇ψ|2. Choosing 0 < ε <
ζ(y0) − δ

α2

∫

U

|∇ψ|2
(this is possible), we

get β(ε) > 0.

The map λ 7→ λαε +
1

λ
β(ε) attains its minimum, over R+, at λ(ε) =

√

β(ε)

εα
. This

minimum is equal to 2
√
ε α
√

β(ε).
Now, referring to formula (8.10), one gets

For ε small enough,
k

Ω,e, εA, 0, ζ(λ)

λ
≥ 2

√
εα
√

β(ε) for all λ > 0.

Together with (2.7), we conclude that

for ε small enough,
c∗Ω,εA,0,f(e)√

ε
≥ 2

√

β(ε)
√
α. (8.11)

Consequently,

lim inf
ε→0+

c∗Ω,εA,0,f(e)√
ε

≥ lim inf
ε→0+

2
√

β(ε)
√
α

= 2
√

ζ(y0) − δ
√
α (since ψ is independent of ε),
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and this holds for all 0 < δ < ζ(y0). Therefore, one can conclude that

lim inf
ε→0+

c∗Ω,εA,0,f(e)√
ε

≥ 2
√
α
√

ζ(y0). (8.12)

Finally, the inequalities (8.8) and (8.12) imply that lim
ε→0+

c∗Ω,εA,0,f(e)√
ε

exists, and it is equal

to
2
√
α
√

ζ(y0) = 2
√

max
ω

eA(y)e
√

max
ω

ζ(y).

We note that the same ideas of this proof can be easily applied in the case where the
assumption (3.8) holds. In (3.8), we have ζ is constant; however, eAe is not in general.
Meanwhile the converse is true in the case (3.7). The little difference is that, in the case
of (3.8), we choose the subset U (of the proof done above) around the point y0 where eAe
attains its maximum and then we continue by the same way used above. �

Proof of Theorem 3.3. We have

c∗Ω,εA,q,f(e) = min
λ> 0

k
Ω,e, εA, q, ζ(λ)

λ
, (8.13)

where (due to the facts that q is a shear flow, e = (1, 0, · · · , 0) and e is an eigenvector of the
matrix A(y) for all y ∈ ω) k

Ω,e, εA, q, ζ (λ) is the principal eigenvalue of the problem

{

LΩ,e, εA, q,ζ,λψ(x, y) = kΩ,e, εA, q,ζ(λ)ψ(x, y) over R × ω;

ν · A∇ψ = 0 on R × ∂ω,

with
LΩ,e,εA, q,ζ,λ ψ = ε∇ · (A(y)∇ψ) − 2ελ α(y) ∂xψ + q

1
(y)∂xψ

+ [ε λ2eA(y)e − λq
1
(y) + ζ(y)]ψ over R × ω.

(8.14)

The uniqueness of the principal eigenfunction ψ up to multiplication by a constant,
yields that one can choose ψ independent of x. Hence, the elliptic operator LΩ,e,εA, q,ζ,λ can
be reduced to the symmetric operator

LΩ,e,εA, q,ζ,λψ = ε∇ · (A(y)∇ψ) +
[

ε λ2eA(y)e − λq
1
(y) + ζ(y)

]

ψ.

Consequently,

∀λ > 0, ∀ε > 0, −kΩ,e, εA, q,ζ(λ) =

min
ϕ∈H1(C)\{0}

ε

∫

C

∇ϕ · A(y)∇ϕdy + λ

∫

C

q
1
(y)ϕ2 −

∫

C

[

λ2εeA(y)e + ζ(y)
]

ϕ2(y) dy
∫

C

ϕ2(y) dy

.

(8.15)
Formula (8.15) yields that

∀λ > 0, ∀ε > 0, −kΩ,e, εA, q,ζ(λ) ≥ −λmax
y∈ω

(−q1(y)) − λ2εmax
y∈ω

eA(y)e− max
y∈ω

ζ(y),
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or equivalently

∀λ > 0, ∀ε > 0,
kΩ,e, εA, q,ζ(λ)

λ
≤ max

y∈ω
(−q1(y)) + λεmax

y∈ω
eA(y)e+

max
y∈ω

ζ(y)

λ
.

Putting λ = λ(ε) =

√

maxy∈ω ζ(y)

εmaxy∈ωe·A(y)e

> 0 into the last inequality yields that

min
λ> 0

k
Ω,e, εA, q, ζ (λ)

λ
≤ max

y∈ω
(−q1(y)) + 2

√
ε
√

max
y∈ω

e ·A(y)e
√

max
y∈ω

ζ(y),

and hence,
lim sup
ε→0+

c∗Ω,εA,q,f(e) ≤ max
y∈ω

(−q1(y)) . (8.16)

Now, we take y0 ∈ C (C is the periodicity cell of ω) such that maxy∈ω (−q1(y)) =
−q1(y0) > 0 (since q is periodic with respect to y, q1 6≡ 0 and q1 has a zero average) and we
take δ > 0 such −q1(y0) − δ > 0. It follows, from the continuity of q1, that there exists an
open subset U ⊂ C such that y0 ∈ U and

∀y ∈ U, −q1(y) ≥ max
y∈ω

(−q1(y)) − δ.

Let ψ be a function in D(C) with suppψ ⊆ U, and

∫

U

ψ2 = 1. Referring to (8.15), it

follows that

∀λ > 0, ∀ε > 0,
k

Ω,e, εA, q, ζ (λ)

λ
≥ −q1(y0) − δ + λεmin

y∈ω
e ·Ae +

1

λ
β(ε), (8.17)

where β(ε) = min
y∈ω

ζ(y)− ε

∫

U

α2|∇ψ|2 > 0 for a small enough ε > 0 (α2 > 0 is the constant

appearing in (3.5)).
It follows from (8.17) that

∀λ > 0, ∀ε > 0,
k

Ω,e, εA, q, ζ (λ)

λ
≥ −q1(y0) − δ + 2

√
ε
√

min
y∈ω

e · Ae
√

β(ε).

Together with (8.13), and since δ > 0 is arbitrary, one gets

lim inf
ε→0+

c∗Ω,εA,q,f(e) ≥ −q1(y0) = max
y∈ω

(−q1(y)). (8.18)

Finally, (8.16) and (8.18) complete the proof of (3.11).

Similarly, one can use the above technics to prove (3.12). However, we will do the proof
for the sake of completeness. First, one can easily check that

∀λ > 0, ∀ε > 0,
kΩ,e, εA,

√
ε q,ζ(λ)

λ
√
ε

≤ max
y∈ω

(−q1(y)) + λ
√
εmax
y∈ω

eA(y)e+
max
y∈ω

ζ(y)

λ
√
ε

.
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Putting λ =

√

maxy∈ω ζ(y)

maxy∈ωe·A(y)e

> 0 into the last inequality yields that

min
λ> 0

k
Ω,e, εA, q, ζ(λ)

λ
√
ε

≤ max
y∈ω

(−q1(y)) + 2
√

max
y∈ω

e · A(y)e
√

max
y∈ω

ζ(y).

Having eAe and ζ as constants, one then gets

lim sup
ε→0+

c∗
Ω,εA,

√
ε q,f

(e)
√
ε

≤ max
y∈ω

(−q1(y)) + 2
√
α
√

ζ0. (8.19)

On the other hand, we take y0 ∈ C so that −q1(y0) = maxω(−q1(y)). Also we take any
positive number δ so that 0 < δ1 < −q1(y0). It follows, from the continuity of q1 with respect
to y, that there exist three subsets U ∋ y0 of C such that

−q1(y) ≥ (−q1(y0)) − δ > 0 for all y ∈ U.

