Jesper Lykke Jacobsen

Exact enumeration of Hamiltonian circuits, walks, and chains in two and three dimensions

We present an algorithm for enumerating exactly the number of Hamiltonian chains on regular lattices in low dimensions. By definition, these are sets of k disjoint paths whose union visits each lattice vertex exactly once. The well-known Hamiltonian circuits and walks appear as the special cases k = 0 and k = 1 respectively. In two dimensions, we enumerate chains on L × L square lattices up to L = 12, walks up to L = 17, and circuits up to L = 20. Some results for three dimensions are also given. Using our data we extract several quantities of physical interest.

Introduction

The subject of Hamiltonian circuits and walks plays an important role in mathematics and physics alike. Given a connected undirected graph G, a Hamiltonian circuit (or cycle) is a cycle (i.e., a closed loop) through G that visits each of the V vertices of G exactly once [START_REF] Hamilton | Proc. Roy. Irish Acad[END_REF]. In particular, a Hamiltonian circuit has length V . Similarly, a Hamiltonian walk (or path) is an open non-empty path (i.e., with two distinct extremities) of length V -1 that visits each vertex exactly once. Note that a Hamiltonian circuit can be turned into a Hamiltonian walk by removing any one of its edges, whereas a Hamiltonian walk can be extended into a Hamiltonian circuit only if its end points are adjacent in G.

We add now to this list of well-known definitions the set C k of Hamiltonian chains of order k. Each member in C k is a set of k disjoint paths whose union visits each vertex of G exactly once (see Fig. 1). The set of Hamiltonian walks is then C 1 , and by convention we shall let C 0 denote the set of Hamiltonian circuits. Note that if V is even, C V /2 is the set of dimer coverings of G. The Hamiltonian chain problem has been studied earlier by Duplantier and David on the Manhattan lattice [START_REF] Duplantier | [END_REF], but never to our knowledge on an undirected lattice. Determining whether G contains a Hamiltonian circuit is a difficult (NP-complete) problem. An even more difficult problem is to determine how many distinct Hamiltonian circuits are contained in G. In this paper we shall present an algorithm that efficiently enumerates Hamiltonian circuits, walks, and chains for regular low-dimensional graphs.

The motivation for studying such Hamiltonian structures is by no means limited to graph theory. Indeed, under appropriate solvent conditions, biopolymers such as proteins may fold to form compact conformations, the study of which is currently at the centre of an intense activity in the biophysics community. While real biopolymers contain complicated interactions which can probably not be fully accounted for within any simple lattice model, the study of Hamiltonian walks has been advocated as a first approximation for understanding qualitatively the excluded-volume mechanisms at work behind such problems as polymer melting [3] and protein folding [4]. Our extension to Hamiltonian chains permits to study polydisperse models of several polymers.

Another interest stems from the study of magnetic systems with O(n) symmetry in physics. These can modelled on the lattice as self-avoiding loops (each having the weight n) [5], which, in the limit of vanishing temperature T , are constrained to visit all the vertices [6]. Coupling such systems to a magnetic field H amounts, in a perturbative expansion around H = 0, to inserting pairs of loop end points [START_REF] De Gennes | Scaling concepts in polymer physics[END_REF]. In the limit n → 0, the partition function Z of the O(n) model at T = 0 in a weak magnetic field H can thus be expressed in terms of the number of Hamiltonian chains as

Z = k C k H 2k . (1.1)
Finally, the exact enumeration of configurations is useful for settling issues of ergodicity when developing algorithms that provide unbiased sampling of Hamiltonian walks in two [START_REF] Oberdorf | [END_REF] and three [9] dimensions.

In section 2 we present our enumeration algorithm and discuss some aspects of its implementation. Results in dimensions d = 2 and d = 3 are given in section 3. For convenience, we limit the discussion to the simplest lattices (square and cubic), although the construction extends straightforwardly to any regular lattice. Our results are strongest in d = 2 where we determine all C k for L × L square lattices up to L = 12, C 1 up to L = 17, and C 0 up to L = 20. In d = 3 the largest lattice that we were able to access has size 3 × 4 × 4. Finally, we show in section 4 how to extract physically interesting quantities from our data.

Algorithm

We first present our algorithm in dimension d = 2 and then discuss the necessary modifications for d = 3. For convenience, we limit the presentation to the simplest lattices, viz. an L 1 × L 2 square lattice and an L 1 × L 2 × L 3 cubic lattice, although the construction extends straightforwardly to any regular lattice. The boundary conditions are free (non-periodic), although it will be clear that it is easy to introduce periodic boundary conditions along one of the lattice directions.

