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Abstract

In this paper, we consider nonconservative Cauchy systems with
discontinuous coefficients for a noncharacteristic boundary. The con-
sidered problems need not be the linearized of a shockwave on a shock
front. We introduce then a viscous perturbation of the problem; the
viscous solution uε depends of the small positive parameter ε. This
problem, obtained by small viscous perturbation, is parabolic for fixed
positive ε. Under some assumptions, incorporating a sharp spectral
stability assumption, we prove the convergence, when ε → 0+, of uε

towards the solution of a well-posed hyperbolic limit problem. Even
though the obtained limit problem is well-posed, it is not bound to
satisfy a uniform Lopatinski Condition. Our result is obtained, in the
1-D framework, for piecewise constant coefficients. Explicit examples
of 2× 2 systems satisfying our assumptions are given. They rely on a
detailed analysis of our stability assumption (uniform Evans condition)
for 2× 2 systems.
The obtained result is new and generalizes the scalar expansive case
solved in [7], where the considered hyperbolic operator was ∂t+a(x)∂x,
with a(x) = a+ > 0 if x > 0 and a(x) = a− < 0 if x < 0. A complete
asymptotic description of the layer is given, at any order of approxima-
tion. In general, strong amplitude noncharacteristic boundary layers
form, which are localized on the area of discontinuity of the coeffi-
cient. Characteristic boundary layers, which appear along characteris-
tic curves, also forms. Both type of boundary layers are polarized on
specific disjoint linear subspaces.

1 Introduction.

Let us consider the 1-D linear hyperbolic system:

(1.1)

{
∂tu + A(x)∂xu = f, (t, x) ∈ Ω,

uε|t=0 = h .

where Ω = {(t, x) ∈ (0, T ) × R}, with T > 0 fixed once and for all. The
unknown u(t, x) belongs to RN and A belongs to the set of N ×N matrices
with real coefficients MN (R). A is assumed to satisfy:

A(x) = A+1x>0 + A−1x<0,

where A+, A−, are constant matrices inMN (R). As we will detail later, since
A is discontinuous through {x = 0}, this problem has no obvious sense. This
problematic relates to many linear scalar works on analogous conservative
problems. We can for instance refer to the works of Bouchut, James and
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Mancini in [1], [2]; by Poupaud and Rascle in [17] or by Diperna and Lions
in [5]. We can also refer to [6] and [7] by Fornet. The common idea is that
another notion of solution has to be introduced to deal with linear hyperbolic
Cauchy problems with discontinuous coefficients. Note that almost all the
papers cited before use a different approach to deal with the problem. Like
in [6] and [7], we will opt for a small viscosity approach. Let us describe
now the first result obtained in this paper. We consider the following viscous
hyperbolic-parabolic problem:

(1.2)

{
∂tu

ε + A(x)∂xuε − ε∂2
xuε = f, (t, x) ∈ Ω,

uε|t=0 = h ,

where ε, commonly called viscosity, stands for a small positive parameter.
Note well that, if we suppress the terms in −ε∂2

x from our differential oper-
ator, the hyperbolic problem obtained has no obvious sense, because of the
nonconservative product A(x)∂xu not being well-defined when both u and
A are discontinuous through {x = 0}.

The definition of such nonconservative product is of course crucial for
defining a notion of weak solutions for such problems. It is an interesting
question by itself, solved for a quasi-linear analogous problem by Lefloch
and Tzavaras ([13]). Adopting a viscous approach allows us to avoid the dif-
ficult question of the definition of the nonconservative product in the linear
framework.

In problem (1.2), the unknown is uε(t, x) ∈ RN , the source term f be-
longs to H∞((0, T ) × R) and the Cauchy data h belongs to H∞(R). We
make the classical hyperbolicity assumption, plus we assume the boundary
{x = 0} is noncharacteristic. In addition, we make a spectral stability as-
sumption, which is an Uniform Evans Condition for a related problem. Last,
we make an assumption ensuring that the limit hyperbolic problem satisfied
by u := limε→0+ uε is well-posed. A crucial remark is that this limit prob-
lem can be reformulated equivalently into a mixed hyperbolic problem on
the half-space {x > 0}, which does not satisfy a Uniform Lopatinski
Condition. The goal of Proposition 2.10 is to give, for N = 2, examples
of discontinuities of the coefficient (A+, A−) satisfying all our Assumptions.
This Proposition relies on explicit algebraic computations of the Evans func-
tion performed in the case N = 2.

Our assumptions do not forbid A+ to have only positive eigenvalues and
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A− of to have only negative eigenvalues. In this case, the discontinuity of the
coefficient has a completely expansive setting. The question of the selection
of a unique solution through a viscous approach was open, for this case, even
for N = 1, until [7]. Among other things, the result obtained previously in
the scalar framework ([7]) is generalized to N ∈ N in this paper.

In order to describe our main result, let us introduce some notations.
First, Σ is the linear subspace:

Σ :=
(
(A+)−1 − (A−)−1

) (
E−(A+)

⋂
E+(A−)

)
,

where, for instance,

E−(A+) =
⊕

λ+
j <0

ker
(
A+ − λ+

j Id
)

,

with λ+
j denoting the eigenvalues of A+, which are real and semi-simple

due to the hyperbolicity of the corresponding operator. I denotes the linear
subspace given by:

I := E−(A−)
⋂

E+(A+).

We choose, once for all, a linear subspace V such that:

E−(A−) + E+(A+) = I
⊕

V.

We assume the following:

RN = I
⊕

V
⊕

Σ.

ΠI stands then for the linear projector on I parallel to V
⊕

Σ.

Note that, in [7], as a consequence of our assumptions, we had

RN = E−(A−)
⊕

E+(A+)
⊕

Σ,

which is the expression of our above assumption in the case I = {0} and also
the expression of the uniform Lopatinski Condition in this special case.

This paper is mainly devoted to the proof of the following result: when
ε → 0+, uε converges towards u in L2((0, T ) × R), where u := u+1x≥0 +
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u−1x<0 is the solution of the following well-posed, even though not
classical, transmission problem:

(1.3)



∂tu
− + A−∂xu− = f−, (t, x) ∈ (0, T )× R∗−,

∂tu
+ + A+∂xu+ = f+, (t, x) ∈ (0, T )× R∗+,

u+|x=0 − u−|x=0 ∈ Σ,

∂xΠIu
+|x=0 − ∂xΠIu

−|x=0 = 0,

u−|t=0 = h−,

u+|t=0 = h+.

f± and h± denotes respectively the restrictions of f and h to
{±x > 0}

The proof of our convergence result splits into two parts. First, we con-
struct an approximate solution of our viscous problem (1.2), then, we prove
L2 stability estimates via Kreiss-type Symmetrizers.

2 Nonconservative hyperbolic Cauchy problem with
piecewise constant coefficients.

Let us recall the viscous parabolic problem (1.2):{
∂tu

ε + A(x)∂xuε − ε∂2
xuε = f, (t, x) ∈ Ω,

uε|t=0 = h .

We assume that A(x) = A+1x>0 + A−1x<0, with

Assumption 2.1. [Hyperbolicity and Noncharacteristic boundary]
A+ and A− are real diagonalizable constant matrices in MN (R), detA− 6= 0
and detA+ 6= 0.

Since the solution of the parabolic problem (1.2) is continuous, ∂xuε will
not behave as a Dirac measure on {x = 0}. Moreover, since:

ε∂2
xuε = f − ∂tu

ε −A(x)∂xuε,

∂2
xuε got no Dirac measure on {x = 0}, thus implying the continuity of ∂xuε

through {x = 0}. As a consequence, we get that uε is solution of (1.2) iff
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(uε
R, uε

L) is solution of the following transmission problem:

(2.1)



∂tu
ε
R + A+∂xuε

R − ε∂2
xuε

R = fR, {x > 0}, t ∈ (0, T ),

∂tu
ε
L + A−∂xuε

L − ε∂2
xuε

L = fL, {x < 0}, t ∈ (0, T ),
uε

R|x=0 − uε
L|x=0 = 0, t ∈ (0, T ),

∂xuε
R|x=0 − ∂xuε

L|x=0 = 0, t ∈ (0, T ),
uε

R|t=0 = hR(x), {x > 0},
uε

L|t=0 = hL(x), {x < 0} .

The subscripts ”L” [resp ”R”] are used for the restrictions of the concerned
functions to the Left-hand side [resp Right-hand side] of the boundary {x =
0}. We could refer to {x = 0} as a boundary since the transmission problem
(2.1) can be recast as the doubled problem on a half-space (2.2):

(2.2)


∂tũ

ε + Ã∂xũε − ε∂2
xũε = f̃ {x > 0}, t ∈ (0, T )

M̃ũε|x=0 = 0

ũε|t=0 = h̃

where

ũε(t, x) =
(

uε
R(t, x)

uε
L(t,−x)

)
The new source term writes f̃ =

(
fR(t, x)

fL(t,−x)

)
, and the new Cauchy data

is h̃ =
(

hR(t, x)
hL(t,−x)

)
, the new coefficient belongs to M2N (R) and writes:

Ã =
(

A+ 0
0 −A−

)
,

and the boundary operator writes

M̃ =
(

Id −Id
∂x ∂x

)
.

Note that the classical parabolicity and hyperbolicity-parabolicity assump-
tions, see [14] are trivially satisfied here.
Let A± denote the matrices defined by:

A± =
(

0 Id
(iτ + γ)Id A±

)
.
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We recall that we denote by E+(A±) [resp E−(A±)] the linear subspace
spanned by the generalized eigenvectors of A± associated to the eigenvalues
of A± with positive [resp negative] real part and

det
(
E−(A+(ζ)), E+(A−(ζ))

)
is the determinant obtained by taking orthonormal bases for both E−(A+(ζ))
and E+(A−(ζ)). We introduce the weight Λ(ζ) used to deal with high fre-
quencies:

Λ(ζ) =
(
1 + τ2 + γ2

) 1
2 .

Let JΛ be the mapping from CN × CN to CN × CN (u, v) 7→ (u, Λ−1v). We
can introduce now the scaled negative and positive spaces of matrices A± :

Ẽ±(A±) := JΛE±(A±).

Our stability assumption writes:

Assumption 2.2. [Uniform Evans Condition]
(H̃ε,M̃) satisfies the Uniform Evans Condition which means that, for all
ζ = (τ, γ) ∈ R× R+ − {0R2}, there holds:∣∣∣det

(
Ẽ−(A+(ζ)), Ẽ+(A−(ζ))

)∣∣∣ ≥ C > 0.

In a different framework than ours, the study of such stability assumption
has been done in many papers. For example, we can refer the reader to the
paper of Gardner and Zumbrun ([8]), Guès, Métivier, Williams and Zumbrun
([9]), Métivier and Zumbrun ([15]), Rousset ([18]) and finaly Serre ([19]) .
A more recent reference is [3] by Benzoni, Serre and Zumbrun.

Assumption 2.3. There holds:(
E−(A−) + E+(A+)

)⊕
Σ = RN .