Let ψ be a function in D(C) so that

∫

C

ψ2 = 1 and ψ ≡ 0 on C \ U. For each ε > 0, we

have

c∗Ω,εA,√ε q,f(e) = min
λ>0

k
Ω,e, εA,

√
ε q, ζ

(λ)

λ
,

where (owing to the same above justifications)

∀λ > 0, ∀ε > 0, −kΩ,e, εA,
√
ε q,ζ(λ) =

min
ϕ∈H1(C)\{0}

ε

∫

C

∇ϕ · A(y)∇ϕdy + λ

∫

C

q
1
(y)ϕ2 −

∫

C

[

λ2εeA(y)e + ζ(y)
]

ϕ2(y) dy
∫

C

ϕ2(y) dy

min
ϕ∈H1(C)\{0}

ε

∫

C

∇ϕ · A(y)∇ϕdy + λ

∫

C

q
1
(y)ϕ2 −

∫

C

[

λ2εα+ ζ0
]

ϕ2(y) dy
∫

C

ϕ2(y) dy

(8.20)

since eAe and ζ are constants. Having ψ ∈ H1(C) \ {0}, it follows that

∀λ > 0, ∀ε > 0,
k

Ω,e, εA,
√
εq, ζ

(λ)

λ
≥

√
ε(−q1(y0) − δ) + λεα+

1

λ
β(ε), (8.21)

where β(ε) = ζ0 − ε

∫

U

α2|∇ψ|2 > 0 for ε > 0 small enough. Thus,

∀ε > 0, c∗Ω,εA,√ε q,f(e) ≥
√
ε(−q1(y0) − δ) + 2

√
ε
√
α
√

β(ε).

Since δ was arbitrarily chosen, one the concludes that

lim inf
ε→0+

c∗
Ω,εA,

√
ε q,f

(e)
√
ε

≥ −q1(y0) + 2
√
α
√

ζ0.
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Together with (8.19), the proof of (3.12) is complete. �

Proof of Theorem 3.4. Consider the change of variables

v(t, x, y) = u(t, Lx, Ly), (t, x, y) ∈ R × R × RN−1.

The function u satisfies (3.13) if and only if v satisfies

vt(t, x, y) =
1

L2
∇ · (A(y)∇v)(t, x, y) + f(x, y, v) over R × R × RN−1. (8.22)

Consequently,
∀L > 0, c∗

RN ,A
L
, 0, f

L

(e) = L c∗
RN , 1

L
2 A,0,f

(e) (8.23)

Taking ε = 1/L
2

, and applying Theorem 3.1 to problem (8.22), one then has

lim
L→+∞

c∗
RN , 1

L
2 A,0,f

(e)
√

1

L2

= lim
ε→0+

c∗
RN ,εA,0,f(e)√

ε
= 2

√

max
y ∈RN−1

ζ(y)
√

max
y ∈RN−1

eA(y)e. (8.24)

Finally, (8.23) together with (8.24) complete the proof of Theorem 3.4. �

Proof of Theorem 3.5. Under the same change of variables considered in the proof of
Theorem 3.4 above, one gets

∀L > 0, c∗
RN ,A

L
, Lq

L
, f

L

(e) = L c∗
RN , 1

L
2 A,q,f

(e) and

c∗
RN ,A

L
, q

L
, f

L

(e) = L c∗
RN , 1

L
2 A,

1

L
q,f

(e).

Taking ε =
1

L2
and using (3.11), then (3.15) follows. On the other hand, (3.12) implies

(3.16) whenever eAe and ζ are constant over RN−1. �

8.2 Proofs of Theorems 4.1 and 4.3

Proof of Theorem 4.1. The proof will be divided into three steps:
Step 1. According to Theorem 2.4, and since ν · Aẽ = 0 on ∂Ω, the minimal speeds

c∗
Ω,MA,Mγq, f (e) are given by:

∀M > 0, c∗
Ω,MA,Mγ q, f (e) = min

λ>0

k
Ω,e, MA, Mγ q, ζ(λ)

λ
,

where k
Ω,e, MA, Mγ q, ζ(λ) and ψλ,M denote the unique eigenvalue and the positive L-

periodic eigenfunction of the problem

M∇ · (A∇ψλ,M) − 2Mλẽ · A∇ψλ,M +Mγq · ∇ψλ,M + [λ2M ẽAẽ− λMγq · ẽ+ ζ ]ψλ,M

= k
Ω,e, MA, Mγ q, ζ(λ)ψλ,M in Ω,

with ν · A∇ψλ,M = 0 on ∂Ω.
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For each λ > 0 and M > 0, let λ
′

= λ
√
M, and let k

Ω,e, MA, Mγ q, ζ(λ) = µ(λ
′

,M).

Consequently,

∀M > 0,
c∗
Ω,MA,Mγ q, f

(e)
√
M

= min
λ

′
>0

µ(λ
′

,M)

λ ′
, (8.25)

where µ(λ
′

,M) and ψλ
′

,M are the first eigenvalue and the unique, positive L−periodic (with
respect to x ) eigenfunction of

M∇ · (A∇ψλ
′

,M) − 2λ′
√
Mẽ · A∇ψλ

′

,M +Mγq · ∇ψλ
′

,M

+

[

λ
′2
ẽAẽ− λ

′

M
1
2
−γ
q · ẽ+ ζ

]

ψλ
′

,M = µ(λ
′

,M)ψλ
′

,M in Ω,
(8.26)

with ν · A∇ψλ
′

,M = 0 on ∂Ω.
Owing to the uniqueness, up to multiplication by positive constants, of the first eigen-

function of (8.26), one may assume that:

∀λ′

> 0, ∀M > 0, ||ψλ
′

,M ||L2(C) = 1. (8.27)

Moreover, for each M > 0, min
λ

′
>0

µ(λ
′

,M)

λ ′
is attained at λ

′

M > 0. Thus,

∀M > 0,
c∗
Ω,MA,Mγ q, f

(e)
√
M

= min
λ

′
>0

µ(λ
′

,M)

λ ′
=
µ(λ

′

M ,M)

λ
′

M

. (8.28)

The above characterization of c∗
Ω,MA,Mγ q, f (e)/

√
M will be used in the next steps in

order to prove that lim inf
M→+∞

c∗
Ω,MA,Mγ q, f (e)/

√
M (resp. lim sup

M→+∞
c∗
Ω,MA,Mγ q, f (e)/

√
M ) is

greater than (resp. less than) 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy; and hence, complete the

proof.

Step 2. Fix λ
′

> 0 and M > 0. We divide (8.26) by ψλ
′

,M then, using the facts ∇.Aẽ ≡ 0
in Ω and ν ·Aẽ = 0 on ∂Ω, we integrate by parts over the periodicity cell C. It follows from

(2.3) and the L−periodicity of A, ζ and ψλ
′

,M that

∫

C

∇ψλ
′

,M · A∇ψλ
′

,M

(

ψλ
′
,M
)2 + λ

′ 2
∫

C

ẽAẽ+

∫

C

ζ = µ(λ
′

,M)|C|, (8.29)

where |C| denotes the Lebesgue measure of C. Let

m0 = −
∫

C

ẽAẽ =
1

|C|

∫

C

ẽA(x, y)ẽ dx dy and m = −
∫

C

ζ(x, y) dx dy.

One concludes that

∀λ ′

> 0, ∀M > 0, µ(λ
′

,M) ≥ λ
′ 2−
∫

C

ẽAẽ+ −
∫

C

ζ = λ
′ 2
m0 +m,
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whence

∀λ ′

> 0, ∀M > 0,
µ(λ

′

,M)

λ ′
≥ λ

′

m0 +
m

λ ′
. (8.30)

The right side of (8.30) attains its minimum over R+ at λ
′

0 =

√

m

m0

. This minimum is

equal to 2
√
m0m.

Consequently, for any M > 0,
c∗
Ω,MA,Mγ q, f (e)

√
M

= min
λ

′
>0

µ(λ
′

,M)

λ ′
≥ 2

√
m0m. This yields

that

lim inf
M→+∞

c∗
Ω,MA,Mγ q, f (e)

√
M

≥ 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy. (8.31)

Step 3. Fix λ
′

> 0 and M > 0. Multiply (8.26) by ψλ
′

,M and integrate by parts over C.