The algorithm is based on the transfer matrix principle, according to which the lattice is cut into two parts by means of a conveniently chosen d -1 dimensional oriented surface S. The part of the lattice above (resp. below) S is called the future (resp. the past). The surface S cuts the lattice only at mid points of edges. At the initial (resp. final) step of the enumeration the whole lattice belongs to the future (resp. past), so the algorithm consists in sweeping S over the entire lattice. This is done by gradually pushing S towards the future, so that in any one step of the algorithm a single vertex is transferred from the future to the past. A few subsequent steps for a 4 × 4 lattice are shown in Fig. 2.

In any step, the configuration of the system is described by some information about the edges cut by S, and by the number k of chains which have already been completed. The information refered to is the connectivity of the cut edges with respect to the part of the lattice which belongs to the past, and is best illustrated by an example (see Fig. 3). The complete description of the configuration reads in this case (0, 1, 1, 2, 3, 2|0|1), where the first L 1 entries refer to the state of the cut edges which are parallel to the 2-direction (vertical), and the next entry refers to the state of the one cut edge which is parallel to the 1-direction (horizontal). The last entry is the number k = 1 of completed chains. In the connectivity part of the information, we use the following coding:

1. A zero entry means an empty edge.

2. Two equal positive entries mean a pair of edges which are connected in the past by part of a chain. Each of these edges will eventually have to be linked to a chain end point in the future, so as to form a complete chain.

3. An unpaired positive entry means an edge which forms part of a partially completed chain, one end point of which has already been fixed in the past. The edge will eventually be linked to another end point in the future, leading to the formation of a complete chain.

It is important to avoid any redundancy in this connectivity information. A unique coding is obtained by requiring that the positive entries (i.e., unpaired entries, or the leftmost member of a pair of equal entries) be arranged in increasing order (1, 2, 3, . . .) when reading through the coding from left to right. In step t of the enumeration, the configurations are transfered from "time" t to time t + 1. More precisely, each configuration at time t is examined in turn, and all its descendent configurations at time t + 1 are generated by exhausting the possible arrangements of the chain at the vertex which is transfered from the future to the past. The information described above is necessary and sufficient for deducing the connectivity information at time t + 1 from that at time t. Note that since the transfered vertex is not allowed to be empty, there are four possible arrangements if it accommodates a chain end, and six arrangements if a chain passes though it.

Each configuration generated at time t + 1 is inserted in an appropriate date structure-a hash table-which also keeps track of its weight (here an integer). The weight of a descendent configuration is the sum of the weights of all the parent configurations that generated it. Some of the generated descendent configurations are however rejected before insertion in the hash table (see below). Once step t has been completed, the hash table storing the configurations at time t is erased, and one can move on to step t + 1. In this way, only two hash tables (at times t and t + 1) are needed in the entire process.

Note that the choice of data structure is essential for the feasibility and the efficiency of the algorithm. A hash table permits to store the configurations via a key which is obtained by reading its coding as one large integer, modulo a suitably chosen prime. Storing and retrieving configurations can be done in constant time, i.e., independently of the number of configurations being stored in the hash table.

The hash table also allows to keep track of the weight of each configuration, according to the above rule. Namely, when a descendent configuration is generated with weight w, we first make an attempt of looking it up in the hash table at time t + 1. If it is not there, it is inserted with weight w. If it is already there, w is added to the weight of configuration already present.

If in the transfer process the two ends of the same chain (coded by two equal positive entries) join up, the resulting configuration is rejected, since this would mean forming a cycle rather than a chain. (We make an exception to this rule when the very last vertex is added, since this permits to enumerate C 0 .) If an unpaired positive entry gets left behind in the past it means that a chain has been completed, and so k → k + 1.

Denote now a general configuration as (s 2,1 , s 2,2 , . . . , s 2,L1 |s 1 |k). At step t = 0, the initial state is (0, 0, . . . , 0|0|0) and has weight 1. When a row of the lattice is completed, any configuration with s 1 = 0 gets rejected. When transfering the i'th vertex of the last row, any configuration with s 2,i = 0 gets rejected. This trick allows us to avoid having to deal with a lot of special cases when a boundary vertex is transfered-and also makes it much easier in practice to implement the algorithm correctly. After step t = L 1 L 2 the lattice belongs completely to the past, and all the configurations are of the form (0, 0, . . . , 0|0|k). Their respective weights are precisely the C k that we wanted to compute.

