
HAL Id: hal-00172312
https://hal.science/hal-00172312

Submitted on 26 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Demonstration of an integrated LiNbO3 Synchronized
Double Phase Modulator and its Applications to

Dual-Pump Fiber Optical Parametric Amplifiers and
Wavelength Converters

A. Vedadi, N. Grossard, J. Hauden, E. Lantz, H. Maillotte, T. Sylvestre

To cite this version:
A. Vedadi, N. Grossard, J. Hauden, E. Lantz, H. Maillotte, et al.. Demonstration of an integrated
LiNbO3 Synchronized Double Phase Modulator and its Applications to Dual-Pump Fiber Optical
Parametric Amplifiers and Wavelength Converters. Journal of Lightwave Technology, 2007. �hal-
00172312�

https://hal.science/hal-00172312
https://hal.archives-ouvertes.fr


JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 26, NO. 7, APRIL 1, 2008 777

Demonstration of an Integrated LiNbO� Synchronized
Double Phase Modulator and Its Application to
Dual-Pump Fiber Optical Parametric Amplifiers

and Wavelength Converters
Armand A. Vedadi, Nicolas Grossard, Jérome Hauden, Member, OSA, Eric Lantz, Hervé Maillotte, and
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Abstract—We report the fabrication of an integrated LiNbO�

Y-junction synchronized double phase modulator fully packaged
for RF-application up to 40 GHz. This optical modulator allows
for delivering simultaneously counter-phase high-speed modula-
tion and coupling for two input channels. It was designed for ap-
plication to fiber-optical parametric amplifier and wavelength con-
verters for suppressing idler spectral broadening and signal gain
distortion caused by phase modulation itself. With this component,
Idler spectral broadening suppression is experimentally demon-
strated over all the parametric gain band of a two-pump para-
metric amplifier operating in the 1.55- m region. In addition, we
present a useful technique for straightforward and full coupling of
the pumps and the signal.

Index Terms—Communications, fiber optics, fiber optics ampli-
fiers and oscillators, fibers, nonlinear optics.

I. INTRODUCTION

L
ITHIUM NIOBATE (LiNbO ) optical modulators are

now widely used in transmission networks and high band-

width optical applications because of their strong potential and

versatility for delivering high-speed modulation solutions [1],

[2]. For instance, they are currently used in broadband fiber op-

tical parametric amplifiers (FOPAs) for suppressing stimulated

Brillouin scattering (SBS) of the high-power continuous-wave

pumps [3]. To this end, the most commonly used approach

is to increase the SBS threshold by modulating of the pump

phase with a pseudo-ramdom bit sequence (PRBS) or a multi-

frequency scheme with a maximum frequency modulation of

a few gigahertz, while keeping the maximum spectral density

in a limited frequency range. However, this optical modulation
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applied to the pump phase induces in turn some limitations on

system performances, in particular, on the bit-error rate (BER)

and the Q-value [4]–[7]. First, pump phase modulation induces

a detrimental spectral broadening of the converted signal (idler)