Owing to the L−periodicity of Ω, A, ζ and ψλ
′

,M , and due to the facts that

∫

C

(

ψλ
′

,M
)2

= 1, ∇ · Aẽ ≡ 0

in Ω, and that ν ·Aẽ = 0 on ∂Ω, together with (2.3), one gets

−M
∫

C

∇ψλ
′

,M ·A∇ψλ
′

,M + λ
′ 2
∫

C

ẽAẽ
(

ψλ
′

,M
)2

+

∫

C

ζ
(

ψλ
′

,M
)2

− λ
′

M
1
2
−γ

∫

C

q · ẽ
(

ψλ
′

,M
)2

= µ(λ
′

,M),

(8.32)

whence

∀λ ′

> 0, ∀M > 0, 0 < µ(λ
′

,M) ≤ λ
′ 2
α + β +

λ
′

M
1
2
−γ

|| (q · ẽ)− ||∞,

where α = max
(x,y)∈Ω

ẽAẽ(x, y) and β = max
(x,y)∈Ω

ζ(x, y). Together with (8.30), one gets

∀λ ′

> 0, ∀M > 0, 0 < λ
′2
m0 +m ≤ µ(λ

′

,M) ≤ λ
′ 2
α + β +

λ
′

M
1
2
−γ

|| (q · ẽ)− ||∞. (8.33)

If γ =
1

2
, then

λ
′

M
1
2
−γ

|| (q · ẽ)− ||∞ = λ
′|| (q · ẽ)− ||∞. On the other hand, if 0 ≤ γ <

1

2
,

then
λ

′

M
1
2
−γ

|| (q · ẽ)− ||∞ → 0 as M → +∞.

Consequently, the right side of (8.33) is bounded above by a positive constant B which
does not depend on M and γ. This yields that

∀λ′

> 0, 0 < lim sup
M→+∞

µ(λ
′

,M) < +∞.

On the other hand, it follows from (2.2) and (8.32) that ∀λ ′

> 0, ∀M > 0,

0 ≤ α1

∫

C

|∇ψλ
′

,M |2 ≤
∫

C

∇ψλ
′

,M · A∇ψλ
′

,M

≤ 1

M

[

−µ(λ
′

,M) + λ
′2
∫

C

ẽAẽ
(

ψλ
′

,M
)2

+

∫

C

ζ
(

ψλ
′

,M
)2

− λ
′

M
1
2
−γ

∫

C

q · ẽ
(

ψλ
′

,M
)2
]

<
B

M
.
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Meanwhile, lim
M→+∞

B

M
= 0, one then gets











∀λ ′

> 0, lim
M→+∞

∫

C

|∇ψλ
′

,M |2 = 0,

∀λ ′

> 0, ∀M > 0,

∫

C

(

ψλ
′

,M
)2

= 1.
(8.34)

Fix λ
′

> 0, and let (Mn)n be a sequence converging to +∞ as n → +∞ and such

that µ(λ
′

,Mn) → l λ
′

,(Mn) as n → +∞. It follows, from (8.34), that ||ψλ
′

,Mn||H1(C) → 1

as n → +∞. Thus, the sequence (ψλ
′

,Mn)n is bounded in H1(C). Therefore, there exists

a function ψλ
′

,∞ ∈ H1(C) such that, up to extraction of some subsequence, the functions

(ψλ
′

,Mn)n converge in L2(C) strong, H1(C) weak and almost everywhere in C, to the function

ψλ
′

,∞. Consequently, and owing to (8.34), ψλ
′

,∞ satisfies

∫

C

(

ψλ
′

,∞
)2

= 1, and (8.35)

(
∫

C

|∇ψλ
′

,∞|2
)

1

2

≤ lim inf
Mn→+∞

(
∫

C

|∇ψλ
′

,Mn|2
)

1

2

= 0. (8.36)

From (8.36), it follows that for all λ
′

> 0, the function ψλ
′

,∞ is almost everywhere constant
over C. On the other hand, the elliptic regularity applied on equation (8.26) for M = Mn,

implies that ∀λ′

> 0, the function ψλ
′

,∞ is continuous over C. Consequently, referring to
(8.35), one gets

∀λ′

> 0, ψλ
′

,∞ =
1

√

|C|
over C. (8.37)

Consider now equation (8.26). Fix λ
′

, take M = Mn, and integrate by parts over C. It
follows, from (2.2), (2.3) and the assumptions ∇.Aẽ ≡ 0 over Ω with ν.Aẽ = 0 on ∂Ω, that
∫

C

Mn∇ · (A∇ψλ
′

,Mn) = 0,

∫

C

−2λ′
√

Mnẽ · A∇ψλ
′

,Mn = 0, and

∫

C

q · ∇ψλ
′

,Mn = 0. Hence,

− λ
′

M
1
2
−γ

n

∫

C

q · ẽ ψλ
′

,Mn + λ
′2
∫

C

ẽ · Aẽ ψλ
′

,Mn +

∫

C

ζ ψλ
′

,Mn = µ(λ
′

,Mn)

∫

C

ψλ
′

,Mn. (8.38)

Meanwhile, the functions ψλ
′

,Mn converge to the constant function ψλ
′

,∞ in L2(C) strong;
and hence, in L1(C) strong ( C is bounded, so L2(C) is embedded in L1(C)). Let Mn → +∞
in (8.38):

In case γ = 1/2, one has

λ
′

M
1
2
−γ

n

∫

C

q · ẽ ψλ
′

,Mn = λ
′

∫

C

q · ẽ ψλ
′

,Mn → λ
′

ψλ
′

,∞
∫

C

q · ẽ = 0,

as n→ +∞ (from (2.3)). Also, in the case 0 ≤ γ < 1/2, one trivially has

λ
′

M
1
2
−γ

n

∫

C

q · ẽ ψλ
′

,Mn → 0 as n→ +∞.
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Moreover, ẽAẽ and ζ are in L∞(C). Thus, as Mn → +∞ in (8.38), we get

λ
′2
ψλ

′

,∞
∫

C

ẽAẽ + ψλ
′

,∞
∫

C

ζ = l λ
′

,(Mn) ψλ
′

,∞|C|.

One concludes that

∀λ′

> 0,
l λ

′

,(Mn)

λ′
= λ

′−
∫

C

ẽAẽ +

−
∫

C

ζ

λ ′
= λ

′

m0 +
m

λ′
. (8.39)

Whence for λ
′

= λ
′

0 =

√

m

m0

, one gets
l λ

′

0,(Mn)

λ
′

0

= 2
√
m0m.

On the other hand, for all Mn,

c∗
Ω,MnA,M

γ
n q, f

(e)
√
Mn

= inf
λ
′
>0

µ(λ
′

,Mn)

λ ′
≤ µ(λ

′

0,Mn)

λ
′

0

. (8.40)

Passing Mn → +∞, one gets lim sup
Mn→+∞

c∗
Ω,MnA,Mγ

n q, f
(e)

√
Mn

≤ l λ
′

0
,(Mn)

λ
′

0

= 2
√
m0m, and this

holds for all sequences {Mn}n converging to +∞. Thus,

lim sup
M→+∞

c∗
Ω,MA,Mγ q, f

(e)
√
M

≤ 2

√

−
∫

C

ẽAẽ(x, y) dxdy

√

−
∫

C

ζ(x, y) dxdy. (8.41)

Having (8.31) together with (8.41), the proof of Theorem 4.1 is complete. �

Proof of Theorem 4.3. We will consider the change of variables similar to that made in
the proof of Theorem 3.4:

v(t, x, y) = u(t, Lx, Ly), (t, x, y) ∈ R × RN .

After the same calculations done there, one gets that u satisfies (4.1) if and only if v
satisfies

vt(t, x, y) =
1

L2
∇ · (A(x, y)∇v)(t, x, y) +

1

L
q · ∇v(t, x, y) + f(x, y, v) over R × RN . (8.42)

Consequently,

∀L > 0, c∗
RN ,A

L
, q

L
, f

L

(e) = L c∗
RN , 1

L
2 A,

1

L
q,f

(e). (8.43)

On the other hand, the coefficients and the domain of problem (8.42) satisfy all the

assumptions of Theorem 4.1. Taking M = 1/L
2

and γ = 1/2, then (8.42) can be rewritten
as

vt(t, x, y) = M ∇ · (A(x, y)∇v)(t, x, y) +M
1

2 q · ∇v(t, x, y) + f(x, y, v) over R × RN .

In this situation, the periodicity cell of the whole space RN is C = [0, 1] × · · · × [0, 1].
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It follows, from Theorem 4.1, that

lim
L→0+

c∗
RN , 1

L
2 A,

1

L
q,f

(e)
√

1

L2

= lim
M→+∞

c∗
RN ,M A,M

1
2 q,f

(e)
√
M

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy.

