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We analyze the contact and force networks in a dense confined packing of pen-
tagonal particles simulated by means of the contact dynamics method. The
particle shape effect is evidenced by comparing the data from pentagon pack-
ing and from a packing with identical characteristics except for the circular
shape of the particles. A surprising observation is that the pentagon packing
develops a lower structural anisotropy than the disk packing. We show in this
work that this weakness is compensated by a higher force anisotropy that
leads to enhanced shear strength of the pentagon packing. With the polyg-
onal shape of the particles, the strong force chains are mostly composed of
edge-to-edge contacts with a marked zig-zag aspect.

1 Introduction

The microstructure of granular materials is generically anisotropic in two re-
spects: 1) The contact normal directions are not random; 2) The force average
as a function of contact normal direction is not uniform. The corresponding
fabric and force anisotropies in shear are responsible for mechanical strength
at the scale of the packing [11, 12, 13, 10]. The shear stress is fully trans-
mitted via a ”strong” contact network, materialized by force ”chains” and
the stability is ensured by the antagonist role of ”weak” contacts which prop
strong force chains[10, 14]. These features have, however, been for the most
part investigated in the case of granular media composed of isometric (circular
or spheric) particles.

In this paper, we consider one of the simplest possible shapes, namely reg-
ular pentagons. Among regular polygons, the pentagon has the lowest number
of sides, corresponding to the least roundedness in this category, without the
pathological space-filling properties of triangles and squares. We seek to iso-
late the effect of edge-to-edge contacts on shear stress and force transmission
by comparing the data with a packing of circular particles that, apart from
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the particle shape, is fully identical (preparation, friction coefficients, particle
size distribution) to the pentagon packing. Both packings are subjected to bi-
axial compression simulated by means of the contact dynamics method. The
presence of edge-to-edge contacts affects both quantitatively and qualitatively
the microstructure and the overall behavior during shear. These contacts do
not transmit torques, but they are able to accommodate force lines that are
usually unsustainable in packings of disks.

2 Numerical procedures

The simulations were carried out by means of the contact dynamics (CD)
method with pentagonal particles. The CD method is based on implicit time
integration of the equations of motion and a nonsmooth formulation of mutual
exclusion and dry friction between particles [15, 16, 17]. This method requires
no elastic repulsive potential and no smoothing of the Coulomb friction law
for the determination of forces. For this reason, the simulations can be per-
formed with large time steps compared to molecular dynamics simulations.
We used LMGC90 which is a multipurpose software developed in our labora-
tory, capable of modeling a collection of deformable or undeformable particles
of various shapes by different algorithms [18].

Fig. 1. Snapshots of a portion of the samples S2 (a) and S1 (b) composed of circular
and pentagonal particles, respectively.

We generated two numerical samples. The first sample S1, is composed of
14400 regular pentagons of three different diameters: 50% of diameter 2.5 cm,
34% of diameter 3.75 cm and 16% of diameter 5 cm. The second sample S2,
is composed of 10000 discs with the same polydispersity. Both samples were
prepared according to the same protocol. The gravity was set to zero in order
to avoid force gradients in the samples. The coefficient of friction was set to
0.4 between grains and to 0 with the walls. At equilibrium, both numerical
samples were in isotropic stress state. The solid fraction was φ0 = 0.80 for S1
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and φ0 = 0.82 for S2. The aspect ratio was h/l ≈ 2, where h and l are the
height and width of the sample, respectively. Figure 1 displays snapshots of
the two packings at the end of isotropic compaction.

The isotropic samples were subjected to vertical compression by down-
ward displacement of the top wall at a constant velocity of 1 cm/s for a
constant confining stress σ0 acting on the lateral walls. Since we are inter-
ested in quasistatic behavior, the shear rate should be such that the kinetic
energy supplied by shearing is negligible compared to the static pressure. This
can be formulated in terms of an ”inertia parameter” I defined by [19]

I = ε̇

√

m

p
, (1)

where ε̇ = ẏ/y is the strain rate, m is the total mass, and p is the average
pressure. The quasistatic limit is characterized by the condition I ≪ 1. In our
biaxial simulations, I was below 10−3.