Keeping in mind that the linear subspace I is defined by I := E−(A−)
⋂

E+(A+),
Assumption 2.3 also writes:

(2.3) RN = I
⊕

V
⊕

Σ.

We introduce then the projectors associated to this decomposition, that we
respectively note: ΠI, ΠV and ΠΣ.

7



After introducing the necessary notations, we will formulate an assump-
tion concerning the structure of the discontinuity (A−, A+).

By assumption 2.1, there are two nonsingular matrices P+, P− and two
diagonal matrices D+ and D− such that D+ = (P+)−1A+P+ and D− =
(P−)−1A−P−. We denote then J := E−(D−)

⋂
E+(D+). Let us choose two

linear subspaces of RN , V1 and V2 such that:

V1

⊕
J = E+(D+),

and
V2

⊕
J = E−(D−).

Assumption 2.4 (Structure of discontinuity).
There holds:

P+V1

⊕(
P+J + P−J

)⊕
P−V2

⊕
Σ = RN

Moreover, the mapping

M :=
(

ΠIP
+(D+)−1 −ΠIP

−(D−)−1

P+ −P−

)
from J× J into I× (P+J + P−J) defines an isomorphism between J× J and
I×(P+J + P−J) . Finally, we assume that: dim E−(A+)

⋂
E+(A−) = dim Σ.

Remark 2.5. If dim I = dim J, then Assumption 2.4 implies that
P+J = P−J.

Let us make a remark concerning 2 × 2 strictly hyperbolic systems. We

take A− =
(

d−1 0
0 d−2

)
and A+ =

(
d+

1 α
0 d+

2

)
, with d−1 < 0 and d+

1 > 0

and α ∈ R∗. We have P− = Id, P+ =

(
1 1

0 d+
1 −d+

2
−α

)
, D− = A− and

D+ =
(

d+
1 0
0 d+

2

)
. As a consequence, J = Span

(
1
0

)
. Moreover V2 =

{0} because J = E−(A−). Since E+(D+) = R2, we take V1 = Span

(
0
1

)
.

Moreover, E−(A+)
⋂

E+(A−) = {0} thus Σ = {0}.
We check then easily that, like before, if we take d−2 > 0 and d+

2 < 0, As-
sumption 2.4 is not satisfied for any α 6= 0. More general examples of this
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form will be analyzed thanks to a new assumption about the structure of
the discontinuity, that will be introduced now.

The general assumption is Assumption 2.4. However, we also state a
special set of sufficient conditions, which are easier to check in some cases.
They write:

Assumption 2.6 (Structure of discontinuity, sufficient version).
We assume that:

• dim Σ = dim E−(A+)
⋂

E+(A−).

• A−I = I

• A+I = I

• ker((A+)−1 − (A−)−1)
⋂

I = {0}

• E−((Id−ΠI)A−(Id−ΠI))
⊕

E+((Id−ΠI)A+(Id−ΠI))
⊕

Σ = V
⊕

Σ

• dim E−(A+)
⋂

E+(A−) = dim Σ.

Assumption 2.6 is a sufficient condition for Assumption 2.4 to hold.
While this assumption is less general than Assumption 2.4, it is in gen-
eral easier to check.

If A− has only negative eigenvalues and A+ has only positive eigenvalues
(totally expansive case), this assumption reduces to:

ker
(
(A+)−1 − (A−)−1

)⋂
I = {0}.

Since I = RN in the totally expansive case, the assumption also writes:

det
(
(A+)−1 − (A−)−1

)
6= 0.

Moreover, if both A+ and A− are diagonal or if we make the same
assumptions as in [7], this assumption trivially holds.
Let us now give an example for which Assumption 2.4 holds for strictly

hyperbolic 2 × 2 systems. Let us take A− =
(

d−1 0
0 d−2

)
and A+ =(

d+
1 α
0 d+

2

)
, with d−1 < 0, d−2 > 0, d+

1 > 0, d+
2 > 0 and α ∈ R∗.

We assume moreover that the eigenvalues of A− and A+ are all distinct.
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Note well that there is no lack of generality in considering A− diagonal
since, by change of basis, we can diagonalize either A− or A+. We have

then E−(A−) = Span

(
1
0

)
and E+(A+) = R2, which implies that: I =

Span

(
1
0

)
. We have moreover A+I = A−I = I. Since E−(A+) = {0} and

E+(A−) = Span

(
0
1

)
, we get that Σ = {0}.

Moreover,
(
(A+)−1 − (A−)−1

)( 1
0

)
=

(
1

d+
1

− 1
d−1

0

)
, which implies that:

Ker((A+)−1 − (A−)−1)
⋂

I = {0}.

Let us take V = I⊥ = Span

(
0
1

)
. There holds: I

⊕
V = R2. We can make

this choice whenever Σ = {0}. We have now to check that:

E−(ΠVA−ΠV)
⊕

E+(ΠVA+ΠV) = V.

Let us take v ∈ V, we have then v = ΠVv. ΠV writes:

ΠV =
(

0 0
0 1

)

Actually ΠVA−ΠV =
(

0 0
0 d−2

)
and ΠVA+ΠV =

(
0 0
0 d+

2

)
thus

E−(ΠVA−ΠV) = {0} and E+(ΠVA+ΠV) = V, hence we have checked that
Assumption 2.4 holds for the considered matrices A− and A+. Let us dis-
cuss this example further. Firstly, this example works more generally for
sign(d−2 ) = sign(d+

2 ). Secondly, if we took d−2 > 0 and d+
2 < 0 Assumption

2.4 is not satisfied for any α 6= 0, but is satisfied for α = 0 independently of
the signs of d±1 and d±2 . Finally, Assumption 2.4 is satisfied in the completely
outgoing case i.e if we take d−2 < 0 and d+

2 > 0.

Remark 2.7. The uniform Evans condition is a criterion of stability that
seems difficult to check. This stability assumption has been studied in several
papers as it is central, among other things, in the study of the stability of
shockwaves. As mentioned in [8], a sufficient condition for the Evans condi-
tion to hold begins difficult to establish for systems with N ≥ 3. However, for
large systems, computational methods have been proposed for this purpose,
see [11] for a recent approach.
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We will now state some of our results concerning the study of the Evans
Condition. For N = 2, we will give very simple sufficient conditions for
Evans-stability and Evans-instability.
Without lack of generality, we can assume that A− is diagonal. We denote

then by
(

a
b

)
and

(
c
d

)
the normalized eigenvectors of A+. Let us define

q := dim Σ.

Proposition 2.8. For N = 2, i.e for 2 × 2 systems, and whether q = 0,
q = 1, or q = 2, the problem associated to the choice of matrices (A+, A−)
satisfying: sign(ad) = −sign(bc) or ad = 0 or bc = 0 is Evans-Stable (but
not necessarily uniformly Evans-stable).

In the following Proposition, λ±1 and λ±2 denote the two eigenvalues of A±.

Proposition 2.9. Provided that the matrices (A+, A−) are such that:
a, b, c, d > 0, bc > ad and λ+

1 = −λ+
2 < 0, λ−1 = −λ−2 < 0; the associated

problem is strongly Evans-unstable, in the sense that the Evans function
vanishes for some (τ, γ) with τ ∈ R and γ > 0.

As a consequence of the stability analysis performed in section 3, there
holds:

Proposition 2.10. Let P denote a nonsingular matrix in M2(R), then the
matrices A− and A+ defined by:

A− = P−1

(
d−1 0
0 d−2

)
P

and

A+ = P−1

(
d+

1 α
0 d+

2

)
P

with d−1 < 0, d+
1 > 0 and α ∈ R− {0} satisfy all our assumptions iff either

d+
2 and d−2 have the same sign or d−2 < 0 and d+

2 > 0.

2.1 Construction of an approximate solution as a BKW ex-
pansion.

We will construct an approximate solution of problem (2.1) at any order.
This construction will show that, if E−(A−)

⋂
E+(A+) 6= {0}, weak am-

plitude characteristic boundary layers forms similarly to [6]. Moreover, if
E−(A+)

⋂
E+(A−) 6= {0}, large noncharacteristic boundary layers forms on
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the area of discontinuity of the coefficients: {x = 0}.

Let us note ΩL = {(t, x) ∈ (0, T ) × R∗−} and ΩR = {(t, x) ∈ (0, T ) ×
R∗+}. uε

app,L [resp uε
app,R] denotes the restriction of the solution to ΩL

[resp ΩR]. We will construct uε
app,L ∈ C1(ΩL)

⋂
L2(ΩL) and uε

app,R ∈
C1(ΩR)

⋂
L2(ΩR). To that aim, let us first introduce some notations. The

matrix A− [resp A+] has N− [resp N+] negative [resp positive] eigenvalues.
Let µ−1 , . . . , µ−N−

be the negative eigenvalues of A− sorted by increasing or-
der and µ+

1 , . . . , µ+
N+

be the positive eigenvalues of A+ sorted by decreasing
order. We introduce the following partition of ΩL :

ΩL = CL

⊔N−⊔
j=0

Ωj
L

 ,

where

CL :=
N−⋃
j=1

{
(t, x) ∈ ΩL : x− µ−j t = 0

}
,

Ω0
L :=

{
(t, x) ∈ ΩL : x− µ−1 t < 0

}
,

and for all 1 ≤ j ≤ N− − 1

Ωj
L :=

{
(t, x) ∈ ΩL : µ−j t < x < µ−j+1t < 0

}
,

and
ΩN−

L :=
{

(t, x) ∈ ΩL : x− µ−N−
t > 0

}
.

On the right hand side, we do the analogous partition:

ΩR = CR

⊔N−⊔
j=0

Ωj
R

 .
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Ω0
R

Ω1
R

Ω0
L

Ω1
L

Ω2
L

t

x

This drawing shows the case where N− = 2 and N+ = 1.

Remark 2.11. Note that the boundary layer profiles serves the purpose of
correcting singularities possibly forming in the small viscosity limit on {x =
0}, CR, and CL. We will give an ansatz incorporating such terms. In general,
it may happen that each line composing CR and CL supports singularities of
u := limε→0+ uε. On the other hand, if we take for example u|t<0 = 0 as
our Cauchy condition and assume f |t<0 = 0, (which ensures the corner
compatibility of our limiting problem), if ej ∈ V2, (ej is the jth vector of the
canonical basis of RN ), then u has no singularity on {(t, x) ∈ ΩL : x−λ−j t =
0}, where λ−j stands for the jth diagonal coefficient of D−. The same way,
if ej ∈ V1, then u has no singularity on {(t, x) ∈ ΩR : x − λ+

j t = 0}, where
λ+

j stands for the jth diagonal coefficient of D+.