(8.44)

Having (8.43) together with (8.44), the proof of Theorem 4.3 is complete. �

8.3 Proofs of Theorems 5.1 and 5.2

Proof of Theorem 5.1. The main ideas of this proof are similar to those in the demon-
stration of Theorem 3.1. Applying the variational formula (2.7) of the minimal speed, one
gets

c∗Ω,A,0,Bf (e) = min
λ> 0

kΩ,e,A, 0, Bζ(λ)

λ
, (8.45)

where kΩ,e,A,0,Bζ(λ) is the first eigenvalue (for each λ, B > 0) of the eigenvalue problem:
{

LΩ,e, A, 0,Bζ,λ ψ(x, y) = k
Ω,e, A, 0,Bζ

(λ) ψ(x, y) over R × ω;

ν · A∇ψ = 0 on R × ∂ω,
(8.46)

and

LΩ,e, A, 0,B ζ,λψ(x, y) = ∇ · (A(y)∇ψ(x, y)) − 2 λAe · ∇ψ(x, y) +
[

λ2eA(y)e − λ∇ · (A(y)e) + Bζ(y)
]

ψ(x, y),

for each (x, y) ∈ R × ω.
We recall that for all λ > 0, and for all B > 0, we have k

Ω,e, A, 0,Bζ (λ) > 0. Also, the

first eigenfunction of (8.46) is positive over Ω = R×ω, and it is unique up to multiplication
by a non zero constant.

Moreover, whether in (3.7) or (3.8) and due to (3.4), one concludes that the coefficients
in L

Ω,e, A, 0,Bζ, λ are independent of x. Hence, the first eigenfunction of (8.46) is independent

of x and the eigenvalue problem (8.46) is reduced to










L
Ω,e, A,0,Bζ, λφ := ∇ · (A(y)∇φ(y)) + [λ2eA(y)e + Bζ(y)]φ(y)

= kΩ,e,A, 0,Bζ(λ)φ over ω;

ν(x, y) · A(y)∇φ(y) = (0; νω(y)) · A(y)∇φ(y) = 0 on R × ∂ω,

(8.47)

where φ = φ(y) is positive over ω, L−periodic (since the domain ω and the coefficients of
L

Ω,e, A,0,Bζ, λ are L−periodic), unique up to multiplication by a constant, and belongs to

C 2(ω).
In the case where d ≥ 1, let C ⊆ RN−1 denote the periodicity cell of ω. Otherwise, d = 0

and one takes C = ω. In both cases, C is bounded. Multiplying the first line of (8.47) by φ,
and integrating by parts over C, one gets

− k
Ω,e, A, 0,Bζ(λ) =

∫

C

∇φ · A(y)∇φ dy −
∫

C

[

λ2eA(y)e + B ζ(y)
]

φ2(y) dy
∫

C

φ2(y) dy

. (8.48)
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One also notes that, in this present setting, the operator L
Ω,e, A,0,Bζ, λ is self-adjoint and

its coefficients are (L1, . . . , Ld)−periodic with respect (y1, . . . , yd). Consequently, − k
Ω,e, A, 0,Bζ (λ)

has the following variational characterization:

− k
Ω,e, A, 0,Bζ(λ) = min

ϕ∈H1(C)\{0}

∫

C

∇ϕ · A(y)∇ϕdy −
∫

C

[

λ2eA(y)e + B ζ(y)
]

ϕ2(y) dy
∫

C

ϕ2(y) dy

.

(8.49)
In what follows, we will assume that (3.7) is the alternative that holds. That is, eAe = α

is constant. The proof can be imitated easily whenever we assume that (3.8) holds.
The function y 7→ ζ(y) is continuous and (L1, . . . , Ld)−periodic over ω, whose periodicity

cell C is a bounded subset of RN−1 (whether d = 0 or d ≥ 1). Let y0 ∈ C ⊆ ω such that
max
y∈w

ζ(y) = ζ(y0) (trivially, this also holds when ζ is constant). Consequently, we have

∀ ϕ ∈ H1(C) \ {0},

∫

C

∇ϕ · A∇ϕ−
∫

C

(αλ2 + B ζ(y))ϕ2

∫

C

ϕ2(y) dy

≥ −
[

αλ2 + B ζ(y0)
]

.

This yields that

∀B > 0, ∀λ > 0, − k
Ω,e, A, 0,B ζ(λ) ≥ −

[

αλ2 + B ζ(y0)
]

. (8.50)

Consequently,

∀B > 0, ∀λ > 0,
k

Ω,e, A, 0,Bζ (λ)

λ
≤ λα +

B ζ(y0)

λ
. (8.51)

However, the function λ 7→ λα + (B ζ(y0)/λ) attains its minimum, over R+, at λ(B) =
√

B ζ(y0)

α
. This minimum is equal to 2

√

Bζ(y0) ×
√
α.

From (8.51), we conclude that:
k

Ω,e, A, 0,Bζ (λ(B))

λ(B)
≤ 2

√
B α

√

ζ(y0).

Finally, (2.7) implies that

c∗
Ω,A,0,Bf (e) = min

λ> 0

k
Ω,e,A, 0,Bζ(λ)

λ
≤ 2

√
B α

√

ζ(y0),

or equivalently

∀B > 0,
c∗Ω,A,0,Bf(e)√

B
≤ 2

√
α
√

ζ(y0). (8.52)

We pass now to prove the other sense of the inequality for lim inf
B→+∞

c∗Ω,A,0,Bf(e)√
B

. We will

consider formula (8.5), and then organize a suitable function ψ which leads us to a lower

bound of lim inf
B→+∞

c∗Ω,A,0,Bf(e)√
B

.

We have ζ(y0) > 0. Let δ be such that 0 < δ < ζ(y0). Thus 0 < ζ(y0) − δ < max
ω

ζ(y).

The continuity of ζ, over C ⊆ ω, yields that there exists an open and bounded set U ⊂ C
such that

ζ(y0) − δ ≤ ζ(y), ∀ y ∈ U. (8.53)
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Designate by ψ, a function in D(C) (a C∞(C) function whose support is compact), with

suppψ ⊆ U, and

∫

U

ψ2 = 1. One will have,

∀λ > 0, ∀B > 0,

− k
Ω,e, A, 0,B ζ (λ) ≤

∫

U

∇ψ · A(y)∇ψ dy −
∫

U

[

λ2eA(y)e + B ζ(y)
]

ψ2(y) dy

≤
∫

U

∇ψ · A(y)∇ψ dy −
[

λ2α + B (ζ(y0) − δ)
]

(by (8.53))

≤
∫

U

α2|∇ψ|2 −
[

λ2α + B (ζ(y0) − δ)
]

by (3.5),

or equivalently
kΩ,e,A, 0, B ζ(λ)

λ
≥ λα +

B

λ
ρ(B), (8.54)

where ρ(B) = ζ(y0)− δ− 1

B

∫

U

α2|∇ψ|2. Choosing B large enough, we get ρ(B) > 0 (this is

possible since ζ(y0)− δ > 0 and also

∫

U

α2|∇ψ|2 > 0). The map λ 7→ λα +
B

λ
ρ(B) attains

its minimum, over R+, at λ(ε) =

√

B ρ(B)

α
. This minimum is equal to 2

√
B α

√

ρ(B).

Now, referring to formula (8.54), one gets:

for B large enough,
k

Ω,e, A, 0,Bζ(λ)

λ
≥ 2

√
B α

√

ρ(B) for all λ > 0.

Together with (2.7), we conclude that

for B large enough,
c∗
Ω,A,0,Bf (e)

√
B

≥ 2
√

ρ(B)
√
α. (8.55)

Consequently,

lim inf
B→+∞

c∗
Ω,A,0,Bf (e)

√
B

≥ lim inf
B→+∞

2
√

ρ(B)
√
α

= 2
√

ζ(y0) − δ
√
α (since ψ is independent of B),

and this holds for all 0 < δ < ζ(y0). Therefore, one can conclude that

lim inf
B→+∞

c∗Ω,A,0,Bf(e)√
B

≥ 2
√
α
√

ζ(y0). (8.56)

Finally, the inequalities (8.52) and (8.56) imply that lim
B→+∞

c∗Ω,A,0,Bf(e)√
B

exists, and it is

equal to 2
√
α
√

ζ(y0) = 2
√

max
ω

eA(y)e
√

max
ω

ζ(y).