3 Shear stress

In this section, we compare the stress-strain behavior between the packings of
polygons (sample S1) and disks (sample S2). For the calculation of the stress
tensor, we consider the ”tensorial moment” M i of each particle i defined by
[20, 14]:

M i
αβ =

∑

c∈i

f c
αrc

β , (2)

where f c
α is the α component of the force exerted on particle i at the contact

c, rc
β is the β component of the position vector of the same contact c, and

the summation is runs over all contacts c of neighboring particles with the
particle i (noted briefly by c ∈ i). It can be shown that the tensorial moment of
a collection of rigid particles is the sum of the tensorial moments of individual
particles. The stress tensor σ for a packing of volume V is simply given by
[20, 14]:

σ =
1

V

∑

i∈V

M i =
1

V

∑

c∈V

f c
αℓc

β, (3)

where ℓc is the intercenter vector joining the centers of the two touching
particles at the contact c. We extract the mean stress p = (σ1 + σ2)/2, and
the stress deviator q = (σ1−σ2)/2, where σ1 and σ2 are the principal stresses.
The major principal direction during vertical compression is vertical, we then
define the volumetric strain by :

εp =

∫ V

V0

dV ′

V ′
= ln

(

1 +
∆V

V0

)

, (4)

where V0 is the initial volume and ∆V = V − V0 is the cumulative volume
change.
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Figure 2 shows the normalized shear stress q/p for the samples S1 and S2
as a function of shear strain εq ≡ ε1 − ε2. For S2, we observe a hardening
behavior followed by (slight) softening and a stress plateau corresponding to
the residual state of soil mechanics [21]. For S1, we observe no marked stress
peak. The residual stress is higher for polygons (≃ 0.35) than for disks (≃
0.28). The higher level of q/p for the polygon packing reflects the organization
of the microstructure and the features of force transmission that we analyze
in more detail below.
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Fig. 2. Normalized shear stress q/p as a function of cumulative shear strain εq for
the samples S1 and S2.

4 Fabric anisotropy

The shear strength of dry granular materials is generally attributed to the
buildup of an anisotropic structure during shear due to friction between the
particles and as a result of steric effects depending on particle shape [22, 23,
24].

The probability density function Pθ(θ), where θ is the orientation of the
contact normal n, provides the basic orientational statistical information
about the granular the fabric. It is π-periodic in the absence of an intrin-
sic polarity for n. Most lowest-order information is generally given by the
second moment of Pθ, called fabric tensor [25]:

Fαβ =
1

π

∫ π

0

nα(θ)nβ(θ)Pθ(θ)dθ ≡
1

Nc

∑

c∈V

nc
αnc

β , (5)

where α and β design the components in a reference frame and Nc is the total
number of contacts in the control volume V . By definition, tr(F ) = 1. The
anisotropy of the contact network is given the difference between the principal
values F1 and F2. We define the fabric anisotropy a by
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a = 2(F1 − F2). (6)

Figure 3 displays a polar representation of Pθ(θ) for the samples S1 and
S2 at εq = 0.3. We observe a nearly isotropic distribution for the pentagon
packing in spite of shearing whereas the disk packing is markedly anisotropic.
This is a surprising observation in view of the higher shear strength of the
pentagon packing.

The evolution of a is shown in Fig. 4 as a function of εq for S1 and S2.
The anisotropy stays quite weak in the pentagon packing whereas the disk
packing is marked by a much larger anisotropy, increasing to ≃ 0.3 and then
relaxing to a slightly lower value in the residual state. The low anisotropy
of the pentagon packing results from a particular organization of the force
network in correlation with the orientations of edge-to-edge and vertex-to-
edge contacts in the packing [26]. This leads us to consider the contributions
of force and texture anisotropies to average shear stresses.

S1
S2

y

x

Fig. 3. Polar representation of the
probability density function Pθ of the
contact normal directions θ for the
samples S1 and S2 in the residual state.
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Fig. 4. Evolution of the anisotropy a
with cumulative shear strain εq for the
samples S1 and S2.

5 Force anisotropy

The angular distribution of contact forces in a granular packing can be rep-
resented by the average force 〈f〉(n) as a function of the contact normal
direction n. We distinguish the average normal force 〈fn〉(θ) from the average
tangential force 〈ft〉(θ). As P (θ), these two functions can be represented by
their Fourier expansions truncated beyond the second term [11, 12, 13, 10]:

{

〈fn〉(θ) = 〈f〉{1 + an cos 2(θ − θn)}
〈ft〉(θ) = 〈f〉at sin 2(θ − θt)

(7)
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where 〈f〉 is the average force, an and at represent the anisotropies of the
normal and tangential forces, respectively, and θn and θt are their privileged
directions. It is convenient to estimate the anisotropies from the following
”force tensors”:















H
(n)
αβ =

π
∫

0

〈fn〉(θ)nαnβdθ,

H
(t)
αβ =

π
∫

0

〈ft〉(θ)nαtβdθ.
(8)

Then, we have tr(H(n)) = 〈f〉, and










an = 2
H

(n)
1 −H

(n)
2

H
(n)
1 +H

(n)
2

,

at = 2
H

(t)
1 −H

(t)
2

H
(n)
1 +H

(n)
2

,
(9)

where the subscripts 1 and 2 refer to the principal values of the tensors.
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Fig. 5. Evolution of force anisotropies an (a) and at (b) as a function of cumulative
shear strain εq in samples S1 and S2.