The maximum lattice size that we can attain is essentially limited by the number of different intermediate configurations generated in the transfer process. This number attains its largest value after transfering the next last vertex in the next last row. In practice we could store at most ∼ 10 8 configurations.

As usual in enumeration studies, the coefficients C k are much larger than the integers which are usually represented by a computer (≤ 2 32 for an unsigned integer on a 32-bit machine). We therefore repeat the enumeration several times, computing each time the result modulo different coprime integers (2 32 , 2 31 -1, 2 31 -3,. . .), and reconstruct the true result in the end by using the Chinese remainder theorem. Note that the use of modular arithmetics is possible because the weights of configurations are constructed only by successive additions of positive integers.

The counts for systems of size L 1 × L 2 and L 2 × L 1 should of course coincide. Verifying that this is indeed the case is however a very strong check of the algorithm, since permuting L 1 and L 2 (with L 1 = L 2) leads to a completely different transfer process in terms of the propagation of the surface S.

We have performed such checks both for d = 2 and d = 3.

We now describe briefly how the algorithm can be adapted to a d-dimensional hypercubic lattice of size

L 1 × L 2 × • • • × L d .
The surface S is pushed though the lattice by means of d nested loops, of which the innermost loop (at nesting level d -1) moves S along the 1-direction, etc., and the outermost loop (at nesting level 0) moves S along the d-direction. In general the loop at nesting level ℓ moves S along the (d -ℓ)-direction.

A configuration is given by ({s

d }|{s d-1 }| • • • |{s 1 }|k)
, where the space {s ℓ } describes the edges cut by S which are parallel to the ℓ-direction and consists of ℓ-1 i=1 L i entries. When the loop at nesting level d -ℓ is executed for the last time, the entry in {s ℓ } corresponding to the position of the loops at nesting levels > d -ℓ must be zero; otherwise the configuration is rejected.

At each vertex there are 2d possible local arrangements if the vertex contains a chain end, and 2d 2 arrangements if it does not.

We have implemented the algorithm for d = 2 and d = 3. It is of course most efficient in low dimensions when the number of entries necessary to describe a configuration is small, and the configurations themselves are strongly constrained by topology. We were however able to obtain useful results as well for d = 3 (see below).

Results

Two dimensions

We first present our results in two dimensions. We have been able to solve the full Hamiltonian chain problem for L × L square lattices up to size L = 12. The number of circuits C 0 vanishes when L is odd by an easy parity argument, but the remaining C k with k = 1, 2, . . . , ⌊L 2 /2⌋ are all non-zero. The complete result for L = 12 is shown in Table 1.

When L is even, C L 2 /2 should be the number D L of dimer coverings of an L × L square lattice. We have checked that our data agree with the analytical results [10] for D L for all L = 2, 4, 6, 8, 10, 12.

If only the first few C k are needed, the enumeration can be taken to larger sizes by rejecting all states (s 2,1 , s 2,2 , . . . , s 2,L1 |s 1 |k) with k > k max .

In particular, we have obtained the number C 1 of Hamiltonian walks up to size L = 17; see Table 2. This extends the L ≤ 7 results by Mayer et al [11] by ten new terms. Note also that Jaeckel et al [12] have proposed a Monte Carlo method for estimating C 1 for larger L. These authors obtain 1.3582 • 10 7 for L = 7-that is 0.3 % above the exact result-and 2.7791 • 10 9 for L = 8-that is 29 % below the exact result.

Variant Hamiltonian walks, constrained to have their end points on diametrically opposite corners of an L × L square with L even, have been studied in [13]. Since this is technically an easier problem than our unconstrained walks, the enumerations could be taken to size L = 34.

Finally, we have obtained the number C 0 of Hamiltonian circuits up to size L = 20; see Table 3. This extends the L ≤ 16 data [START_REF]Sequence A[END_REF] by two new terms.

k 2 × 2 × 2 2 × 2 × 3 2 × 3 × 3 3 × 3 × 3 3 × 3 ×

Three dimensions

Our results for the full Hamiltonian chain problem on small L 1 × L 2 × L 3 parallelepipeds are given in Table 4. In addition we find for the 3 × 4 × 4 system a number of C 0 = 3777388236 circuits and C 1 = 1073054619800 walks. Note that the transfer matrix method is essentially limited by the area of the smallest cross section of the parallelepiped. It would thus be possible to extend the enumerations to some systems with, say, L 1 = L 2 = 3 and L 3 ≥ 5, but we have chosen to focus here on close-to-cubic shapes which are the most challenging.