wave generated by four-wave mixing (FWM) [8]. Second, as

it has recently been demonstrated theoretically and experimen-

tally [4], [9] pump phase modulation can generate signal gain

distortions which depend on the rise/fall time of the optical

modulator. To overcome these obstacles, several techniques have

been proposed and demonstrated. For instance, it is possible to

reduce idler spectral broadening in single-pump FOPAs by using

binary-phase shift keying phase modulation of the pump [10],

[11]. Quite recently, Kylemark et al. [12] showed that although

the Q-value of data amplified by a periodic and deterministic gain

may be considerably degraded, the BER can still be relatively

unaffected if ON-OFF-keyed (OOK) data is amplified. However,

using two-pump FOPAs, both idler spectral broadening and

parametric gain distortions can in principle be totally cancelled

by using a dual-wavelength counter-phasing modulation scheme

[13]–[16]. This latter scheme theoretically ensures that both the

idler frequency chirp and the signal gain distortion induced by

one pump are exactly balanced by an opposite frequency chirp

induced by the second pump, paving the way for fully-trans-

parent parametric devices. Counter phase modulation of the

pumps has been achieved either by using two PMs driven with

two complementary patterns, or a single PM and an accurate

optical delay line between the two pumps [14], [15]. In both

cases, however, it is difficult in practice to synchronize and keep

the pump in phase opposition because of the short PM rise/fall

time ( 30 ps). In a recent communication, we reported the fab-

rication of a novel LiNbO -based electro-optic PM that allows

for the simultaneous achievement of counter-phase modulation,

synchronization and coupling of two channels for two-pump

FOPA [17]. In this paper, we demonstrate the effectiveness of this

synchronized double-phase modulator (SDPM) over the whole

flat gain band of a two-pump FOPA through high-resolution

spectral analysis of the idler and signal waves. In addition, we

describe a new scheme to allow for the achievement of direct

pump signal coupling within the parametric amplifier without

any pump loss. Our scheme simply relies on the use of optical

circulator instead of fused tap coupler. This paper is organized

as follows. In Section II, we will briefly describe the fabrication

process of our SDPM and we will characterize its mode of
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Fig. 1. (a) Scheme of the X-cut SDPM. (b) Output 1 Gbits/s NRZ-eye diagram
in a Mach–Zehnder interferometer configuration.

operation in a Mach–Zhender configuration. Then, we will

present the fiber optical parametric amplifier incorporating

the SDPM and providing the main experimental results by

comparing the in-phase to the counter phase scheme. Finally,

we will conclude and discuss further studies.

II. SYNCRONIZED DOUBLE PHASE MODULATOR

The LiNbO modulator was designed and fabricated to meet
the requirements of ultra-high bandwidth optical applications. It
consists of a synchronized double broadband PM integrated on
X-cut LiNbO . Fig. 1(a) is a sketch of the device. It is made up of
two input waveguides, linked by a Y-junction to a single output.
All the waveguides are single-mode in the 1.55- m telecom
window. A set of push-pull broadband coplanar RF-electrodes
is put on top of both parallel waveguides. Thanks to a precise
geometrical arrangement, they provide an RF-electric field
of opposite sign in each optical arm. As an external electric
signal is applied, each waveguide is the location of an index
modulation that is the exact opposite, in amplitude and phase,
of the modulation that takes place in the other waveguide. A
Y-coupler is set at the output for optical mixing. The device
acts as two automatically synchronized and coupled broadband
counter phase PMs. It is fully packaged for RF-application up
to 40 GHz. When launching the same monochromatic source at
both inputs, the SDPM behaves like a Mach–Zehnder interfer-
ometer. We performed the experiment by using as a signal source
a frequency-stabilized DFB fiber laser operating at 1549.74 nm
(linewidth 45 kHz) and a fast 40-GHz digital oscilloscope
(Tektronix CSA 8000 Communications Signal Analyzer).
Fig. 1(b) shows the intensity modulation detected at the output
of the device driven by a 1 Gbits/s (PRBS) non-return-to
zero (NRZ) pattern. As it can be seen, the clearly opened eye
diagram reveals the counter-phase modulation that has occurred
on each waveguide of the SDPM. This simple experiment shows
that our double phase modulator can be used as a conventional
fast intensity modulator as well. Note also that, as this LiNbO
modulator is bidirectional, it can deliver from one channel two
out-of-phase output channels.

Fig. 2. Experimental setup of the counter-phase modulated two-pump fiber op-
tical parametric amplifier. TL: tunable laser. EDFA: Erbium-doped fiber am-
plifier. 2-CFBG: dual-channel fiber bragg grating. PC: polarization controller.
HNLF: highly-nonlinear fiber. BOSA: Brillouin optical spectrum analyzer.