( ) ( )
Fig. 6. Snapshots of normal forces in samples S2 (a) and S1 (b). Line thickness is
proportional to the normal force.

Figure 5 shows the evolution of an and at with εq in samples S1 and S2. We
see that, in contrast to fabric anisotropies (Fig. 4), the force anisotropies in the
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pentagon packing remain always above those in the disk packing. This means
that the aptitude of the pentagon packing to develop large force anisotropy
and strong force chains is not solely dependent on the global fabric anisotropy
of the system. Indeed, due to the geometry of the pentagons, i.e. the absence of
parallel sides, the strong force chains are mostly of zig-zag shape, as observed
in Fig. 6, and the stability of such structures requires strong activation of
tangential forces. This explains, in turn, the large value of at for pentagons,
very close to an, whereas in the disk packing at is nearly half of an.

The anisotropies a, an and at are interesting descriptors of granular mi-
crostructure and force transmission as they underlie the shear stress. Indeed,
it can be shown that the general expression of the stress tensor Eq. (3) under
some approximations leads to the following simple relation [13, 24]:

q

p
≃

1

2
(a + an + at), (10)

where the cross products ana and ata between the anisotropies have been
neglected compared to the anisotropies, and it has been assumed that the
stress tensor is coaxial with the fabric tensor Eq. (5) and the force tensors Eq.
(8). Fig. 7 shows that Eq. (10) holds quite well both for pentagons and disks.
This equation provides an amazingly good estimate of the shear stress from
the anisotropies under monotonic shearing.
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Fig. 7. Evolution of the normalized shear stress q/p for the samples S1 and S2 with
εq together with the corresponding predictions from its expression as a function of
fabric and force anisotropies Eq. (10).

A remarkable consequence of Eq. (10) is to reveal the distinct origins of
shear stress in pentagon and disk packings. The fabric anisotropy provides a
major contribution to shear stress in the disk packing (Fig. 4) whereas the
force anisotropies are more important for shear stress in the pentagon packing
(Fig. 5). In this way, in spite of the weak fabric anisotropy a, the larger force
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anisotropies an and at allow the pentagon packing to reach higher levels of
q/p compared to the disk packing.

6 Conclusion

The objective of this paper was to isolate the effect of particle shape on shear
strength in granular media by comparing two similar packings with different
particle shapes: pentagons vs. disks. We observed enhanced shear strength and
force inhomogeneity in the pentagon packing. But, unexpectedly, the pentagon
packing was found to develop a lower structural (fabric) anisotropy compared
to the disk packing under shear. This low fabric anisotropy, however, does not
prevent the pentagon packing from building up a strong force anisotropy that
underlies its enhanced shear strength compared to the disk packing.

This finding is interesting as it shows that the force anisotropy in a granular
material depends on the particle shapes. This mechanism may be the predom-
inant source of strength for ”facetted” particles that can give rise edge-to-edge
(in 2D) contacts allowing for strong force localization along such contacts in
the packing. Since the fabric anisotropy is low in a pentagon packing, the role
of force anisotropy and thus the local equilibrium structures are important
with respect to its overall strength properties. With pentagon packings, we
were able to demonstrate the nontrivial phenomenology resulting from the
specific shape of particles as compared to a disk packing. We found a similar
behaviour for other regular polygons (hexagons and higher number of sides)
as well as polyhedral particles in three dimensions.
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modélisation des problèmes d’intéraction. In Actes du sixième colloque national
en calcul des structures - CSMA-AFM-LMS -, volume 1, pages 111–118, 2003.

19. GDR-MiDi. On dense granular flows. Eur. Phys. J. E, 14:341–365, 2004.
20. J. J. Moreau. Numerical investigation of shear zones in granular materials. In

D. E. Wolf and P. Grassberger, editors, Friction, Arching, Contact Dynamics,
pages 233–247, Singapore, 1997. World Scientific.

21. J.K. Mitchell and K. Soga. Fundamentals of Soil Behavior. Wiley, NY, 2005.
22. M. Oda, J. Koshini, and S. Nemat-Nasser. Some experimentally based funda-

mental results on the mechanical behavior of granular materials. Geotechnique,
30:479–495, 1980.

23. B. Cambou. From global to local variables in granular materials. In C. Thornton,
editor, Powders and Grains 93, pages 73–86, Amsterdam, 1993. A. A. Balkema.

24. F. Radjai, H. Troadec, and S. Roux. Key features of granular plasticity. In S.J.
Antony, W. Hoyle, and Y. Ding, editors, Granular Materials: Fundamentals and
Applications, pages 157–184, Cambridge, 2004. RS.C.

25. M. Satake. Fabric tensor in granular materials. In P. A. Vermeer and H. J.
Luger, editors, Proceedings of the IUTAM symposium on deformation and failure
of granular materials, Delft, pages 63–68, Amsterdam, 1982. A. A. Balkema.
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