The number of walks C 1 has been much studied in the area of protein research [START_REF] Shakhnovich | [END_REF]16], whereas the numbers C k with k = 1 have to our knowledge not been considered previously. Note that the works [START_REF] Shakhnovich | [END_REF]16] were based on direct enumeration, meaning that in contrast to our transfer matrix method each individual conformation was actually generated. The limitation of direct enumeration is thus the number of conformations being counted, since the CPU time requirement is (at best) proportional to this. Accordingly, Ref. [16] uses massively parallel supercomputer facilities to access the 3 × 4 × 4 system. By contrast, our transfer matrix approach is limited rather by the memory than the CPU time. Unfortunately, this memory limitation put the 4 × 4 × 4 system just a little outside our reach. On the other hand, the counts for the 3 × 4 × 4 system were made very fast, in just a few minutes.

In Refs. [START_REF] Shakhnovich | [END_REF]16] the counts were produced modulo the symmetry group of the lattice. For the 2 × 2 × 2 and the 3 × 3 × 3 systems, our results for C 1 come out as exactly 24 times those of [START_REF] Shakhnovich | [END_REF]. For the 3 × 3 × 4 and 3 × 4 × 4 systems, our results for C 1 are precisely 8 times those of [16]. This means that for each of these systems, all Hamiltonian walks are unrelated by lattice symmetries.

Applications

The enumerations reported above conceal many quantities of physical relevance. We discuss here some of them.

Conformational exponents

The radius of gyration R of a polymer of length l ≫ 1 is expected to scale like

R ∼ l ν (4.1)
where ν is a standard critical exponent [START_REF] De Gennes | Scaling concepts in polymer physics[END_REF]. For Hamiltonian walks on an L d hypercube in d dimensions, we have obviously R ∼ L and l ∼ L d , and so ν = 1/d. Non-trivial information is however contained in the number of circuits and walks, here both supposed to have one marked monomer attached to a fixed point:

C1 ∼ µ l l γ-1 , C0 ∼ µ l l -νd . (4.2)
Here µ is the so-called connective constant, and γ is another critical exponent [START_REF] De Gennes | Scaling concepts in polymer physics[END_REF]. In our setup, the circuits are unmarked and the end points of the walks are free to be anywhere on the lattice, and so

C 1 /C 0 ∼ l γ+1 ∼ L (γ+1)d . (4.3)
In addition to this leading behaviour there are subdominant corrections due to surface effects.

In two dimensions, we can extract results for µ and γ using the data in Tables 23. Due to parity effects, this is best done by working in terms of the ratios η(L+2) η(L) , where η(L) = C 0 (L) for even L or C 1 (L) for any parity in the case of µ, and η(L) = C 1 (L)/C 0 (L) for even L in the case of γ. The naive approximants are further extrapolated using standard finite-size scaling techniques. This gives µ = 1.473 ± 0.001 , γ = 1.042 ± 0.003 .

(4.4)

Our estimate for µ is in good agreement with (but less accurate than) the currently best known estimate [6] µ = 1.472801 ± 0.00001 .

Note that the latter uses exact predictions from field theory for the leading finite-size corrections, a scheme that we have not adopted here. The constrained Hamiltonian walks considered in [13] led to a consistent value for µ. The long-standing history of numerical and analytical estimates for µ of Hamiltonian walks can be found in the introductions of [12,6].

Our estimate for γ is a nice confirmation of the exact field theoretical result [6]

γ = 117 112 = 1.04464 • • • (4.6)
Previous numerical results, as discussed in [6] and references therein, were obtained in a cylindric geometry and assumed certain results of conformal field theory. The present estimate therefore furnishes a more direct verification of the exact result (4.6).

Contact probabilities

As already mentioned in the introduction, a Hamiltonian circuit can be turned into a Hamiltonian walk by removing any one of its edges, whereas a Hamiltonian walk can be extended into a Hamiltonian circuit only if its endpoints are adjacent. This implies that the probability that the two end points of a walk are adjacent is

p adj = C 0 L d C 1 . (4.7)
In two dimensions, the p adj for L × L square can be computed from Tables 23. The resulting numerical values are displayed in Table 5. Note that p adj vanishes for odd L (as it does on any bipartite lattice having an odd number of vertices).