Let us introduce the different profiles and their ansatz. We will construct
separately the restriction uε,j

app,L of uε
app,L to each Ωj

L for 0 ≤ j ≤ N− so that,
the different pieces of approximate solution glued back together gives the
approximate solution uε

app,L ∈ C1(ΩL)
⋂

L2(ΩL).

uε,j
app,L(t, x) =

M∑
n=0

(
Uj

n,L(t, x) + U∗,j
n,L

(
t,

x

ε

))√
ε
n

+Uc,j
n,L

(
t,

x− µ−1 t√
ε

, . . . ,
x− µ−N−

t
√

ε

)
√

ε
n

Actually, depending on the value of j, the ansatz can be written in a sim-
plified manner, but we rather give here a generic ansatz valid for all j.
Somewhat related ansatzs can be found in [6] and [7]. The Uj

n,L belongs to
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H∞
(
Ωj

L

)
. Given that U∗,j

n,L = 0 except for j = N−, we will denote U∗,N−
n,L by

U∗
n,L. The noncharacteristic boundary layer profiles U∗

n,L,+(t, z) belongs to
eδzH∞((0, T )×R∗−), for some δ > 0. Let us review the characteristic bound-

ary layer profiles Uc,j
n,L,+

(
t, θ1

L, . . . , θ
N−
L

)
. For j = 0, we can use the simpli-

fied ansatz Uc,0
n,L,+

(
t, θ1

L

)
with Uc,0

n,L,+ belonging to eδθ1
LH∞((0, T )×R∗−), for

some δ > 0. For j = N− we can adopt the simplified ansatz Uc,N−
n,L,+

(
t, θ

N−
L

)
with Uc,N−

n,L,+ belonging to e−δθ
N−
L H∞((0, T ) × R∗+), for some δ > 0. For

1 ≤ j ≤ N− − 1, we have also the simplified ansatz: Uc,j
n,L,+

(
t, θj

L, θj+1
L

)
.

Let us denote by Eµ−j
the eigenspace of A− associated to the eigenvalue µ−j .

We have then the following decomposition of RN :

RN =
N−⊕
j=1

Eµ−j

⊕
E+(A−),

we have thus the associated equality on the projectors:

Id =
N−∑
j=1

Π−j + ΠE+(A−).

(2.4) Uc,j
n,L,+

(
t, θj

L, θj+1
L

)
= Π−j Uc,j

n,L,+

(
t, θj

L

)
+ Π−j+1U

c,j+1
n,L,+

(
t, θj+1

L

)
.

where Π−j Uc,j belongs to to e−δθj
LH∞((0, T )×R∗+), for some δ > 0, Π−j+1U

c,j+1

belongs to to eδθj+1
L H∞((0, T ) × R∗−), for some δ > 0. This means that on

each subset, after projection, the involved layer profile depends only of one
fast characteristic dependent variable.
In a similar way, we have:

uε,j
app,R(t, x) =

M∑
n=0

(
Uj

n,R(t, x) + U∗,j
n,R

(
t,

x

ε

))√
ε
n

+Uc,j
n,R

(
t,

x− µ+
1 t√

ε
, . . . ,

x− µ+
N+

t
√

ε

)
√

ε
n

with an ansatz identical to the one exposed before.
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Let us explain the different steps of the construction of the approximate
solution. We begin by constructing the profiles (U∗

j ,Uj) in cascade, the
characteristic profiles Uc

j are then computed as a last step.
Plugging the approximate solution into the equation an identifying the

terms with the same power in ε, we obtain our profiles equations.
(
U∗

R,0,U
∗
L,0

)
is solution of the following ODE in z:

A+∂zU∗
R,0 − ∂2

zU
∗
R,0 = 0, {z > 0},

A−∂zU∗
L,0 − ∂2

zU
∗
L,0 = 0, {z < 0},

U∗
R,0|z=0 −U∗

L,0|z=0 = −(UR,0|x=0 −UL,0|x=0),

∂zU∗
R,0|z=0 − ∂zU∗

L,0|z=0 = 0.

Since we search for U∗
R,0 and U∗

L,0 tending towards zero when z → ±∞, it
is equivalent to solve:

∂zU∗
R,0 −A+U∗

R,0 = 0, {z > 0},
∂zU∗

L,0 −A−U∗
L,0 = 0, {z < 0},

U∗
R,0|z=0 −U∗

L,0|z=0 = −(UR,0|x=0 −UL,0|x=0),

∂zU∗
R,0|z=0 − ∂zU∗

L,0|z=0 = 0.

Applying ΠI to our equations on U∗
R,0 and U∗

L,0, we get that:
ΠIU∗

R,0 = eA+zΠIU∗
R,0|z=0, with

ΠIU∗
R,0|z=0 ∈ E−(A+)

⋂
E−(A−)

⋂
E+(A+) = {0},

and U∗
L,0 = eA−zΠIU∗

L,0|z=0, with

ΠIU∗
L,0|z=0 ∈ E+(A−)

⋂
E−(A−)

⋂
E+(A+) = {0}.

We obtain then that ΠIU∗
L,0 = ΠIU∗

R,0 = 0. The same argument apply at
any order, giving that, for all 0 ≤ j ≤ M, there holds:

ΠIU∗
L,j = ΠIU∗

R,j = 0.

We have just proved that U∗
R,0 = (ΠV + ΠΣ)U∗

R,0 and that U∗
L,0 = (ΠV + ΠΣ)U∗

L,0.

Moreover U∗
R,0 = eA+zU∗

R,0|z=0, with U∗
R,0|z=0 ∈ E−(A+) and U∗

L,0 =
eA−zU∗

L,0|z=0, with U∗
L,0|z=0 ∈ E+(A−). From the second boundary con-

dition, by using the equation, we get that:

A+U∗
R,0|z=0 = A−U∗

L,0|z=0 ∈ E−(A+)
⋂

E+(A−),
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let us denote by σ′0 this quantity. Returning to the first boundary condition,
this leads to:

UR,0|x=0 −UL,0|x=0 = −
(
(A+)−1 − (A−)−1

)
σ′0 := σ0,

with σ′0 ∈ E−(A+)
⋂

E+(A−), which gives:

UR,0|x=0 −UL,0|x=0 ∈ Σ.

For fixed σ0 ∈ Σ, the equations giving the profiles U∗
L,0 and U∗

R,0 are well-
posed since we have assumed that dim Σ = dim E−(A+)

⋂
E+(A−), which is

equivalent to ker
(
(A+)−1 − (A−)−1

)⋂
(E−(A+)

⋂
E+(A−)) = {0}.

We shall now introduce the solution (UL,0,UR,0) of the following hyper-
bolic problem, which is also the limiting hyperbolic problem as ε goes to
zero:

(2.5)



∂tUL,0 + A−∂xUL,0 = fL, (t, x) ∈ ΩL,

∂tUR,0 + A+∂xUR,0 = fR, (t, x) ∈ ΩR,

UR,0|x=0 −UL,0|x=0 ∈ Σ,

∂xΠIUR,0|x=0 − ∂xΠIUL,0|x=0 = 0,

UL,0|t=0 = hL,

UR,0|t=0 = hR.

Under our assumptions, this problem is well-posed, as we will prove now.
The profiles Uj

L,0 for 0 ≤ j ≤ N− are the restriction of UL,0 to Ωj
L. The

same way, the profiles Uj
R,0 for 0 ≤ j ≤ N+ are the restriction of UR,0 to Ωj

R.

Proposition 2.12. If Assumption 2.4 is checked, which means there holds

P+V1

⊕(
P+J + P−J

)⊕
P−V2

⊕
Σ = RN ,

dim E−(A+)
⋂

E+(A−) = dim Σ,

and the mapping

M :=
(

ΠIP
+(D+)−1 −ΠIP

−(D−)−1

P+ −P−

)
from J× J into I× (P+J + P−J) defines an isomorphism between J× J and
I×(P+J + P−J) , then the transmission problem (2.5) has a unique solution.

16



Proof. For the sake of simplicity let us denote uL := UL,0 and uR := UR,0.
Given our assumptions, there are two nonsingular matrices P+, P− and two
diagonal matrices D+ and D− such that D+ = (P+)−1A+P+ and
D− = (P−)−1A−P−. Taking vR := (P+)−1uR and vL := (P−)−1uL, we
obtain that (vL, vR) is solution the equivalent transmission problem:

∂tvR + D+∂xvR = (P+)−1fR, {x > 0},
∂tvL + D−∂xvL = (P−)−1fL, {x < 0},
P+vR|x=0 − P−vL|x=0 ∈ Σ,

∂xΠIP
+vR|x=0 − ∂xΠIP

−vL|x=0 = 0,

vL|t=0 = (P−)−1hL,

vR|t=0 = (P+)−1hR.

Let us denote by ΠE−(D+) and ΠE+(D+) the projector associated to the de-
composition:

RN = E−(D+)
⊕

E+(D+),

we define likewise ΠE−(D−) and ΠE+(D−). We recall that we have as well the
decomposition (2.3). Equation

∂tvR + D+∂xvR = (P+)−1fR, {x > 0},

splits into:
vR = ΠE+(D+)vR + ΠE−(D+)vR,

∂t(ΠE+(D+)vR) + D+∂x(ΠE+(D+)vR) = ΠE+(D+)(P
+)−1fR, {x > 0},

and

∂t(ΠE−(D+)vR) + D+∂x(ΠE−(D+)vR) = ΠE−(D+)(P
+)−1fR, {x > 0}.

These problems being diagonal, they are tantamount to N scalar, easily
solved, independent equations; which shows that: ΠE−(D+)vR and ΠE+(D−)vL

are directly computed from the equation without boundary conditions. Con-
trary to them, ΠE−(D+)vR and ΠE+(D−)vL can be computed only when the
traces ΠE−(D+)vR|x=0 and ΠE+(D−)vL|x=0 are known. The well-posedness
of our problem reduces to the algebraic well-posedness of a linear system
whose equations are our boundary conditions and the unknowns are the
traces ΠE−(D+)vR|x=0 and ΠE+(D−)vL|x=0. The boundary condition states
that there is σ ∈ Σ such that:
(2.6)

P+ΠE+(D+)vR − P−ΠE−(D−)vL + σ = −P+ΠE−(D+)vR + P−ΠE+(D−)vL.

17



Let us recall a piece of Assumption 2.4:

(2.7) P+V1

⊕(
P+J + P−J

)⊕
P−V2

⊕
Σ = RN .

By (2.7) and since P+ and P− are nonsingular, we get the value of the traces
on the boundary of:

Π1ΠE+(D+)vR,

Π2ΠE−(D−)vL,

and
P+ΠJΠE+(D+)vR − P−ΠJΠE−(D−)vL,

as well as the value of σ. To compute the traces uR|x=0 and uL|x=0, we
only lack the knowledge of ΠJΠE+(D+)vR|x=0 and ΠJΠE−(D−)vL|x=0. By the
equation, there holds:

∂xvR = (D+)−1
(
(P+)−1fR − ∂tvR

)
,

∂xvL = (D−)−1
(
(P−)−1fL − ∂tvL

)
.