The above proof was done while assuming that the alternative (3.7) holds. The same
ideas of this proof can be easily applied in the case where alternative (3.8) holds. In (3.8),
we have ζ is constant; however, eAe is not in general. Meanwhile the converse is true in the

35



case (3.7). The little difference is that, in the case of (3.8), we chsose the subset U (of the
proof done above) around the point y0 where eAe attains its maximum and then we continue
by the same way used above. �

Proof of Theorem 5.2. According to Theorem 2.4, and since ν · Aẽ = 0 on ∂Ω, the
minimal speeds c∗

Ω,A,Bγ q, Bf
(e) are given by:

∀B > 0, c∗
Ω,A,Bγ q, Bf (e) = min

λ>0

k
Ω,e,A, Bγ q, Bζ (λ)

λ
,

where k
Ω,e, A, Bγ q, Bζ(λ) and ψλ,B denote the unique eigenvalue and the positive L-periodic

eigenfunction of the problem

∇ · (A∇ψλ,B) − 2λẽ · A∇ψλ,B +Bγq · ∇ψλ,B +
[

λ2 ẽAẽ− λBγq · ẽ+ B ζ
]

ψλ,B

= k
Ω,e, A, Bγ q, Bζ(λ) ψλ,B in Ω, with ν · A∇ψ = ν · A∇ψλ,B = 0 on ∂Ω.

For each λ > 0 and B > 0, let λ
′

= λ/
√
B, and let k

Ω,e,A, Bγ q, Bζ (λ) = µ(λ
′

, B).

Consequently,

∀B > 0,
c∗
Ω,A,Bγ q, Bf

(e)
√
B

= min
λ

′
>0

µ(λ
′

, B)

λ ′ B
, (8.57)

where µ(λ
′

, B) and ψλ
′

,B are the first eigenvalue and the unique, positive L−periodic (with
respect to x) eigenfunction of

∇ · (A∇ψλ
′

,B) − 2λ′
√
Bẽ · A∇ψλ

′

,B +Bγq · ∇ψλ
′

,B

+
[

λ
′2
B ẽAẽ− λ

′

B
γ+ 1

2 q · ẽ+ Bζ
]

ψλ
′

,B = µ(λ
′

, B)ψλ
′

,B in Ω,
(8.58)

with ν · A∇ψλ
′

,B = 0 on ∂Ω.
Owing to the uniqueness, up to multiplication by positive constants, of the first eigen-

function of (8.58), one may assume that:

∀λ′

> 0, ∀B > 0, ||ψλ
′

,B||L2(C) = 1. (8.59)

Moreover, for each B > 0, min
λ

′
>0

µ(λ
′

, B)

λ ′ B
is attained at λ

′

B > 0. Thus,

∀B > 0,
c∗
Ω,A,Bγ q, Bf

(e)
√
B

= min
λ

′
>0

µ(λ
′

, B)

λ ′ B
=
µ(λ

′

B, B)

B λ
′

B

. (8.60)

Having the above characterization, one can now imitate the steps 2 and 3 in the proof of
Theorem 4.1 to prove that

lim inf
B→0+

c∗
Ω,A,Bγ q, Bf (e)/

√
B

(resp. lim sup
B→0+

c∗
Ω,A,Bγ q, Bf (e)/

√
B ) is greater than (resp. less than)

2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy;

and hence, complete the proof of Theorem 5.2. �

36



8.4 Proofs of Theorems 6.1, 6.3, and 6.5

Proof of Theorem 6.1. Referring to Theorem 2.4, it follows that for each β > 0, we have:

c∗
Ω,βA,

√
β q,f

(e)
√
β

= min
λ>0

kΩ,e, βA,
√
β q,ζ(λ)

λ
√
β

,

where kΩ,e, βA,
√
β q,ζ(λ) is the first eigenvalue of the problem

{

LΩ,e, βA,
√
β q,ζ,λψ(x, y) = kΩ,e, βA,

√
β q,ζ(λ)ψ(x, y) over R × ω;

ν.A∇ψ = 0 on R × ∂ω,
(8.61)

where

LΩ,e,βA,
√
β q,ζ,λψ = β∇ · (A(y)∇ψ) − 2βλα(y) ∂xψ +

√

β q
1
(y)∂xψ

+
[

β λ2eA(y)e − λ
√

β q
1
(y) + ζ(y)

]

ψ over R × ω.

The boundary condition follows so from the facts that Ω = R × ω, e = (1, 0, . . . , 0) and
that A(y)e = α(y)e over ω. These yield that ν · Ae = 0 over ∂Ω and ∇ · Ae = 0. Moreover,
for each (x, y) ∈ ∂Ω, we have ν(x, y) = (0; νω(y)), where νω(y) is the outward unit normal
on ∂ω at y.

On the other hand, the function ψ is positive , (L1, . . . , Ld)−periodic with respect to y,
and unique up to multiplication by non-zero constants. Meanwhile, the coefficients A, q and
ζ are independent of x. Thus the eigenfunction ψ will be independent of x and our eigenvalue
problem is reduced to











β∇ · (A(y)∇ψ(y)) +
[

β λ2eA(y)e − λ
√
βq

1
(y) + ζ(y)

]

ψ(y)

= kΩ,e, βA,
√
βq,ζ(λ)ψ(y) for all y ∈ ω,

ν(x, y) · A(y)∇ψ(y) = (0; νω(y)) · A(y)∇ψ(y) = 0 on R × ∂ω.

(8.62)

For each λ > 0 and β > 0, let λ
′

= λ
√
β, and let kΩ,e, βA,

√
β q,ζ(λ) = µ(λ

′

, β). Since for

each β > 0, min
λ>0

kΩ,e, βA,
√
β q,ζ(λ)

λ
is attained at λ(β), it follows that

∀ β > 0,
c∗
Ω,βA,

√
β q,f

(e)
√
β

= min
λ
′
>0

µ(λ
′

, β)

λ′
, (8.63)

where µ(λ
′

, β) is the first eigenvalue of the problem:







Lβ
λ
′ψ = β∇ · (A(y)∇ψ) +

[

λ
′2
eA(y)e− λ

′

q
1
(y) + ζ(y)

]

ψ = µ(λ
′

, β)ψ in ω,

ν · A∇ψ = 0 on ∂ω.
(8.64)

The elliptic operator Lβ
λ
′ in (8.64) is self-adjoint. Consequently, the first eigenvalue
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µ(λ
′

, β) has the following characterization:2

∀λ′

> 0, ∀β > 0, −µ(λ
′

, β) =

min
ϕ∈H1(C)\{0}

β

∫

C

∇ϕ · A(y)∇ϕdy + λ
′

∫

C

q
1
(y)ϕ2 −

∫

C

[

λ
′2
eA(y)e+ ζ(y)

]

ϕ2(y)dy
∫

C

ϕ2(y)dy

= min
ϕ∈H1(C)\{0}

R(λ
′

, β, ϕ).

(8.65)

For each λ
′

and β > 0, ϕ 7→ R(λ
′

, β, ϕ) attains its minimum over H1(C) \ {0} at ψλ
′

,β,
the eigenfunction of the problem (8.64). On the other hand, β 7→ R(λ

′

, β, ϕ) is increasing
as an affine function in β. Consequently, fixing λ

′

> 0 and taking β > β
′

> 0 :

−µ(λ
′

, β) = R(λ
′

, β, ψλ
′

,β) > R(λ
′

, β
′

, ψλ
′

,β)

≥ min
ϕ∈H1(C)\{0}

R(λ
′

, β
′

, ϕ) = −µ(λ
′

, β
′

). (8.66)

In other words, for all λ
′

> 0, the function β 7→ µ(λ
′

, β) is decreasing. Concerning now

the function β 7→ c∗Ω,βA,
√
β q,f

(e)/
√

β, one takes randomly β > β
′

> 0, hence

c∗
Ω,β ′

A,
√
β

′
q,f

(e)
√

β ′

=
µ(λ

′

(β
′

), β
′

)

λ′(β ′)
>
µ(λ

′

(β
′

), β)

λ′(β ′)

≥ min
λ
′
>0

µ(λ
′

, β)

λ′
=
c∗
Ω,βA,

√
β q,f

(e)
√
β

,

which means that the function β 7→ c∗Ω,βA,
√
β q,f

(e)/
√

β is decreasing.
Finally, when β → +∞, one can easily check that the hypothesis of Theorem 4.1 are

satisfied; hence, one has the limit at +∞, and that completes the proof of Theorem 6.1. �

Proof of Theorem 6.3. Consider the change of variables v(t, x, y) = u(t, Lx, Ly), for
any (t, x, y) ∈ R × RN . One consequently has,

∀L > 0, c∗
RN ,A

L
, q

L
, f

L

(e) = L c∗
RN , 1

L
2 A,

1

L
q,f

(e). (8.67)

Taking β = 1/L
2

, then

vt(t, x, y) = β∇ · (A(y)∇v)(t, x, y) +
√

β q
1
(y) ∂x v(t, x, y) + f(x, y, v) over R × RN .