III. EXPERIMENTAL SETUP

The SDPM was then incorporated in a two-pump FOPA. The

experimental setup is depicted in Fig. 2. Two tunable lasers

(TL1 and TL2) at 1536 nm and 1566 nm were

used as parametric pumps. They were copolarized using po-

larization controllers and launched together into the SDPM. It

was electrically driven by a PRBS pattern generator at 2-Gbits/s

with a pattern with a corresponding rise/fall time of

about 30 ps. We have checked that this frequency modulation

is large enough for raising the Brillouin threshold power above

the pump powers.

At the SDPM’s output, the synchronized counter-phase mod-

ulated TLs are amplified using a single 33-dBm-high-power

EDFA. A dual-channel fiber Bragg grating (2-CFBG) centered

at and has been specially developed to remove any

broadband ASE noise in the amplification band and around the

two pump frequencies. This is indeed crucial for FOPA to have

a large pump optical signal-to-noise ratio (OSNR) for mini-

mizing the pump-to-signal noise transfer due to FWM and to

keep the noise figure below 4–5 dB [7], [18]. This custom-made

filter consists of two sub-gratings written in a single piece of

fiber at the same location, thus keeping the pumps in synchro-

nization. Each channel linewidth is 0.25 nm at 3 dB. Fig. 3

shows the reflectivity of the two-channel FBG obtained with a

broadband ASE source. As a signal source, we use an additional

continuous-wave tunable laser (TL3) that might be directly

intensity modulated up to a few hundred megahertz. Instead

of using a fiber tap coupler, as in most previous experiments,

the signal is coupled to the two pumps at the other end of the

2-CFBG by use of an additional optical circulator. This latter

scheme provides a much more efficient coupling of the signal

and the pumps compared to a standard coupler, because of the

2-CFBG reflectivity at the pumps wavelengths and transmis-

sion at the signal wavelength. The 2P-FOPA acts therefore as

a real amplifying device in a black-box configuration, since

no signal power is lost before parametric amplification. The

amplifier medium is a 500-m-long highly nonlinear fiber

(HNLF) with nonlinear coefficient 10 W km and

zero-dispersion wavelength 1551.4 nm. The fiber absorp-

tion is 0.58 dB km at 1550 nm. The third and fourth dis-
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Fig. 3. Reflectivity spectrum of the dual-channel FBG (resolution � 0.1 nm).

persion coefficients were measured as s m

and s m , using a recent accurate method

[19]. Note that, in our case, HNLF offers a strong advantage

with respect to conventional dispersion shifted fibers because

of their lower dispersion slope and higher nonlinear coeffi-

cient [20]. In particular, the HNLF has a low dispersion slope

0.033 ps.nm km which prevents from residual

temporal walk-off between the two pumps in the region of

zero-dispersion wavelength and keeps the synchronization of

the counter-phasing scheme all along the amplifier span. TL1

and TL2 powers were tuned to reach 23 dBm for each pump

below the Brillouin threshold power. At the output end, the

amplified signal and idler waves are independently analyzed

using a tunable bandpass filter (TB9, 1-nm bandwidth) and a

Brillouin optical spectrum analyzer (BOSA) with a 10-MHz

high resolution. The counter phasing PM scheme is finally

compared to the in-phase PM scheme simply by multiplexing

TL1 and TL2 together in one arm of the SDPM using a 50/50

fiber coupler.

IV. RESULTS

Fig. 4(a) shows the experimentally-measured gain band. The

2P-FOPA exhibits a flat 9-dB mean gain over approximately

20-nm band, from 1540 to 1560 nm. Note on Fig. 3(a) that the

FOPA bandwidth is not very wide. But this is in good agreement

with the theoretically predicted gain spectrum (solid curve)

using the standard analytical six-waves model [16], [21]. Since

it takes into account the two non-phase-matched sidebands

generated by four-wave mixing symmetrically with respect to

the pump frequencies, it provides the exact parametric gain so-

lution near the pumps compared to the conventional four-wave

mixing model. Note also that fiber absorption as well as the

misalignment between the pumps, the signal and the idler po-

larizations due to a low PMD 0.1 ps km are known

to uniformly decrease the gain bandwidth [22]. To account for

these detrimental effects, the fiber effective interaction length

was set at 440 m for the analytical calculation, instead of the

actual 500 m length of the HNLF. Fig. 4(b) illustrates the FOPA

Fig. 4. (a) Experimentally-measured gain band of the 2P-FOPA (stars) and
theoretically-predicted one (solid curve). (b) Low resolution 2P-FOPA output
spectrum showing the two pumps, the amplified signal, and the generated idler,
respectively.