The boundary condition ΠI∂xvR|x=0−ΠI∂xvL|x=0 = 0 gives then a relation
of the form:

ΠIP
+(D+)−1ΠJΠE+(D+)∂tvR|x=0 −ΠIP

−(D−)−1ΠJΠE−(D−)∂tvL|x=0 = q

where q is a known continuous function of t ∈ (0, T ), with values polarized
on the linear subspace I. Since we have as well

P+ΠJΠE+(D+)∂tvR|x=0 − P−ΠJΠE−(D−)∂tvL|x=0 = q′

where q′ is a known continuous function of t ∈ (0, T ). By Assumption 2.4, for
all fixed t there is only one ∂tΠJΠE+(D+)vR|x=0(t) and ∂tΠJΠE−(D−)vL|x=0(t)
solution of this linear system of two equations with two unknowns. More-
over, q and q′ depending continuously of t ∈ (0, T ), it is also the case for
∂tΠJΠE+(D+)vR|x=0 and ∂tΠJΠE−(D−)vL|x=0. We have thus:

ΠJΠE+(D+)vR|x=0 = ΠJΠE+(D+)h(0) +
∫ t

0
∂tΠJΠE+(D+)vR|x=0(s) ds,

and

ΠJΠE−(D−)vL|x=0 = ΠJΠE−(D−)h(0) +
∫ t

0
∂tΠJΠE−(D−)vL|x=0(s) ds,
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which achieves the computation of the traces gL := vL|x=0 and gR := vR|x=0.
We obtain then that the hyperbolic problem (2.5), which satisfies nonclassi-
cal transmission conditions on the boundary, is actually equivalent to solve
two classical well-posed mixed hyperbolic problem with Dirichlet boundary
conditions. uR = P+vR, where vR is solution of:

∂tvR + D+∂xvR = (P+)−1fR, {x > 0},
vR|x=0 = gR,

vR|t=0 = (P+)−1hR.

This problem is well-posed because ΠE−(D+)gR is incidentally the trace
ΠE−(D+)vR|x=0 computed from the equation without boundary condition.
As a consequence, this problem also rewrites:

∂tvR + D+∂xvR = (P+)−1fR, {x > 0},
ΠE+(D+)vR|x=0 = ΠE+(D+)gR.

vR|t=0 = (P+)−1hR.

which is a mixed hyperbolic problem satisfying a Uniform Lopatinski con-
dition. The same way vL is the solution of the following mixed hyperbolic
problem satisfying a Uniform Lopatinski condition:

∂tvL + D−∂xvL = (P−)−1fL, {x < 0},
ΠE−(D−)vL|x=0 = ΠE−(D−)gL.

vL|t=0 = (P−)−1hL,

and uL is obtained by: uL = P+vL, which shows that problem (2.5) is well-
posed.
2

Proof of the well-posedness of the transmission problem (2.5)
under Assumption 2.6

There holds:
(2.8)

∂tΠIUL,0 + ΠIA
−∂xΠIUL,0 = ΠIf

L −ΠIA
−∂x(ΠV + ΠΣ)UL,0, {x < 0}.

∂tΠIUR,0 + ΠIA
+∂xΠIUR,0 = ΠIf

R −ΠIA
+∂x(ΠV + ΠΣ)UR,0, {x > 0}.

ΠIUR,0|x=0 −ΠIUL,0|x=0 = 0,

∂xΠIUR,0|x=0 − ∂xΠIUL,0|x=0 = 0,

ΠIUL,0|t=0 = ΠIh
L,

ΠIUR,0|t=0 = ΠIh
R.
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Hence, by Assumption 2.6, we have:
(2.9)

∂tΠIUL,0 + A−∂xΠIUL,0 = ΠIf
L −ΠIA

−∂x(ΠV + ΠΣ)UL,0, {x < 0}.
∂tΠIUR,0 + A+∂xΠIUR,0 = ΠIf

R −ΠIA
+∂x(ΠV + ΠΣ)UR,0, {x > 0}.

ΠIUR,0|x=0 −ΠIUL,0|x=0 = 0,

∂xΠIUR,0|x=0 − ∂xΠIUL,0|x=0 = 0,

ΠIUL,0|t=0 = ΠIh
L,

ΠIUR,0|t=0 = ΠIh
R.

Let us now introduce VL,0 = (Id−ΠI)UL,0, VR,0 = (Id−ΠI)UR,0, applying
then (Id−ΠI) to our equation, we get the following:

∂tVL,0 + (Id−ΠI)M−∂xVL,0 = (Id−ΠI)fL, {x < 0}.
∂tVR,0 + (Id−ΠI)M+∂xVR,0 = (Id−ΠI)fR, {x > 0}.
VR,0|x=0 −VL,0|x=0 ∈ Σ,

VL,0|t=0 = (Id−ΠI)hL,

VR,0|t=0 = (Id−ΠI)hR.

Referring the reader to the analysis performed in the multi-D case treated in
[7] for further details, this mixed hyperbolic problem is well-posed provided
that it satisfies the Uniform Lopatinski Condition stating that

E−((Id−ΠI)M−)
⊕

E+((Id−ΠI)M+)
⊕

Σ = V
⊕

Σ.

As we will see, we can now compute the solution of (2.9). Indeed there is
an unique

g(t) := ∂tΠIUR,0|x=0 = ∂tΠIUL,0|x=0,

which depends continuously of t ∈ (0, T ), satisfying our boundary conditions
provided that

Ker((A+)−1 − (A−)−1)
⋂

I = {0}.

Indeed, by using the equation, we get that ∂xΠIUR,0|x=0−∂xΠIUL,0|x=0 = 0
writes as well: (

(A+)−1 − (A−)−1
)
∂tΠIUR,0|x=0 = q′′,

where q′′ stands for a known function continuous in t. As a result, we obtain
that:

ΠIUR,0|x=0(t) = ΠIUR,0|x=0(t) = ΠIh(0) +
∫ t

0
g(s) ds,
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which proves the well-posedness of the hyperbolic problem (2.5) under As-
sumption 2.6.

Since Assumption 2.4 being checked is a sufficient but also necessary
condition in order for problem (2.5) to be well-posed, we get then that:

[Assumption 2.6 ⇒ Assumption 2.4].

Since the problem (2.5) is well-posed, uL|x=0 − uR|x=0 := σ0 ∈ Σ is
known and thus U∗

L,0 and U∗
R,0 as well. This scheme of construction can

be carried out at any order. Let us show how the the other profiles are
constructed:

A+∂zU∗
R,1 − ∂2

zU
∗
R,1 = 0, {z > 0},

A−∂zU∗
L,1 − ∂2

zU
∗
L,1 = 0, {z < 0},

U∗
R,1|z=0 −U∗

L,1|x=0 = −(UR,1|x=0 −UL,1|x=0),

∂zU∗
R,1|z=0 − ∂zU∗

L,1|z=0 = 0.
A+∂zU∗

R,2 − ∂2
zU

∗
R,2 = −∂tU∗

R,0, {z > 0},
A−∂zU∗

L,2 − ∂2
zU

∗
L,2 = −∂tU∗

L,0, {z < 0},
U∗

R,2|z=0 −U∗
L,2|x=0 = −(UR,2|x=0 −UL,2|x=0),

∂zU∗
R,2|z=0 − ∂zU∗

L,2|z=0 = −
(
∂xUR,0|x=0 − ∂xUL,0|x=0

)
.

Π2U∗
L,2 = Π2U∗

R,2 = 0, which does not contradict our previous computations
since Π2

(
∂xUR,0|x=0 − ∂xUL,0|x=0

)
= 0. Actually for n ≥ 2, we have:


A+∂zU∗

R,n − ∂2
zU

∗
R,n = −∂tU∗

R,n−2, {z > 0},
A−∂zU∗

L,n − ∂2
zU

∗
L,n = −∂tU∗

L,n−2, {z < 0},
U∗

R,n|z=0 −U∗
L,n|x=0 = −(UR,n|x=0 −UL,n|x=0),

∂zU∗
R,n|z=0 − ∂zU∗

L,n|z=0 = −
(
∂xUR,n−2|x=0 − ∂xUL,n−2|x=0

)
.

(UL,n,UR,n) are given by:

(2.10)



∂tUL,n + A−∂xUL,n = ∂2
xUL,n−2, {x < 0}.

∂tUR,n + A+∂xUR,n = ∂2
xUR,n−2, {x > 0}.

UR,n|x=0 −UL,n|x=0 ∈ pn + Σ,

∂xΠ2UR,n|x=0 − ∂xΠ2UL,n|x=0 = 0,

UL,n|t=0 = 0,

UR,n|t=0 = 0.
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where pn is computed using the equations on U∗
R,n and U∗

L,n. This mixed
hyperbolic problem is well-posed for the same reasons as the mixed hyper-
bolic problems giving (UL,0,UR,0). The profiles Uj

L,n for 0 ≤ j ≤ N− are the
restriction of UL,n to Ωj

L. The same way, the profiles Uj
R,n for 0 ≤ j ≤ N+

are the restriction of UR,n to Ωj
R.

Referring to (2.4), we have actually to compute the profiles Π−j Uc,j
n,L,±(t, θj

L)
and Π+

j Uc,j
n,R,±(t, θj

R). Since the profiles equations satisfied by Π−j Uc,j
n,L,± and

Π+
j Uc,j

n,R,± are of the same form, we will only focus on the computation of
the profiles Uc,±

L,n(t, zj) := Π−j Uc,j
n,L,±(t, θj

L) for some j. Observe that, the
pieces of solutions (UL,j ,UR,j) glued together compose in general a func-
tion belonging to C0((0, T )× R) but not to C1((0, T )× R). Since the char-
acteristic profiles allow the glued together approximate solution to belong
to C1((0, T ) × R), computing the characteristics layer profiles amounts to
solve equations of the form:

∂tU
c,+
L,n − ∂2

zj
Uc,+

L,n = 0, {zj > 0},

∂tU
c,−
L,n − ∂2

zj
Uc,−

L,n = 0, {zj < 0},
[Uc

L,n]j(t) = −[UL,n]Γj (t), ∀t ∈ (0, T ),

[∂xUc
L,n]j(t) = −1

2
(
[∂xUL,n−1]Γj (t) + [∂xU c

L,n−1]j(t)
)
, ∀t ∈ (0, T ),

Uc+
L,n|t=0 = 0,

Uc−
L,n|t=0 = 0,

where [ω]j(t) = limzj→0+ ω(t, zj)−limzj→0− ω(t, zj) and [ω′]Γj (t) = limx→µ−j t,x>µ−j t ω′(t, x)−
limx→µ−j t,x<µ−j t ω′(t, x). These profiles equations are clearly well-posed, us-
ing the same argument used in [7]. To sum up, we have constructed
uε

app := uε
R,app1x≥0 + uε

L,app1x<0 such that:{
∂tu

ε
app + A(x)∂xuε

app − ε∂2
xuε

app = f + εMRε, (t, x) ∈ Ω,

uε
app|t=0 = h.