Owing to Theorem 6.1, the function β 7→ c∗
RN ,βA,

√

β q, f
(e)/

√

β is decreasing in β > 0.

Besides, L 7→ 1/L2 is decreasing in L > 0. Together with (8.67), one obtains that the function
L 7→ c∗

RN ,A
L
, q

L
, f

L

(e) is increasing in L > 0 which completes the proof of Theorem 6.3. �

Proof of Theorem 6.5. Referring to Theorem 2.4, it follows that for each B > 0, we
have:

c∗
Ω,A,

√
B q,Bf

(e)
√
B

= min
λ>0

kΩ,e, A,
√
B q,Bζ(λ)

λ
√
B

.

2To have an idea, multiply (8.64) by the positive, (L1, . . . , Ld)−periodic function ψ and integrate by parts
over the periodicity cell C of the the domain ω.
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Owing to the same justifications explained in the proof of Theorem 6.1, kΩ,e,A,
√
Bq,Bζ(λ)

is the first eigenvalue of the problem







∇ · (A(y)∇ψ(y)) +
[

λ2e · Ae− λ
√
Bq

1
(y) +Bζ(y)

]

ψ(y) = kΩ,e,A,
√
Bq,Bζ(λ)ψ in ω,

ν(x, y) · A(y)∇ψ(y) = (0; νω(y)) · A(y)∇ψ(y) = 0 on R × ∂ω.
(8.68)

For each λ > 0 and B > 0, let λ
′

= λ/
√
B and kΩ,e,A,

√
B q,Bζ(λ) = µ(λ

′

, B). The first

eigenvalue µ(λ
′

, B) has the following characterization:

∀λ′

> 0, ∀B > 0, − µ(λ
′

, B)

λ′B
=

min
ϕ ∈ H1(C) \ {0};
||ϕ||

L
2(C) = 1

∫

C

∇ϕ · A(y)∇ϕdy

λ′B
+

∫

C

q
1
ϕ2 − λ

′

∫

C

eAeϕ2 −

∫

C

ζ(y)ϕ2(y) dy

λ′

= min
ϕ ∈ H1(C) \ {0}
||ϕ||

L
2(C) = 1

R(λ
′

, B, ϕ).

(8.69)

On the other hand, B 7→ R(λ
′

, B, ϕ) is decreasing in B > 0. Consequently, fixing λ
′

> 0
and taking 0 < B < B

′

,

− µ(λ
′

, B)

λ′B
= R(λ

′

, B, ψλ
′

,B) > R(λ
′

, B
′

, ψλ
′

,B) ≥ min
ϕ ∈ H1(C) \ {0};
||ϕ||

L
2(C) = 1

R(λ
′

, B
′

, ϕ)

= − µ(λ
′

, B
′

)

λ′B′
.

In other words, for all λ
′

> 0, the function B 7→ µ(λ
′

, B)/λ
′

B is increasing in B > 0.
Now, we take randomly 0 < B < B

′

. Thus,

c∗
Ω,A,

√
B

′
q,B

′
f
(e)

√
B′

= min
λ
′
>0

µ(λ
′

, B
′

)

λ′B′
=
µ(λ

′

B
′ , B

′

)

λ
′

B
′ × B′

>
µ(λ

′

B
′ , B)

λ
′

B
′ ×B

≥ min
λ
′
>0

µ(λ
′

, B)

λ′B
=
c∗
Ω,A,

√
B q,Bf

(e)
√
B

,

which means that B 7→ c∗
Ω,A,

√
B q,Bf

(e)/
√
B is increasing in B > 0. �

9 Applications to homogenization problems

The reaction-advection-diffusion problem set in a heterogenous periodic domain Ω satisfying
(2.1) generates a homogenization problem:

Let e ∈ Rd be a vector of unit norm. Assume that Ω, A, q, and f are (L1, . . . , Ld)−
periodic and that they satisfy (2.1), (2.2), (2.3), (2.4) and (2.5).
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For each ε > 0, let Ωε = εΩ and consider the following re-scales:

∀(x, y) ∈ Ωε, Aε(x, y) = A
(x

ε
,
y

ε

)

, qε(x, y) = q
(x

ε
,
y

ε

)

, and fε(x, y) = f
(x

ε
,
y

ε

)

.

The coefficients Aε, qε, and fε together with the domain Ωε are (ε L1, . . . , ε Ld)−periodic,
and they satisfy similar properties to those of A, q, f and Ω.

Consider the parametric reaction-advection-diffusion problem

(Pε)







uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u
ε), t ∈ R, (x, y) ∈ Ωε,

νε ·Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε,

where νε(x, y) denotes the outward unit normal on ∂Ωε at the point (x, y).
Owing to the results found by Berestycki and Hamel in section 6 of [2], and since the

coefficients Aε, fε and qε together with the domain Ωε satisfy all the necessary assumptions,
it follows that the problem (Pε) admits a minimal speed of propagation c∗Ωε, Aε, qε,fε

(e) > 0
such that (Pε) has a solution uε in the form of a pulsating front within a speed c if and only
if c ≥ c∗Ωε, Aε, qε,fε

(e) > 0.
In this section, we investigate the limit of the parametric minimal speeds c∗Ωε, Aε, qε,fε

(e)
(whose parameter is ε) of the problems (Pε)ε>0 as ε → 0+. In other words, we search the
limit of these minimal speeds as the periodicity cell Cε = ε C becomes a very small size.
On the other hand, we study although not the most general setting, the variation of the map
ε 7→ c∗Ωε, Aε, qε,fε

(e) in ε > 0.

Theorem 9.1 Let e ∈ Rd be a unit vector, and let Ω ⊆ RN be a domain which is
L−periodic and satisfying (2.1). Assume that A = A(x, y), q = q(x, y), and f = f(x, y, u)
are L−periodic and that they satisfy (2.2), (2.3), (2.4) and (2.5) together with the assump-
tions ∇.Aẽ ≡ 0 on Ω and ν.Aẽ = 0 on ∂Ω. For each ε > 0, consider the problem
{

uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u
ε), t ∈ R, (x, y) ∈ Ωε,

νε · Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε,
(9.1)

where Aε, fε and qε are the coefficients defined in the beginning of this section. Then, the
minimal speed c ∗

Ωε, Aε, qε, fε
(e) of pulsating travelling fronts propagating in the direction

of e and solving (9.1) satisfies

lim
ε→0+

c ∗
Ωε, Aε, qε, fε

(e) =2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy, (9.2)

where C is the periodicity cell of Ω and ẽ = (e, 0, · · · , 0) ∈ RN .

Proof. As a first notice, we mention that the domain Ωε is the image of Ω by the a
dilation whose center is the origin O(0, . . . , 0) and whose scale factor is equal to ε. Conse-
quently,

for each ε > 0, (εx, εy) ∈ Ωε if and only if (x, y) ∈ Ω, and

(εx, εy) ∈ ∂Ωε if and only if (x, y) ∈ ∂Ω.

Moreover,
∀ε > 0, ∀(x, y) ∈ ∂Ω, νε(εx, εy) = ν(x, y).
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Consider now, for each ε > 0, the following change of variables

vε(t, x, y) = uε(t, εx, εy) ; (t, x, y) ∈ R × Ω.