Fig. 5. (a and c) Signal and Idler spectra when the pumps are in-phase mod-
ulated and (b and d) counter-phase modulated using the synchronized double
phase modulator.

output spectrum with both pumps recorded with a conventional

optical spectrum analyzer (resolution: 1 nm), the amplified

signal at 1546 nm and its idler counterpart generated at

1556 nm. The input signal power is 5 W ( 23 dBm)

and the gain was assessed to about 10 dB.

Fig. 5(a) and (c) show the corresponding signal and idler

high-resolution spectra using the BOSA when the pumps are
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Fig. 6. (a) Modulated signal spectrum at the FOPA input. (b) Output Idler spec-
trum when the pumps are in-phase modulated. (c) Counter-phase modulated
using the SPDM.

co-phase modulated, i.e., when they are launched together in

one arm the SDPM. By comparing Fig. 5(a) and (c), we can

clearly see the substantial deterioration with a corresponding

noise pedestal for the idler with respect to the output signal.

The idler peak power is at least 10 dB lower, while the ratio

to the pedestal noise is 18 dB lower compared to the output

signal. With the counter-phasing method, however, we can see

on Fig. 5(b) and (d) that the idler spectral broadening is totally

cancelled and the ratio of the idler to the pedestal noise is

comparable to that of the output signal. The remaining pedestal

and sideband peaks at every 2 GHz (the frequency carrier of

the PRBS modulation) seen on all figures can be attributed

due to the pump-to-signal noise transfer and to a non-perfect

PRBS pattern. To get better insight, we have also investigated

the spectral content of the idler generated from an intensity-

modulated signal. Indeed, when a current is applied to the TL3

diode, two low power sidebands located at 380 MHz from the

carrier were created. A high resolution BOSA spectrum of the

input signal, shown in Fig. 6(a), reveals those two modulation

sidebands. Fig. 6(b) shows the wavelength converted idler when

the pumps are co-phase modulated. On one hand, we can

notice that the original signal sidebands are almost lost in

the noise induced by the transfer of the two pumps PM. On

the other hand, when the pumps are counter-phase modulated,

Fig. 6(c) shows that the original signal sidebands are well

preserved on the wavelength converted idler, which confirms

the effectiveness of the SDPM.

Tuning from 1539 to 1548 nm, we have verified the idler

broadening cancellation over approximately half of the inner

band between the two pumps. These results are summarized

on Fig. 7 which depicts the ratio of the idler peak power to the

pedestal noise versus the wavelength (OSNR), for the in-phase

(dashed curve) and counter-phase (dashed-dot curve) modula-

tion scheme. The comparison with the signal peak power to the

pedestal noise (left side, solid curve) shows that by using the

SDPM, the two-pump FOPA acts as a fully transparent wave-

length converter.

Fig. 7. Ratio of the peak power to the pedestal noise (OSNR) versus the
wavelength for signal (left side, solid curve) and the idler for in-phase (right
side, dashed curve) and counter-phase (right side, dashed-dot curve) modulated
pumps.

V. CONCLUSION

We have demonstrated a novel two-pump fiber optical
parametric amplifier architecture including a single LiNbO
synchronized double phase modulator for pump SBS sup-
pression. With this modulator, we straightforwardly achieved
synchronized counter-phase modulation of the parametric
pumps and suppression of the idler spectral broadening. The
counter-phasing method was checked over all the parametric
gain band. We may expect that our 2P-FOPA that uses the
SDPM also suppresses the parametric gain distortion and sub-
sequently the BER degradation and the Q-penalty due to pump
phase modulation, as theoretically predicted [16], paving the
way for future fully-transparent parametric devices.
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