2.2 Stability estimates.

This time, we will rather note

uε
app := uε+

app(t, x)1x>0 + uε−
app(t,−x)1x<0.
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By linearity, the error equation writes, for wε = uε
app − uε:{

∂tw
ε + A(x)∂xwε − ε∂2

xwε = εMRε, (t, x) ∈ Ω,

wε|t=0 = 0.

Since our method of estimation comes from pseudodifferential calculus,
we have to perform a tangential Fourier-Laplace transform of the problem.
For this purpose, it is necessary to extend the definition of our error, in order
for it to be defined for all time t ∈ R. We first perform an extension of wε

to {t < 0} as follows: w̃ε :=
{

wε on (0, T )
0 on t < 0

but, for fixed positive ε,

wε ∈ C((0, T ) : L2(R)) and wε|t=0 = 0 thus w̃ε belongs to
C((−∞, T ] : L2(R)). Moreover, ∂tw̃

ε has no Dirac measure on {t = 0} and
thus w̃ε is solution of:

∂tw̃
ε + A(x)∂xw̃ε − ε∂2

xw̃ε = εM R̃ε, (t, x) ∈ (−∞, T ]× R,.

where R̃ε :=
{

Rε if t ∈ (0, T ),
0 on t < 0.

Finally, we denote by R̃ε, R̃ε extended by 0 outside (0, T )× R. Let us now
proceed with the extension of our error to t > T . We call by w̃ε the unique
solution of:

(2.11)

{
Hw̃ε − ε∂2

xw̃ε = εM R̃
ε
, (t, x) ∈ R× R,

w̃ε|t<0 = 0.

Note well that the restriction of w̃ε to Ω is wε. For the sake of simplicity, we
will still denote w̃ε [resp R̃

ε
] by wε [resp Rε] in what follows.

To begin with, let us rewrite the problem (2.11) in a convenient form.
wε is solution of:

∂tw
ε + A(x)∂xwε − ε∂2

xwε = εMRε, (t, x) ∈ R× R,

We denote then by ŵε± := F(e−γtwε±) and R̂ε± := F(e−γtRε±), where F
stands for the tangential Fourier transform (with respect to t) and the ±
superscripts indicates restrictions to {±x > 0}, we have then:

(2.12)


(iτ + γ)ŵε+ + A+∂xŵε+ − ε∂2

xŵε+ = εM R̂ε+, {x > 0},
(iτ + γ)ŵε− + A−∂xŵε− − ε∂2

xŵε− = εM R̂ε−, {x < 0},
ŵε+|x=0 − ŵε−|x=0 = 0,

∂xŵε+|x=0 − ∂xŵε−|x=0 = 0.
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Remark that, by taking γ big enough, the restrictions of the solution wε of
(2.11) to {±x > 0} are given by:

wε± = eγtF−1(ŵε±),

where (ŵε+, ŵε−) are the solutions of the transmission problem (2.12).

Taking W ε±(iτ + γ, x) =

 ŵε±

ε∂xŵε±

 ,



∂xW ε+ =

 ∂xŵε+

ε∂2
xŵε+

 =

 0 1
εId

(iτ + γ) 1
εA+

 ŵε+

ε∂xŵε+

+

 0

εM R̂ε+

 ,

∂xW ε− =

 ∂xŵε−

ε∂2
xŵε−

 =

 0 1
εId

(iτ + γ) 1
εA−

 ŵε−

ε∂xŵε−

+

 0

εM R̂ε−

 ,

W ε+|x=0 −W ε−|x=0 = 0.

We note ζ = (τ, γ) and ζ̃ = (ετ, εγ). Multiplying the previous equation by ε
gives:

(2.13)


∂zW

ε+ − A+(ζ̃)W ε+ = G+, {z > 0},
∂zW

ε− − A−(ζ̃)W ε− = G̃−, {z < 0},
W ε+|z=0 = W ε−|z=0,

where

G± =
(

0
εM+1R̂ε±

)
,

and z stands for the fast variable x
ε . From this point onwards, since nothing

differs from the proof of stability by symmetrizers done in [7], we give the
result:

Proposition 2.13. There is C > 0 such that for all 0 < ε < 1, there holds:

‖uε − uε
app‖L2(Ω) ≤ CεM−1.
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2.3 The main result.

We recall that uε stands for the solution of the viscous problem (1.2) and u :=
u+1x≥0 + u−1x<0, where (u+, u−) is solution of the well-posed transmission
problem (1.3) or (2.5).

Theorem 2.14. uε converges towards u in L2(Ω) as ε tends to zero. More
precisely, there is C > 0, independent of ε such that:

‖uε − u‖L2((0,T )×R) ≤ Cε.

Proof. By construction of our approximate solution uε
app, we have:

‖uε − u‖L2(Ω) = O(ε).

Hence, by constructing our approximate solution at a sufficient order M,
Proposition 2.13 ends the proof. 2

3 Stability study for 2×2 nonconservative systems.

In this chapter, our goal is to analyze the uniform Evans condition for 2× 2
systems. We limit ourselves to this framework due to the fast increasing
complexity of the computations with the size of the systems. This analysis
is not trivial to perform, as witness, even for 2× 2 systems, a sufficient and
necessary reformulation of the Evans Condition, not involving any frequen-
cies, has yet to be found out. Our point here is to give a brief overview of
the link existing between the matrices A− and A+ and the uniform Evans
condition being checked. As a result of our study, the uniform Evans Con-
dition does not appear as a very restrictive assumption, but, on the other
hand, is not always satisfied. The uniform Evans Condition writes as the
nonvanishing of an Evans function for a given range of frequencies. This
Evans function is a determinant that can be written in several equivalent
ways. D and D̃ are two equivalent Evans functions iff, for all ζ 6= 0,

D(ζ) = 0 ⇔ D̃(ζ) = 0.

We will begin by giving the expression of an Evans function for medium
frequencies, then we will introduce asymptotic Evans functions for |ζ| → ∞
(high frequencies) and |ζ| → 0+ (low frequencies). Our results for 2 × 2
systems are divided the same way. The study of the low frequency behavior
is the more technical, since some arguments break down due to eigenvalues
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crossing the imaginary axis. The specific analysis for low frequencies in-
volves the continuous extension of some linear subspaces intervening in the
formulation of the Evans function. A part of our analysis is devoted to the
computation of these extensions for some 2× 2 systems. During our study,
we achieve the proof of Proposition (2.10).

3.1 Spectral analysis of the symbol A±.

The expression of an Evans function relies on the computation of the lin-
ear subspaces E−(A+) and E+(A−). An important point is that, except for
low frequencies, the eigenvalues of A+ and A− do not cross the imaginary
axis. A+ and A− have both N eigenvalues with positive real part and N
eigenvalues with negative real part. As a consequence, if the Evans con-
dition holds, for all ζ in an open subset not containing {0}, there holds:
E− (A+)

⊕
E+ (A−) = C2N . We will now show that the eigenvectors of A±

can be deduced from the eigenvectors of A±. Denote by v+
i [resp v−i ]the

normalized eigenvector associated to the eigenvalue λ+
i of A+ [resp λ−i of

A−]. The eigenvectors of A+ associated to the eigenvalues with negative real
parts, denoted by (µ+

i )1≤i≤N , are given by:(
w+

i

)
1≤i≤N

:=
(

v+
i

µ+
i v+

i

)
1≤i≤N

.

Likewise, the eigenvectors of A+ associated to the eigenvalues with positive
real parts, noted (µ+

i )N+1≤i≤2N , are given by:

(
w+

i

)
N+1≤i≤2N

:=
(

v+
i

µ+
N+iv

+
i

)
N+1≤i≤2N

.

The family
(
w+

i

)
1≤i≤N

is a basis of E−(A+). Moreover, µ+
i satisfy:

µ+2
i − λ+

j µ+
i − (iτ + γ) = 0.

Proof. Denote µ an eigenvalue of A+ and v =
(

v1

v2

)
an eigenvector

associated to µ. 
v2 = µv1

A+v1 =
µ2 − (iτ + γ)

µ
v1

Since v1 = 0RN ⇒ v = 0C2N , v1 is an eigenvector of A+ associated to the
eigenvalue µ2−(iτ+γ)

µ . Hence there is 1 ≤ j ≤ N such that λ+
j = µ2−(iτ+γ)

µ .
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We will show here that, for all (τ, γ) 6= 0, the eigenvalues of A+ are all
semi-simple and that N of them have positive real part and N of them have
negative real part. This result is deduced from the fact that we can associate
to each eigenvalues of A+ two eigenvalues of A+: one with positive real part
and one with negative real part. Moreover, for each eigenvalue of A+ the
associated eigenvector can be directly constructed by using the eigenvector
associated to the corresponding eigenvalue of A+ as stated above. The
eigenvalues of A+ are the roots of P defined by:

P (µ) = µ2 − λµ− (iτ + γ).

Note that the roots of P+ are:

µ− =
1
2

(
λ− sign

(
cos(θ+/2)

)√
r+ei(θ+/2)

)
,

µ+ =
1
2

(
λ + sign

(
cos(θ+/2)

)√
r+ei(θ+/2)

)
.

where r+ =
√

(λ2 + 4γ)2 + 16τ2 and θ+ = arctan 4τ
λ2+4γ

. The ± subscripts in
the right above notations relates to the sign of the real part of the concerned
eigenvalues. There holds:

sign
(
sin(θ+/2)

)
= sign(τ)× sign

(
cos(θ+/2)

)
.

We deduce from it that:

µ− =
1
2
λ− 1

4
((λ2 + 4γ)2 + 16τ2)

1
4

((
1 +

16τ2

(λ2 + 4γ)2

)− 1
2

+ 1

)

−i sign(τ)
1
4
((λ2 + 4γ)2 + 16τ2)

1
4

(
1−

(
1 +

16τ2

(λ2 + 4γ)2

)− 1
2

)
and

µ+ =
1
2
λ +

1
4
((λ2 + 4γ)2 + 16τ2)

1
4

((
1 +

16τ2

(λ2 + 4γ)2

)− 1
2

+ 1

)

+i sign(τ)
1
4
((λ2 + 4γ)2 + 16τ2)

1
4

(
1−

(
1 +

16τ2

(λ2 + 4γ)2

)− 1
2

)
Notice that we have:

µ+|(τ,γ)=(0,0) = λ
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Taking into account that, due to the noncharacteristic boundary assumption,
λ 6= 0, there are two constants C1 and C2 such that, for all τ ∈ R and γ > 0,
there holds:

<e(µ+) > C1 > 0, <e(µ−) < C2 < 0.