One gets
∀(t, x, y) ∈ R × Ω, vεt (t, x, y) = uεt(t, εx, εy),

∇x,y · (A(x, y)∇vε)(t, x, y) = ∇x,y · (Aε∇uε)(t, εx, εy) = ε2 ∇ · (Aε∇uε)(t, εx, εy),
and

νε(εx, εy) · [Aε∇uε] (t, εx, εy) = ν(x, y) · A
(εx

ε
,
εy

ε

)

∇uε(t, εx, εy)

=
1

ε
ν(x, y) ·A(x, y)∇vε(t, x, y) on R × ∂Ω.

(9.3)

The boundary condition in (9.1) yields that νε(εx, εy) · [Aε∇uε] (t, εx, εy) = 0, for all
(t, x, y) ∈ R × ∂Ω (which is equivalent to say: for all (t, εx, εy) ∈ R × ∂Ωε). It follows
from (9.3) that

∀(t, x, y) ∈ R × ∂Ω, ν ·A∇vε(t, x, y) = 0.

One can now conclude that: for each ε > 0, uε satisfies (9.1) if and only if vε satisfies







vεt (t, x, y) =
1

ε2
∇ · (A∇vε)(t, x, y) +

1

ε
q · ∇vε + f(x, y, vε), t ∈ R, (x, y) ∈ Ω,

ν · A ∇vε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.
(9.4)

Having the assumptions (2.1), (2.2), (2.3), (2.4), and (2.5) on Ω, A, q, and f, one gets
that problem (9.4) admits, for each ε > 0, a minimal speed of propagation denoted by
c∗
Ω, ( 1

ε)
2
A, 1

ε
q, f

(e).

Moreover, due to the change of variables between uε and vε, it follows that for each
ε > 0, uε is a pulsating travelling front propagating in the direction of e within a speed c
and solving (9.1) if and only if vε is a pulsating travelling front propagating in the direction

of e within a speed
c

ε
and solving (9.4). This yields that

∀ε > 0, c ∗
Ωε, Aε, qε, fε

(e) = ε c∗
Ω,( 1

ε)
2
A, 1

ε
q, f

(e) = c∗
Ω,MA,

√
M q, f

(e)/
√
M, (9.5)

where M = ( 1/ε )2.

As ε → 0+, the variable M → +∞. Applying Theorem 4.1, with γ =
1

2
, one gets that

lim
M→+∞

c∗
Ω,MA,

√
M q, f

(e)
√
M

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy.

Therefore, lim
ε→0+

c ∗
Ωε, Aε, qε, fε

(e) = 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy, and the proof

of Theorem 9.1 is complete. �

Remark 9.2 It is worth noticing that, in formula 9.2, the homogenized speed depends on the
averages of the diffusion and reaction coefficients, but it does not depend on the advection.
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We move now to study the variation of the map ε 7→ c ∗
Ωε, Aε, qε, fε

(e) with respect

to ε > 0. In other words, we want to check the monotonicity behavior of the parametric
minimal speed of propagation, whose parameter ε > 0, as the periodicity cell of the domain
of propagation shrinks or enlarges within a ratio ε. In this study, we will consider the same
situation of Theorem 6.1 and also the same notations introduced in the beginning of section
9:

Theorem 9.3 Let e = (1, 0 . . . , 0). Assume that Ω has the form R×ω where ω may or may
not be bounded (precisely described in section 3) and that the diffusion matrix A = A(y)
satisfies (3.5) together with the assumption that e is an eigenvector of A(y) for all y ∈ ω,
that is

A(x, y)e = A(y)e = α(y)e, for all (x, y) ∈ R × ω; (9.6)

where y 7→ α(y) is a positive (L1, . . . , Ld)− periodic function defined over ω. The nonlinearity
f is assumed to satisfy (3.3) and (3.4). Assume further more that the advection field q (when
it exists) is in the form q(x, y) = (q

1
(y), 0, . . . , 0) where q

1
has a zero average over C, the

periodicity cell of ω. For ε > 0 consider the reaction-advection-diffusion problem










∀ t ∈ R, ∀ (x, y) ∈ Ωε = R × ε ω,

uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u
ε);

νε · Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε.

(9.7)

Then, the map ε 7→ c ∗
Ωε, Aε, qε, fε

(e) is increasing in ε > 0.

Proof of Theorem 9.3. For each ε > 0, we consider the change of variables

vε(t, x, y) = uε(t, εx, εy) ; (t, x, y) ∈ R × Ω.

Owing to the justifications shown in the proof of Theorem 9.1, one consequently obtains

∀ε > 0, c ∗
Ωε, Aε, qε, fε

(e) = ε c∗
Ω, ( 1

ε)
2
A, 1

ε
q, f

(e) = c∗Ω, βA,
√
β q, f

(e)/
√

β, (9.8)

where β(ε) = ( 1/ε )2.

Applying Theorem 6.1, it follows that the map η
1

: β 7→ c∗Ω, βA,
√
β q, f

(e)/
√

β is decreasing
in β > 0. On the other hand, the map η

2
: ε 7→ β(ε) is also decreasing in ε > 0. Therefore,

ε 7→ c ∗
Ωε, Aε, qε, fε

(e), which is the composition η
1
◦ η

2
, is increasing in ε > 0 and this

completes our proof. �

Other homogenization results, concerning reaction-advection-diffusion problems, were
given in the case of a combustion-type nonlinearity f = f(u) satisfying

{

∃ θ ∈ (0, 1), f(s) = 0 for all s ∈ [0, θ] , f(s) > 0 for all s ∈ (θ, 1), f(1) = 0,
∃ρ ∈ (0, 1 − θ), f is non-increasing on [1 − ρ, 1] .

(9.9)

Consider the equation

uεt (t, x) = ∇ · (A(ε−1 x)∇uε) + ε−1q(ε−1 x) · ∇uε + f(uε) in RN , (9.10)

where the nonlinearity f satisfies (9.9), and the drift and diffusion coefficients q and A satisfy
the general assumptions (2.2) and (2.3), with periodicity 1 in all variables x1, . . . , xN . Fix a
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unit vector e of RN . From Berestycki and Hamel [2], it follows that for each ε > 0, problem
(9.10) admits a unique pulsating front (cε, u

ε) such that

uε(t, x) = φε(x · e+ cεt, x)

where φε(s, x) is (ε, . . . , ε)−periodic in x that satisfies φε(−∞, .) = 0 and φε(+∞, .) =
1. The functions uε are actually unique up to shifts in time, and one can assume that
max
RN

φε(0, .) = θ.

Concerning problem (9.10), Heinze [15] proved that

as ε → 0+, cε → c0 > 0, and uε(t, x) → u0(x · e+ c0t) weakly in H1
loc,

where (c0, u0) is the unique solution of the one-dimensional homogenized equation

{

a∗ u
′′

0 − c0u
′

0 + f(u0) = 0 in R,
u0(−∞) = 0 < u0 < u0(+∞) = 1 in R, u0(0) = θ

(9.11)

and a∗ is a positive constant determined in [15].
In Theorem 1 of Caffarelli, Lee, Mellet [10], the homogenization limit was combined with

the singular high activation limit for the reaction (one can also see [11] in this context) while
the diffusion matrix was taken A = IdRN . More precisely, the nonlinearity had the form

fε(u) =
1

ε
β(
u

ε
) with β(s) a Lipschitz fucntion satisfying

β(s) > 0 in (0, 1) and β(s) = 0 otherwise.

These nonlinearities approach a Dirac mass at u = 1.

10 Open problems

In all the results of this paper, we deal with nonlinearities of the “KPP” type. In the
periodic framework of this paper, pulsating travelling fronts exist also with other types of
nonlinearities (see Theorems 1.13 and 1.14 in [2]). Namely, they exist when f = f(x, y, u) is
of the “combustion” type satisfying:







f is globally Lipschitz-continuous in Ω × R,
∀ (x, y) ∈ Ω, ∀ s ∈ (−∞, 0] ∪ [1,+∞), f(s, x, y) = 0,
∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1 − ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),

(10.1)

and







f is L−periodic with respect to x,
∃ θ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ s ∈ [0, θ], f(x, y, s) = 0,
∀ s ∈ (θ, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

(10.2)

or when f = f(x, y, u) is of the “ZFK” (for Zeldovich-Frank- Kamenetskii) type satisfying
(10.1) and
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





f is L−periodic with respect to x,
∃δ > 0, the restriction of f to Ω × [0, 1] is of class C1, δ,
∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0.