The values in Table 3 have been used in [START_REF] Oberdorf | [END_REF] Physically, on may argue that p adj is proportional to the probability that the two ends of an open polymer (walk) join so as to form a ring polymer (circuit).

It is tempting to try similarly to construct from the ratio of C 1 and C 2 the probability that the conformation of two chains is such that one end point of each are adjacent on the lattice. Unfortunately, this is not possible, since certain two-chains (more precisely those in which an end point of one chain is adjacent to both end points of the other chain) can be obtained from more than one one-chain by removing an internal edge in the latter.

Lee-Yang zeroes

The study of phase transitions through the location of partition function zeroes in the complex magnetic field plane was initiated by Yang and Lee [17]. In particular, these authors established that for the Ising model these zeroes lie on the unit circle in terms of the variable x = e 2H , i.e., they correspond to purely imaginary values of the field H. The zero closest to the positive real axis is denoted e iθc , where θ c is the so-called Lee-Yang edge. At the critical temperature, θ c → 0 in the thermodynamic limit, and its finite-size scaling permits to access a critical exponent. Another possible approach is to study the density of zeroes g(θ). Creswick and Kim [18] have shown that at the critical temperature g(θ) ∼ |θ| 1/δ for θ ≪ 1.

We have studied the zeroes of the partition function (1.1) in terms of the variable y = -H 2 for L × L squares with L ≤ 12. For odd L there is one trivial zero at y = 0 (since C 0 = 0), and for even L the two zeroes closest to y = 0 form a complex conjugate pair with an imaginary part that tends to zero as L → ∞. Disregarding these "exceptional" zeroes, all the remaining zeroes (for L of any parity) are found to lie on the positive real axis in the complex y-plane, corresponding to purely imaginary H as in the Lee-Yang theorem.

We now define a finite-L approximation to the density of zeroes in the point y n as g(y n) = 1 yn+1-yn , where we have arranged the zeroes of Z(L × L) in increasing order y 1 < y 2 < . . . < y N .

The approximations g(y) are shown in Fig. 4 for L = 9, 10, 11, 12. One observes a clear crossover near y = 1, separating two regimes of power law behaviours. For even L the curves bifurcate for y ≪ 1, which can be remedied by regrouping the zeroes two by two (not shown). The power laws extracted from the largest available sizes read g(y) ∼ y -0.46 for y ≪ 1 y -1.66 for y ≫ 1 (4.8)

We have no satisfying explanation for these exponents at present. The naive application of the standard scaling laws νd = 2 -α (Josephson) and α + 2β + γ = 2 (Rushbrooke), and the results ν = 1 2 and γ = 117 112 for the critical y = 0 system [6], leads to 1/δ = -5 229 = -0.0218 • • • , which is clearly off the mark.

Figure 1 : 1 Figure 2 :

 112 Figure 1: Hamiltonian chain of order 4 on a square lattice of size 7 × 7.

Figure 3 :

 3 Figure 3: Configuration on a partially constructed 6 × 6 square.

Table 1 :

 1 Number C k of Hamiltonian chains of order k (i.e., consisting of precisely k chains) on a 12 × 12 square lattice.

	k

Table 2 :

 2 Number C 1 of Hamiltonian walks on an L × L square lattice, up to size L = 17.

	L

Table 3 :

 3 Number C 1 of Hamiltonian circuits on an L × L square lattice, up to size L = 20.

Table 4 :

 4 Number C k of Hamiltonian chains of order k on various cubic lattices of size L 1 × L 2 × L 3 . Blank entries are zero.

	4

Table 5 :

 5 to test that a certain Monte Carlo algorithm for producing Hamiltonian walks did indeed give unbiased results. Probability p adj that the two end points of a Hamiltonian walk on an L × L square lattice are adjacent.

	L	p adj
	2 1.00000000000000000000
	4 0.34782608695652173913
	6 0.16826830842213579364
	8 0.09819321919798768694
	10 0.06400435120127304050
	12 0.04488610346836087660
	14 0.03315398616246303584
	16 0.02545282308230371747

Acknowledgments

This work was supported through the European Community Network ENRAGE (grant MRTN-CT-2004-005616) and by the Agence Nationale de la Recherche (grant ANR-06-BLAN-0124-03).