Indeed, studying the sign of <e(µ+
+) and <e(µ−−) all amounts to the study

of the sign of the following expression:

2λ((λ2 + 4γ)2 + 16τ2)
1
4 − sign(λ)

(
λ2 + 4γ + ((λ2 + 4γ)2 + 16τ2)

1
2

)
,

which has the same sign as:

sign(λ)
(

4λ2((λ2 + 4γ)2 + 16τ2)
1
2 −

(
λ2 + 4γ + ((λ2 + 4γ)2 + 16τ2)

1
2

)2
)

= −sign(λ)
(
(λ2 + 4γ)2 + ((λ2 + 4γ)2 + 16τ2) + (8γ − 2λ2)((λ2 + 4γ)2 + 16τ2)

1
2

)
Using that γ ≥ 0, we have:

(λ2 + 4γ)2 + ((λ2 + 4γ)2 + 16τ2) + (8γ − 2λ2)((λ2 + 4γ)2 + 16τ2)
1
2

≥ (λ2 + 4γ)2 + ((λ2 + 4γ)2 + 16τ2) + (−8γ − 2λ2)((λ2 + 4γ)2 + 16τ2)
1
2

Noticing that

(λ2+4γ)2+((λ2+4γ)2+16τ2)+(−8γ−2λ2)((λ2+4γ)2+16τ2)
1
2 = (λ2+4γ−((λ2+4γ)2+16τ2)

1
2 )2 ≥ 0,

with the equality only holding for (τ, γ) = 0 , it gives that, if (τ, γ) 6= (0, 0):

sign(2λ((λ2+4γ)2+16τ2)
1
4−sign(λ)

(
λ2 + 4γ + ((λ2 + 4γ)2 + 16τ2)

1
2

)
) = −sign(λ)

Hence we have:

• If λ < 0, then <e(µ+) ≥ 0, with the equality holding only for (τ, γ) = 0.
Moreover <e(µ−) < 0 for all (τ, γ) ∈ R× R+.

• If λ > 0 then <e(µ+) > 0 for all (τ, γ) ∈ R×R+. In addition, <e(µ−) ≤
0, with the equality holding only for (τ, γ) = 0.

2

The same way, the eigenvectors of A− associated to the eigenvalues with
positive real parts denoted by (µ−i )1≤i≤N are given by:

(
w−

i

)
1≤i≤N

:=
(

v−i
µ−i v−i

)
1≤i≤N

.
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The eigenvectors of A− associated to the eigenvalues with negative real parts
denoted by (µ−i )N+1≤i≤2N are given by:

(
w−

i

)
N+1≤i≤2N

:=
(

v−i
µ−N+iv

−
i

)
N+1≤i≤2N

.

The family
(
w+

i

)
1≤i≤N

is a basis of E+(A−). Moreover the µ−i (τ, γ) satisfy:

λ−j = µ−i (τ, γ)− iτ + γ

µ−i (τ, γ)
.

3.2 Expression of an Evans function.

For medium frequencies, that is to say for ζ belonging to a bounded open
subset of R× R+ not containing 0, an Evans function is given by:

D(ζ) :=
∣∣∣∣ v+

1 . . . v+
N v−1 . . . v−N

µ+
1 (ζ)v+

1 . . . µ+
N (ζ)v+

N µ−1 (ζ)v−1 . . . µ−N (ζ)v−N

∣∣∣∣ .
For the asymptotic Evans function, when |ζ| → ∞, we take:

D̃(ζ) :=

∣∣∣∣∣ v+
1 . . . v+

N v−1 . . . v−N
µ+

1 (ζ)
Λ(ζ) v+

1 . . .
µ+

N (ζ)

Λ(ζ) v+
N

µ−1 (ζ)
Λ(ζ) (ζ̂)v−1 . . .

µ−N (ζ)

Λ(ζ) v−N

∣∣∣∣∣ ,
Due to its specificity, the asymptotic Evans function for low frequencies

will be introduced in the section right below, along with the needed material.

3.3 Introduction to a low frequency Evans function.

We will now perform here a detailed analysis of the Evans function for
low frequencies. Since some eigenvalues, that we will call hyperbolic, of
A± vanishes for ζ̃ = 0, the associated positive or negative space of A±
cease to be well-defined for low frequencies. Although it is the case, we will
show we can extend the definition of those spaces in a continuous way. We
will later provide explicit computations of those limiting spaces in section
3.7. The associated asymptotic Evans function will be computed during
section 3.8, its nonvanishing meaning that the uniform Evans Condition
becomes equivalent to the Evans Condition. The main idea behind our
proof is that only the hyperbolic eigenvalues and the associated eigenvectors
have to be recomputed for low frequencies. In a first step, we will introduce
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the appropriate scaling for the low frequency analysis of what corresponds
to the hyperbolic block. We recall that A± denotes the following 4× 4 sized
matrix:

A±(ζ̃) :=
(

0 Id
(iτ̃ + γ̃)Id A±

)
,

Moreover, it intervenes in an ODE of the form:

∂z

(
w±

∂zw
±

)
= A±(ζ̃)

(
w±

∂zw
±

)
+ F±,

We have then:

∂z

(
w±

ρ−1∂zw
±

)
:=
(

0 ρId
ρ−1(iτ̃ + γ̃)Id A±

)(
w±

ρ−1∂zw
±

)
:= ρǍ(ζ̌, ρ)

(
w±

ρ−1∂zw
±

)
,

where

Ǎ±(ζ̌, ρ) :=
(

0 Id
ρ−1(iτ̌ + γ̌)Id ρ−1A±

)
with τ̌ := τ̃

ρ and γ̌ := γ̃
ρ .

For γ̃ > 0,

E−(A+) = EH
− (A+)

⊕
EP
−(A+),

where EH
− (A+) is the space generated by the generalized eigenvectors of A+

associated to the the hyperbolic eigenvalues of A+ with negative real part.
The same way, EP

−(A+) stands for the space generated by the generalized
eigenvectors of A+ associated to the the parabolic eigenvalues of A+ with
negative real part. By opposition to the hyperbolic eigenvalues, the parabolic
eigenvalues does not cross the imaginary axis even for ζ̃ = 0. Remark that
the dimensions of EH

− (A+) and EP
−(A+) are constant. Viewing temporarily

ζ̌ as a parameter, we introduce the following decomposition:

E−(Ǎ+) = EH
− (Ǎ+)

⊕
EP
−(Ǎ+),

like before, we call an eigenvalue of Ǎ+ hyperbolic if it vanishes for ζ̌ = 0 an
parabolic otherwise. Remark well that, in this case, these denominations are
sort of artificial since, by definition, |ζ̌| = 1. EH

− (Ǎ+) and EP
−(Ǎ+) are then

defined like before. The extended linear subspace Elim
− (A+) is then given

by:
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Elim
− (A+) = EH

− (Ǎ+)|τ̌=1,γ̌=0,ρ=0

⊕
EP
−(A+)|ζ=0,

where EH
− (Ǎ+)|τ̌=1,γ̌=0,ρ=0 stands for limγ̌→0+,τ̌2+γ̌2=1 limρ→0+ EH

− (Ǎ+)(ζ̌, ρ).
The same way, E+(A−) extends continuously to Elim

+ (A−) as ζ̃ goes to zero,
with:

Elim
+ (A−) = EH

+ (Ǎ−)|τ̌=1,γ̌=0,ρ=0

⊕
EP

+(A−)|ζ=0.

The following Proposition shows the strong interest raised by the ability
of computing explicitly Elim

− (A+) and Elim
+ (A+).

Proposition 3.1. Let us assume that the (H̃ε,M̃) satisfies the Evans Con-
dition which means that, for all ζ = (τ, γ) ∈ R× R+ − {0R2}, there holds:∣∣∣det

(
Ẽ−(A+(ζ)), Ẽ+(A−(ζ))

)∣∣∣ > 0.

Then the four following properties are equivalent:

• (H̃ε,M̃) satisfies the Uniform Evans Condition.

• There is ρ0 > 0 such that, for all ζ = (τ, γ) ∈ R × R+ − {0R2}, with
|ζ| < ρ0, there holds:∣∣det

(
E−(A+(ζ)), E+(A−(ζ))

)∣∣ ≥ C > 0.

•
∣∣det

(
Elim
− (A+), Elim

+ (A−)
)∣∣ > 0.

• Elim
− (A+)

⋂
Elim

+ (A−) = {0}.

Remark 3.2. If we take N = 1 that is to say a scalar system, the uniform
Evans condition is always satisfied. As a consequence, the uniform Evans
condition also holds if A+ and A− are diagonalizable in the same basis.

3.4 Analysis of the medium and high frequencies Evans func-
tion for 2× 2 systems.

The bases in which A+ and A− are diagonal differ in general from each other.
However, making the right change of basis, we can always assume that A− is
diagonal without loss of generality. Let us fix a positive real number K, for
the Evans condition to hold, it is necessary that, for all 0 < |ζ| < K, the real
and imaginary part of following determinant do not vanish simultaneously:
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D(ζ) =

∣∣∣∣∣∣∣∣
a c 1 0
b d 0 1

aµ+
1 (ζ) cµ+

2 (ζ) µ−1 (ζ) 0
bµ+

1 (ζ) dµ+
2 (ζ) 0 µ−2 (ζ)

∣∣∣∣∣∣∣∣
where

(
a
b

)
is the normalized eigenvector associated to λ+

1 , which denotes

the smallest eigenvalue of A+ and
(

c
d

)
is the normalized eigenvector asso-

ciated to λ+
2 , which is the greatest eigenvalue of A+. We have thus a2+b2 = 1,

c2 + d2 = 1 and ad− bc 6= 0. Some computations show that:

D(ζ) = (ad− bc)(µ+
1 µ+

2 + µ−1 µ−2 )− ad(µ−1 µ+
2 + µ−2 µ+

1 ) + bc(µ−2 µ+
2 + µ−1 µ+

1 )

Notice first that Im(D(ζ)) does vanish for τ = 0, thus a necessary condition
in order for the Evans condition to hold is that <e(D(0, γ)) does not vanish
for all γ positive. So, We will now study the sign of

<eD(ζ) = D1(ζ)−D2(ζ)

where

D1(ζ) := ad(<e(µ+
1 )−<e(µ−1 ))(<e(µ+

2 )−<e(µ−2 ))

+bc(<e(µ+
2 )−<e(µ−1 )(<e(µ−2 )−<e(µ+

1 )).

and
D2(ζ) := ad(Im(µ+

1 )− Im(µ−1 ))(Im(µ+
2 )− Im(µ−2 ))

+bc(Im(µ+
2 )− Im(µ−1 )(Im(µ−2 )− Im(µ+

1 )).

Let us denote by λ+
1 < λ+

2 the two eigenvalues of A+ and λ−1 < λ−2 the
two eigenvalues of A−, we have then, for i ∈ {1; 2} :

µ+
i =

1
2
λ+

i −
1
4
((λ+2

i + 4γ)2 + 16τ2)
1
4

(1 +
16τ2(

λ+2
i + 4γ

)2
)− 1

2

+ 1



−i sign(τ)
1
4
((λ+2

i + 4γ)2 + 16τ2)
1
4

1−

(
1 +

16τ2(
λ+2

i + 4γ
)2
)− 1

2
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µ−i =
1
2
λ−i +

1
4
((λ−2

i + 4γ)2 + 16τ2)
1
4

(1 +
16τ2(

λ−2
i + 4γ

)2
)− 1

2

+ 1



+i sign(τ)
1
4
((λ−2

i + 4γ)2 + 16τ2)
1
4

1−

(
1 +

16τ2(
λ−2

i + 4γ
)2
)− 1

2


As a consequence, restricting ourselves to τ = 0 we have:

µ+
i |τ=0 =

1
2

(
λ+

i − ((λ+2
i + 4γ)2)

1
4

)

µ−i |τ=0 =
1
2

(
λ−i + ((λ−2

i + 4γ)2)
1
4

)
.