(10.3)

In particular, the “KPP” nonlinearities are of the “ZFK” type.
Recently, El Smaily [12] gave min−max and max−min formulæ for the speeds of propa-

gation of problem (2.6) taken with a “ZFK” or a “combustion” nonlinearity. These formulæ,
together with the results of this paper, can give important estimates for the parametric min-
imal speeds of the problem (2.6) when f is a “ZFK” nonlinearity which is not of the “KPP”
type. Indeed, if f is a “ZFK” nonlinearity, one can find a “KPP” function h = h(x, y, u)
such that

∀(x, y, u) ∈ Ω × R, f(x, y, u) ≤ h(x, y, u).

Referring to formula (1.17) in El Smaily [12], one can conclude that

∀M > 0, ∀B > 0, ∀γ ∈ R, c∗
Ω,MA,Mγ q, Bf (e) ≤ c∗

Ω,MA,Mγ q, Bh(e).

Moreover, if f is a “ZFK” nonlinearity satisfying the additional assumption

∀(x, y) ∈ Ω, f ′
u(x, y, 0) > 0, (10.4)

then one can find a “KPP” function g = g(x, y, u) such that g ≤ f in Ω × R, and thus

∀M > 0, ∀B > 0, ∀γ ∈ R,

c∗
Ω,MA,Mγ q, Bg

(e) ≤ c∗
Ω,MA,Mγ q, Bf

(e) ≤ c∗
Ω,MA,Mγ q, Bh

(e).
(10.5)

As a consequence, under the assumptions that 0 ≤ γ ≤ 1/2, ν ·Aẽ = 0 on ∂Ω, and ∇·Aẽ ≡ 0
in Ω, Theorem 4.1 implies that

lim sup
M→+∞

c∗Ω,MA,Mγq, f(e)√
M

≤ 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

g′u(x, y, 0)dx dy, (10.6)

and

lim inf
M→+∞

c∗Ω,MA,Mγq, f(e)√
M

= 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

h′u(x, y, 0)dx dy > 0. (10.7)

If f is a “combustion” nonlinearity, then problem (2.6) admits a solution (c, u) where
c = c

Ω,A,q,f
(e) > 0 is unique and u = u(t, x, y) is increasing in t and it is unique up to a

translation in t. Taking g as a “KPP” nonlinearity such that g ≥ f in Ω × R and using
Theorem 4.1, it follows that

lim sup
M→+∞

c
Ω, MA, Mγ q, f

(e)√
M

≤ 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

g′u(x, y, 0)dx dy

together with lim inf
M→+∞

c
Ω, MA, Mγ q, f

(e)√
M

≥ 0.

(10.8)
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Similarly, one can get several estimates concerning the case of a small diffusion factors,
small (resp. large) reaction factors, or small (resp. large) periodicity parameters.

The above motivation gives several upper and lower estimates for the parametric speeds
of propagation. However, the exact limits are not known. This leads us to ask about the
asymptotics of the minimal speeds of propagation with respect to diffusion, reaction and
periodicity factors in the “ZFK” case and about the asymptotics of the unique parametric
speed of propagation in the “combustion” case. These studies should help, as it was done in
section 9, in solving some homogenization problems in the “ZFK” case.

Besides, Theorem 9.1 gives the limit of c ∗
Ωε, Aε, qε, fε

(e) as ε → 0+. However, finding

the homogenized equation of (9.1) in the “KPP” remains an open problem.

11 Conclusions

As we mentioned in the beginning of this paper, our first aim was to give a complete and
rigorous analysis of the minimal speed of propagation of pulsating travelling fronts solving
parametric heterogeneous reaction-advection-diffusion equations in a periodic framework. In
the paper of Berestycki, Hamel and Nadirashvili [3], several upper and lower estimates for
the parametric minimal speed of propagation were given (see Theorems 1.6 and 1.10 in [3]).
However, the exact asymptotic behaviors of the minimal speed with respect to diffusion and
reaction factors and with respect to the periodicity parameter L were not given there. In
this paper, we determined the exact asymptotes of the minimal speed in the “KPP” periodic
framework. In sections 3, 4 and 5, we proved that (under some assumptions on A, q, f and
Ω) the asymptotes of the parametric minimal speed are either

2
√

max
ω

ζ
√

max
ω

eAe or 2

√

−
∫

C

ẽAẽ(x, y)dx dy

√

−
∫

C

ζ(x, y)dx dy.

(see Theorems 3.1, 3.4, 4.1, 4.3, 5.1 and 5.2 above). Moreover, we found in section 3 that
the presence of an advection field, in the general form or in the form of shear flows, changes
the asymptotic behavior of the minimal speed within a small diffusion (see Theorem 3.3 and
Remark 3.6). Conversely, we proved in section 4 that the presence of a general advection

field Mγq (where q satisfies (2.3)) has no effect on lim
M→+∞

c∗
Ω,MA,Mγ q, f

(e)
√
M

whenever 0 ≤
γ ≤ 1/2 (see Theorem 4.1). Furthermore, we studied, in a particular periodic framework, the

variations of the maps β 7→
c∗
Ω,βA,

√
β q,f

(e)
√
β

and L 7→ c∗
RN ,A

L
, q

L
,f

L
(e) and B 7→

c∗
Ω,A,

√
B q,Bf

(e)
√
B

with respect to the positive variables β, L and B respectively. Roughly speaking, we found
that the first and the third maps have opposite senses of variations (see Theorems 6.1 and
6.5). On the other hand, Theorem 6.3 and Theorem 9.3 yield that the minimal speed
increases when the medium undergoes a dilation whose scale factor is greater than 1.

The second aim was to find the homogenized “KPP” minimal speed. We achieved this
goal in section 9 (Theorem 9.1) under the assumptions of free divergence on A(x, y)ẽ and
invariance of the domain in the direction A(x, y)ẽ. This was an application to the results
obtained in section 4. The found homogenized speed should play an important role in finding
the homogenized reaction-advection-diffusion equation in the “KPP” case. In a forthcoming
paper [13], we find also the homogenized speed in the one dimensional case but in a more
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general setting (in fact, the assumption of divergence free is equivalent to the assumption
that the diffusion term x 7→ a(x) is constant over R in the case N = 1).

All the mathematical results obtained in this paper can be applied to study some spread-
ing phenomena. Referring to the results of Weinberger [30], one can conclude that the
spreading speed is equal to the “KPP” minimal speed of propagation in the periodic frame-
work under some assumptions on the initial data u0 := u0(x, y) = u(0, x, y) which is defined
on a periodic domain Ω of RN . In such a setting, all our results can be applied to give
rigorous answers on the asymptotic behavior of the parametric spreading speed with respect
to diffusion and reaction factors and with respect to the periodicity parameter.

Acknowledgments

I am very grateful to Professor François Hamel for his valuable comments, directions and
advices. I would like also to thank Professor Mustapha Jazar for his support and his constant
encouragement during the preparation of this work.

References

[1] H. Berestycki, The influence of advection on the propagation of fronts in reaction-
diffusion equations, In: Nonlinear PDE’s in Condensed Matter and Reactive Flows, H.
Berestycki and Y. Pomeau eds., Kluwer Academic Publ., 2002, pp 1-45.

[2] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure
Appl. Math.55 (2002), pp 949-1032.

[3] H. Berestycki, F. Hamel, N.Nadirashvili, The Speed of Propagation for KPP Type Prob-
lems (Periodic Framework), J. Eur. Math. Soc. 7 (2005), pp 173-213.

[4] H. Berestycki, F. Hamel, N.Nadirashvili, Elliptic Eigenvalue Problems with Large Drift
and Applications to Nonlinear Propagation Phenomena, Comm. Math. Phys. 253 (2005),
2, 451-480.

[5] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment
model : I - The effect of heterogeneous environnement on species conservations, J. Math.
Biol. 51 (2005), no. 1, pp 75-113.

[6] H. Berestycki, F. Hamel, L. Roques, Analysis of the periodically fragmented environment
model : II - Biological invasions and pulsating travelling fronts, J. Math. Pures Appl. (9)
84 (2005), no. 8, pp 1101-1146.

[7] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method,
Bol. Soc. Bras. Mat, 22(1991), pp 1-37.

[8] H. Berestycki, L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Anal.
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