Remark that, because A+ and A− are nonsingular, for all positive γ, there
holds:

µ+
i |τ=0 < 0,

µ−i |τ=0 > 0.

However, as γ vanishes, µ+
i |τ=0 or µ−i |τ=0 may vanish too depending on the

sign of λ+
i and λ−i .

3.5 Some sufficient assumptions for the Evans Condition to
hold.

A necessary condition for the uniform Evans condition to hold is that, for
all γ > 0, |D(0, γ)| > 0, which means that the sign of the following quantity
remains strictly the same for all positive γ:

Q := ad(µ+
1 |τ=0 − µ−1 |τ=0)(µ+

2 |τ=0 − µ−2 |τ=0)

+bc(µ+
2 |τ=0 − µ−1 |τ=0)(µ−2 |τ=0 − µ+

1 |τ=0) := Q1 + Q2.

For all γ > 0, we have thus

sign(Q1) = sign(ad)

and
sign(Q2) = −sign(bc).
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Therefore, alternative sufficient conditions in order to obtain |D(0, γ)| >
0, ∀γ > 0 are sign(ad) = −sign(bc) or ad = 0 or bc = 0. Indeed, as
highlighted previously, for all nonzero ζ, µ+

i |τ=0 < 0 and µ−i |τ=0 > 0. Our
idea is, restricting ourselves to the cases where sign(ad) = −sign(bc) or
ad = 0 or bc = 0, to search for sufficient conditions on the eigenvalues
and eigenvectors of A+ and A− in order to ensure that <e(D(ζ)) keeps the
same sign as D1(ζ) for all ζ 6= 0. Take notice that, for all nonzero ζ, D1(ζ)
keeps strictly the same sign as D1|τ=0(γ), for γ > 0. Since <e(D(ζ)) =
D1(ζ) − D2(ζ), if, for some ζ, D2(ζ) is of opposite sign of D1(ζ), we have
to prove that |D2(ζ)| < |D1(ζ)|. The following lemma is useful in the study
the sign of <eD(ζ) :

Lemma 3.3. Seeing µ+ and µ− as two functions of (ζ, λ), for all ζ 6= 0, we
have:

Im(µ+(ζ, λ)) = Im(µ+(ζ,−λ)) = −Im(µ−(ζ, λ)) = −Im(µ−(ζ,−λ)).

Moreover
|Im(µ+(ζ, λ))| < |<e(µ+(ζ, λ))|,

|Im(µ−(ζ, λ))| < |<e(µ−(ζ, λ))|,

for all τ 6= 0 and γ ≥ 0.

Proof. The first part of this lemma is trivial, so let us prove the second
part. For this purpose, let us fix γ = γ0, we will then prove by an argument
of comparative increasing speed in |τ | that for all |τ | > 0, we have

|Im(µ±(τ, γ0, λ))| < |<e(µ±(τ, γ0, λ))|.

Let us begin by the study of µ+. For all γ0, there holds

|<e(µ+(0, γ0, λ))| ≥ |Im(µ+(0, γ0, λ))| = 0,

and |<e(µ+(τ, γ0, λ))|, considered as a function of |τ |, is increasing strictly
quicker in |τ | than |Im(µ+(τ, γ0, λ))|, for all admissible value of (γ0, λ), which
proves the desired result. Indeed, we have:

|<e(µ+)| = −1
2
λ++

1
4
((λ+2+4γ)2+16τ2)

1
4 +

1
4
((λ+2+4γ)2+16τ2)

1
4

(
1 +

16τ2

(λ+2 + 4γ)2

)− 1
2

|Im(µ+)| = 1
4
((λ+2+4γ)2+16τ2)

1
4−1

4
((λ+2+4γ)2+16τ2)

1
4

(
1 +

16τ2

(λ+2 + 4γ)2

)− 1
2
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If we fix the growth of 1
4((λ+2 + 4γ)2 + 16τ2)

1
4 for increasing |τ | as a com-

parison state, the term 1
4((λ+2 + 4γ)2 + 16τ2)

1
4

(
1 + 16τ2

(λ+2+4γ)2

)− 1
2 is accel-

erating the growth of |<e(µ+)| as |τ | gets bigger, but is delaying the growth
of |Im(µ+)| . Noticing that:

|<e(µ−)| = 1
2
λ−+

1
4
((λ−2+4γ)2+16τ2)

1
4 +

1
4
((λ−2+4γ)2+16τ2)

1
4

(
1 +

16τ2

(λ−2 + 4γ)2

)− 1
2

|Im(µ−)| = 1
4
((λ−2+4γ)2+16τ2)

1
4−1

4
((λ−2+4γ)2+16τ2)

1
4

(
1 +

16τ2

(λ−2 + 4γ)2

)− 1
2

.

Reasoning the same way, we have thus proved that:

|Im(µ−(ζ, λ))| < |<e(µ−(ζ, λ))|.

2

Theorem 3.4. For sign(ad) = −sign(bc) or ad = 0 or bc = 0, the Evans
condition always holds.

Proof. We will begin by treating the case of medium frequencies. For
τ = 0, it has already been proven that the real part of the Evans function
never vanishes and more precisely keeps the sign of ad or −bc (take the non-
null one by default). As a direct consequence of lemma 3.3, for all τ 6= 0,
there holds: |τ | > 0 <e(µ−2 ) > |Im(µ−2 )| > 0, −<e(µ+

2 ) > |Im(µ+
2 )| > 0,

<e(µ−1 ) > |Im(µ−1 )| > 0, −<e(µ+
1 ) > |Im(µ+

1 )| > 0. Thus, we have:

<e(µ−1 )<e(µ−2 )−Im(µ−1 )Im(µ−2 ) ≥ <e(µ−1 )<e(µ−2 )−|Im(µ−1 )||Im(µ−2 )| > 0,

<e(µ−1 )(−<e(µ+
2 ))+Im(µ−1 )Im(µ+

2 ) ≥ <e(µ−1 )(−<e(µ+
2 ))−|Im(µ−1 )||Im(µ+

2 )| > 0,

(−<e(µ+
1 ))<e(µ−2 )+Im(µ+

1 )Im(µ−2 ) ≥ (−<e(µ+
1 ))<e(µ−2 )−|Im(µ+

1 )||Im(µ−2 )| > 0,

(−<e(µ+
1 ))(−<e(µ+

2 ))−Im(µ+
1 )Im(µ+

2 ) ≥ (−<e(µ+
1 ))(−<e(µ+

2 ))−|Im(µ+
1 )||Im(µ+

2 )| > 0.

As a consequence, ad has the same sign as:

ad(<e(µ−1 )−<e(µ+
1 ))(<e(µ−2 )−<e(µ+

2 ))−(Im(µ−1 )−Im(µ+
1 ))(Im(µ−2 )−Im(µ+

2 )).

The same way, for all τ 6= 0, −bc has the same sign as:

bc(<e(µ−1 )−<e(µ+
2 ))(<e(µ+

1 )−<e(µ−2 ))−bc(Im(µ−1 )−Im(µ+
2 ))(Im(µ+

1 )−Im(µ−2 )).
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Hence, assuming sign(ad) = −sign(bc) or ad = 0 or bc = 0, <eD(ζ) and thus
D(ζ) does not vanish for all nonzero frequencies. The analysis performed
here also works for high frequencies, where the eigenvalues µ± of A± have
to be replaced by µ±

Λ , with Λ > 0, which ends our proof. 2

We have proved here Proposition 2.8 stated at the beginning of the paper.
Remark that this Proposition states that the Evans Condition holds in some
cases, without concern for the uniformity.

3.6 Some instances for which the uniform Evans condition
does not hold.

This section is devoted to the proof of Proposition 2.9. We have shown
during last section that the Evans condition always holds if sign(ad) =
−sign(bc). Consider (a,b,c,d) such that ad− bc 6= 0, a2 + b2 = c2 + d2 = 1,
and sign(ad) = sign(bc) ; λ−1 < λ−2 , λ+

1 < λ+
2 . We shall search here for

some (a, b, c, d, λ−1 , λ+
1 , λ−2 , λ+

2 ), inducing strong Evans-instabilities. More
precisely, we will see that, upon correct choice of these parameters, D|τ=0 can
vanish for some positive γ. To construct our example, we begin by making
some sign assumptions on the eigenvalues corresponding to q := dim Σ = 0:

λ−1 < 0, λ−2 > 0, λ+
1 < 0, λ+

2 > 0.

For the sake of simplicity, we will assume that a, b, c, d are positive. Denoting
by

Da(γ) := ad(<e(µ+
1 |τ=0)−<e(µ−1 |τ=0))(<e(µ+

2 |τ=0)−<e(µ−2 |τ=0)),

Db(γ) := bc(<e(µ+
2 |τ=0)−<e(µ−1 |τ=0))(<e(µ+

1 |τ=0)−<e(µ−2 |τ=0)),

we have D|τ=0 = Da − Db. Note that sign(Da) = sign(Db). Thus, D|τ=0

does not vanish for some γ0 > 0 if and only if we have either Da > Db for
all positive γ, or Da < Db for all positive γ. Observe that:

Da(0) = ad(λ+
1 − |λ

+
1 | − λ−1 − |λ

−
1 |)(λ

+
2 − |λ

+
2 | − λ−2 − |λ

−
2 |)

Db(0) = bc(λ+
2 − |λ

+
2 | − λ−1 − |λ

−
1 |)(λ

+
1 − |λ

+
1 | − λ−2 − |λ

−
2 |)

Due to the assumption we have made on the sign of the eigenvalues, we
have:

Da(0) = 4ad|λ+
1 ||λ

−
2 |,

Db(0) = 0.
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As a result, by continuity of Da and Db with respect to γ, we obtain that
Da > Db for γ in a positive neighborhood of zero. The interesting fact
is that this inequality does not need any strong assumption to hold. Our
goal will then be to prove that, for some γ0 > 0, we have Da < Db, by
continuity of Da and Db with respect to γ, this will prove the existence of a
positive γ canceling the Evans function for τ = 0. Remarking that Da and
Db share some similarities in their constructions, we will take λ+

1 = −λ+
2

and λ−1 = −λ−2 in order to build our example. By doing so, we have the
simplified expressions of Da and Db:

Da = ad

(
8γ + 2

√
(λ+

2 )2 + 4γ
√

(λ−2 )2 + 4γ + 2λ+
2 λ−2

)
Db = bc

(
8γ + 2

√
(λ+

2 )2 + 4γ
√

(λ−2 )2 + 4γ − 2λ+
2 λ−2

)
.

Now take bc = 2ad, (bc > ad would be sufficient to construct the example)

denoting by γ0 := max
(

(λ−2 )2

2 ,
(λ+

2 )2

2

)
, there holds Db(γ0) > Da(γ0). Indeed,

Db −Da = bc

(
8γ + 2

√
(λ+

2 )2 + 4γ
√

(λ−2 )2 + 4γ − 6λ+
2 λ−2

)
,

and 2
√

(λ+
2 )2 + 4γ

√
(λ−2 )2 + 4γ − 6λ+

2 λ−2 ≥ 0 for all γ ≥ γ0. Thus, there is
0 < γ1 < γ0 such that the Evans function vanishes for ζ = (0, γ1).

3.7 Computation of the extension of the linear subspaces
EH
− (Ǎ+) and EH

+ (Ǎ−) in the case A+ and A− belongs to
M2(R).

Let us now inquire on a way to compute EH
− (Ǎ+) and EH

+ (Ǎ−) for 2 × 2
systems. Due to the symmetry of the problem, we will only investigate the
calculus of EH

− (Ǎ+). For small ρ, corresponding to ζ̌ in a neighborhood ω of
0, let us look for an ”hyperbolic” eigenvalue of Ǎ+ that we will note λ̌+(ζ̌, ρ)
in a generic manner, and compute its associated eigenvector:

Ǎ+(ζ̌, ρ)


v1

v2

v3

v4

 = λ̌+


v1

v2

v3

v4

 .

Adopting the notation:

A± :=
(

a±11 a±12
a±21 a±22

)
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we get, by multiplying some equations by ρ > 0 the following system:
v3 = λ̌+v1,

v4 = λ̌+v2,

(iτ̌ + γ̌)v1 + a+
11v3 + a+

12v4 = ρλ̌+v3,

(iτ̌ + γ̌)v2 + a+
21v3 + a+

22v4 = ρλ̌+v4 .

Making ρ → 0+ gives then, the following limiting system for low frequencies:
v3 = λ̌+v1,

v4 = λ̌+v2,

(iτ̌ + γ̌ + a+
11λ̌

+)v1 + a+
12λ̌

+v2 = 0,

a+
21λ̌

+v1 + (iτ̌ + γ̌ + a+
22λ̌

+)v2 = 0 .

Take notice that, in the above equation, λ̌+ is also an unknown. In addition
λ̌+ = 0 is not an eigenvalue since it would imply that v1 = v2 = v3 = v4 = 0.
To study the Asymptotic Evans function for low frequency in order to ensure
that the Evans Condition holds uniformly, several cases would have to be
treated. We will focus here, for some cases, on giving the way to compute
the continuous extension of the subspaces to γ = 0, allowing then to check
easily whether the uniform Evans Condition holds or not.
The dimension of the linear subspace EH

− (Ǎ+) is also p+, the number of

negative eigenvalues of A+. We have then EH
− (Ǎ+) = Span

{
w+

1 , . . . , w+
p+

}
.

The diagonal case where a+
12 = 0 and a+

21 = 0.

If λ+
j = a+

jj is a positive eigenvalue of A+, then then one of the eigen-

vectors generating EH
− (Ǎ+) is

(
ej

µ̌+
j ej

)
, where ej is the jth vector of the

canonical basis of C2 and µ̌+
j = − iτ̌+γ̌

λ+
j

.

The triangular case where a+
12 = 0 and a+

21 6= 0.


v3 = λ̌+v1,

v4 = λ̌+v2,

(iτ̌ + γ̌ + a+
11λ̌

+)v1 = 0,

a+
21λ̌

+v1 + (iτ̌ + γ̌ + a+
22λ̌

+)v2 = 0 .
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If λ+
2 = a+

22 is a positive eigenvalue of A+, then one of the eigenvectors

generating EH
− (Ǎ+) is

(
e2

µ̌+
2 e2

)
, where e2 is the second vector of the canon-

ical basis of C2 and µ̌+
2 = − iτ̌+γ̌

λ+
2

is one of the eigenvalues with negative real

part of Ǎ+. If λ+
1 = a+

11 is a positive eigenvalue of A+, then µ̌+
1 = − iτ̌+γ̌

λ+
1

is

one of the eigenvalues with negative real part of Ǎ+. The equation giving
the associated eigenvectors is:

v3 = µ̌+
1 v1,

v4 = µ̌+
1 v2,

v1 ∈ C,

v2 = − a+
21µ̌

+
1

iτ̌ + γ̌ + a+
22µ̌

+
1

v1 .

Hence one of the eigenvectors generating EH
− (Ǎ+) is


iτ̌ + γ̌ + a+

22µ̌
+
1

−a+
21µ̌

+
1

µ̌+
1

(
iτ̌ + γ̌ + a+

22µ̌
+
1

)
−a+

21

(
µ̌+

1

)2
 .

The triangular case where a+
12 6= 0 and a+

21 = 0.

This case behaves similarly to the other triangular case just treated.
If λ+

1 = a+
11 is a positive eigenvalue of A+, then we can take

w+
1 =

(
e1

µ̌+
1 e1

)
where e1 is the first vector of the canonical basis of C2 and µ̌+

1 = − iτ̌+γ̌

λ+
1

.

If λ+
2 = a+

22 is a positive eigenvalue of A+, then one of the eigenvectors

generating EH
− (Ǎ+) is


−a+

12µ̌
+
2

iτ̌ + γ̌ + a+
11µ̌

+
2

−a+
12

(
µ̌+

2

)2
µ̌+

2

(
iτ̌ + γ̌ + a+

11µ̌
+
2

)
 , where µ̌+

2 = − iτ̌+γ̌

λ+
2

is one

of the eigenvalues with negative real part of Ǎ+.
These computations will allow us to conclude quickly the proof Proposition
2.10 done next section.
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3.8 End of the proof of Proposition 2.10.

In view of the results proved until this section, we only lack the proof of the
uniform nonvanishing of the Evans function as the frequencies come in a
neighborhood of zero. For the examples given in Proposition 2.10, modulo
a change of basis, we take:

A− :=
(

d−1 0
0 d−2

)
,

A+ :=
(

d+
1 α
0 d+

2

)
where d−1 , d−2 , d+

1 , d+
2 and α are such that:

α 6= 0 d−1 < 0, d+
1 > 0, d−1 6= d−2 , and d+

1 6= d+
2 . Following Proposition

2.10 we will split our low frequency analysis of the Evans function into three
parts depending on the signs of d−2 and d+

2 .

The case d−2 < 0 and d+
2 > 0.

Note first that we are now considering a completely outgoing or expansive
case, which implies that all the eigenvalues of A+ and A− are hyperbolic.
The computation of the asymptotic Evans function for low frequencies need
the extension of the linear subspaces E−(A+) and E+(A−), which ceases to
be well-defined as |ζ| → 0. Our problem satisfies our stability assumption
(Uniform Evans Condition) iff the function Dlow does not vanish for γ̌ =
0, τ̌ = 1. Dlow is defined as the modulus of the following determinant:∣∣∣∣∣∣∣∣

1 −αµ̌+
2 1 0

0 ν+
2 0 1

µ̌+
1 −α(µ̌+

2 )2 µ̌−1 0
0 µ̌+

2 ν+
2 0 µ̌−2

∣∣∣∣∣∣∣∣
We have thus:

Dlow = |ν+
2 ||µ̌

−
2 − µ̌+

2 ||µ̌
−
1 − µ̌+

1 |,

from which we get, since |iτ̌ + γ̌| = 1, that:

Dlow =
∣∣∣∣1− d+

1

d+
2

∣∣∣∣ ∣∣∣∣− 1
d−2

+
1

d+
2

∣∣∣∣ ∣∣∣∣− 1
d−1

+
1

d+
1

∣∣∣∣ > 0.

Note well that, surprisingly Dlow does not even depend of ζ̌.
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The case d−2 < 0 and d+
2 < 0.

We proceed like we have just done in the case where d−2 < 0 and d+
2 > 0.

This time, thanks to the sign of d+
2 , A+ has one hyperbolic eigenvalue with

negative real part that we will note µ̌+
1 and one parabolic eigenvalue with

negative real part that we will note µ̌+
2 . µ̌+

1 vanishes for ζ̃ = 0, whereas
µ̌+

2 |ζ̃=0 = d+
2 . Ǎ+ has two eigenvalues with negative real parts:

µ̌+
1 (ζ̌) = − iτ̌ + γ̌

d+
1

,

µ̌+
2 (ζ̌) = d+

2 .

As a consequence, we get that our problem satisfies our stability assumption
(Uniform Evans Condition) iff the function Dlow does not vanish for γ̌ =
0, τ̌ = 1. Dlow is defined as the modulus of the following determinant:∣∣∣∣∣∣∣∣

1 α 1 0
0 d+

2 − d+
1 0 1

µ̌+
1 d+

2 α µ̌−1 0
0 d+

2 (d+
2 − d+

1 ) 0 µ̌−2

∣∣∣∣∣∣∣∣
We have thus:

Dlow = |µ̌−1 − µ̌+
1 ||d

+
2 − d+

1 ||µ̌
−
2 − d+

2 |,

from which we get, since |iτ̌ + γ̌| = 1, that:

Dlow =
∣∣∣∣− 1

d−1
+

1
d+

1

∣∣∣∣ ∣∣d+
2 − d+

1

∣∣(( τ̌

d−2

)2

+
(
γ̌ + d+

2

)2)
.

Hence Dlow|τ̌=1,γ̌=0 > 0.

The case d−2 > 0 and d+
2 > 0.

This time Ǎ+ has two eigenvalues with negative real parts:

µ̌+
1 (ζ̌) = − iτ̌ + γ̌

d+
1

,

µ̌+
2 (ζ̌) = − iτ̌ + γ̌

d+
2

.

As a consequence, we get that our problem satisfies our stability as-
sumption (Uniform Evans Condition) iff the function Dlow does not vanish
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for γ̌ = 0 and τ̌ = 1. Dlow is defined as the modulus of the following deter-
minant: ∣∣∣∣∣∣∣∣

1 −αµ̌+
2 1 0

0 ν+
2 0 1

µ̌+
1 −α(µ̌+

2 )2 µ̌−1 0
0 µ̌+

2 ν+
2 0 µ̌−2

∣∣∣∣∣∣∣∣
We have thus:

Dlow = |ν+
2 ||µ̌

−
1 − µ̌+

1 ||µ̌
−
2 − µ̌+

2 |;

hence, since |iτ̌ + γ̌| = 1, we obtain:

Dlow = |iτ̌ + γ̌ + d+
1 µ̌+

2 ||µ̌
−
1 − µ̌+

1 ||d
−
2 − µ̌+

2 |

and then

Dlow =
∣∣∣∣1− d+

1

d+
2

∣∣∣∣ ∣∣∣∣− 1
d−1

+
1

d+
1

∣∣∣∣
((

d−2 +
γ̌

d+
2

)2

+
(

τ̌

d+
2

)2
)

> 0.
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