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The field and temperature dependence of the de Haas-van Alphen oscillations spectrum is studied
for an ideal two-dimensional compensated metal. It is shown that the chemical potential oscillation,
otherwise involved in the frequency combinations observed in the case of uncompensated orbits,
is strongly damped and even suppressed in the case where the effective mass of the electron- and
hole-type orbits are the same. This damping is even more pronounced in the case where magnetic
breakdown occurs.

INTRODUCTION

In high enough magnetic fields, the Fermi surface
(FS) of multiband quasi-two-dimensional metals, are
liable to give rise to networks of orbits coupled by
magnetic breakdown (MB). The most studied type
of network is the linear chain of coupled orbits in-
troduced by Pippard [1] and illustrated by several
quasi-two-dimensional (q-2D) organic conductors such
as κ-(BEDT-TTF)2Cu(NCS)2. As discussed, in Ref.
[2], magnetic oscillations spectra of such networks
contain many frequencies that are linear combinations
of two basic frequencies. In addition to those linked
to MB-induced orbits, other frequencies are observed
that are not accounted for by the semi-classical theory
of Falicov and Stachowiak [3]. They can be attributed
to quantum interference (as far as magnetoresistance
oscillations are concerned), MB-induced modulation
of the density of states [4, 5, 6] and oscillation of the
chemical potential [7, 8, 9, 10], even though the actual
respective contribution of these three phenomena to the
oscillatory behavior remain to be established.

Another type of network is provided by quasi-two-
dimensional (q-2D) metals of which the FS is composed
of compensated electron- and hole-types tubes. This is
the case of organic metals of which the FS originates
from the overlapping in two directions of hole tubes with
an area equal to that of the First Brillouin zone (FBZ)
and from the resulting gap openings [11]. Such networks
are also observed in the family of organic metals (BEDT-
TTF)8Hg4Cl12(C6H5X)2 (X = Cl, Br) whose FS, which
originates from two pairs of crossing q-1D sheets, is com-
posed of one electron and one hole tube with the same
area [12]. As it is the case of the above-mentioned linear
chains of coupled orbits, magnetoresistance oscillations
spectra in this type of network reveal frequencies that
are linear combinations of three basic frequencies, linked
to the compensated orbits and to the two FS pieces
located in-between [13, 14, 15]. However, in striking

contrast to the data relevant to linear chains of orbits, de
Haas-van Alphen (dHvA) oscillations spectra recorded
in the case of the compound with X = Br only exhibit
oscillations, the field and temperature dependence of
which can be consistently interpreted on the basis of
the semiclassical model of Falicov and Stachowiak [3, 15].

The aim of this paper is to explore the field and tem-
perature dependence of the dHvA oscillations spectra of
an ideal 2D metal whose FS is composed of one electron-
and one hole-type compensated orbit. It is demonstrated
that the field-induced oscillation of the chemical poten-
tial is strongly damped for such a FS and even suppressed
in the case where electron- and hole-type orbits have the
same effective mass. In addition, the chemical potential
oscillation is even more damped in the case where the
two orbits are coupled by MB.

MODEL

We consider a 2D metal whose electronic structure con-
sist of two parabolic bands of hole- and electron-type,
respectively. The bottom of the electron band is set at
zero energy while the top of the hole band is at ∆ > 0.
The total number of electrons in the system is such that
the hole band is completely filled. Since the lower part of
the electron band is lower in energy than the top of the
hole band, some quasiparticles move to the electron band
in order to lower the total energy. The effective masses
linked to the two bands, m∗

e ≡ 1/Ce and m∗
h ≡ 1/Ch > 0,

can be different. It is useful to define the physical units
of the problem. The reduced field b = eBA0/h is in
units of the characteristic field B̃ = h/eA0, the effective
masses are in units of the electron mass me, the energies
are in units of Ẽ = 2π~

2/meA0 and the temperature t
in units of T̃ = Ẽ/kB. Given a unit cell area A0 =197.6
Å2, which stands for (BEDT-TTF)8Hg4Cl12(C6H5Br)2
[16], we obtain B̃ = 2093 T and T̃ = 2812 K. There-
fore, realistic experimental conditions yield small values
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of b and t compared to B̃ and T̃ , respectively. The semi-
classical quantization of the energy levels in the presence
of a magnetic field leads to the Landau equations:

Ee(n) = Ceb(n +
1

2
), Eh(n) = ∆ − Chb(n +

1

2
) (1)

each Landau level (LL) having a degeneracy b per sam-
ple area. The zero field Fermi energy is simply given by
EF = m∗

h/(m∗
e + m∗

h)∆. At finite temperature, the total
free energy is given by the difference between the contri-
bution of the electron and of the hole band, with the con-
dition that the total number of quasiparticles Nt is fixed.
In addition, the compensation condition imposes that the
number of quasiparticles in the electron (Ne) and in the
hole (Nh) band are the same. From the thermodynami-
cal relations, we can define a free energy for the system
based on the difference between the free energy for the
electrons in the electron band and the free energy for the
holes in the hole band ∆F = Ωe−Ωh+(Ne−Nh)µ, where
Ωe(h) is the Grand Potential for the electrons (holes) and
µ is the chemical potential [µ(T = 0) = EF (B)]:

Ωe(T, B) = −Tb
∑

n≥0

log (1 + exp[β(µ − Ee(n))])

Ωh(T, B) = Tb
∑

n≥0

log (1 + exp[β(Eh(n) − µ)]) (2)

Since Ne = Nh, we can conclude that F = Ωe − Ωh

in compensated metals. µ is evaluated from the self-
consistent equation ∂∆F/∂µ = 0. At zero temperature,
the above expressions reduce simply to the ground state
(GS) energy ∆E0. The Fermi energy EF (B) is given by
the condition neb = nhb, where ne and nh are the number
of LL filled, which leads to ne = nh, and

∆E0 = −b

ne−1
∑

n=0

(EF − Ee(n)) − b

nh−1
∑

n=0

(Eh(n) − EF )

= Ee − Eh + b(nh − ne)EF = Ee − Eh (3)

The special cases where the Fermi energy goes trough
one Landau level, and where this Landau level is partially
filled, correspond to singular points in the energy spec-
trum as a function of the inverse field that do not modify
the thermodynamical quantities. The exact expression
for ∆E0 is simply

∆E0 = (Ce + Ch)b2n2
e − b∆ne (4)

with ne = [EF /Ceb + 1/2]. We deduce the oscillating
part of the magnetization Mosc = −∂∆E0/∂b from the
latter expression:

Mosc = −(Ce + Ch)F 2
0

∑

k≥1

(−1)k

πk
sin(2πkF0/b) (5)

where F0 = m∗
em

∗
h∆/(m∗

e + m∗
h) is the fundamental

frequency corresponding to the FS area of the electron
and hole band. At zero temperature and for fixed num-
ber of electrons, the magnetization oscillates with the
frequency F0, and the amplitude given by the Lifshits-
Kosevich (LK) formula with a 1/k dependence of the kth

harmonics [17].

SELF-CONSISTENT EQUATION FOR THE

CHEMICAL POTENTIAL

The oscillatory part of the Grand Potentials can be
extracted from Eqs. (2) using Poisson’s formula (see Ref.
[17]):

Ωe ≃ −
1

2Ce
µ2 +

b2Ce

2

[

1

12
+

∞
∑

n=1

(−1)n

π2n2
Re,n cos(2πn

µ

Ceb
)

]

Ωh ≃
1

2Ch
(∆ − µ)2 (6)

−
b2Ch

2

[

1

12
+

∞
∑

n=1

(−1)n

π2n2
Rh,n cos(2πn

∆ − µ

Chb
)

]

(7)

where Re(h),n = 2π2nm∗
e(h)t/[b sinh(2π2nm∗

e(h)t/b)]
are the reduction factors. The chemical potential sat-
isfies therefore the self-consistent relation:

µ = EF +
b

m∗
e + m∗

h

∞
∑

n=1

(−1)n

πn
[Rh,n cos(2πn

∆ − µ

Chb
)

−Re,n cos(2πn
µ

Ceb
)] (8)

At a first order approximation, we can replace µ in
the previous expression by EF since the second term is
proportional to b, which is small compared to EF . This
gives:

µ ≃ EF +
b

m∗
e + m∗

h

∞
∑

n=1

(−1)n

πn
(Rh,n − Re,n) cos(2πn

F0

b
)(9)

It can be remarked first that, in the case where the
effective masses linked to the electron- and hole-type or-
bits are the same, the oscillatory part of Eq. 9 vanishes
and the chemical potential remains constant in magnetic
field. More generally, the amplitude of the chemical po-
tential oscillation can be compared to the case of two
electron orbits [10]. In Fig. 1, the field-dependent chem-
ical potential is calculated for compensated orbits with
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FIG. 1: (color online) Field dependence of the chemical po-
tential normalized to its value in zero-field at t = 0.001. Solid
and dashed lines correspond to one electron and one hole com-
pensated orbits (with m∗

e = 1 and m∗
h = 1.1 or 5/2) and two

electron orbits (with m∗
0 = 1 and m∗

1 = 1.1 or 5/2), respec-
tively (see text).

FIG. 2: (color online) Fourier spectrum of the magnetization
at t = 0.001 for m∗

e = 1 and m∗
h = 1.1 or 5/2. The field

range is from b = 0.015 to b = 0.033. F0 is the fundamental
frequency (see text).

m∗
e = 1 and m∗

h = 1.1 or 5/2 and compared to the case
of two electronic orbits with effective masses m∗

0 = 1 and
m∗

1 = 1.1 or 5/2. It can be observed that the chemical po-
tential oscillations are strongly damped for compensated
orbits, even in the case where m∗

h and m∗
e have strongly

different values [18].

DE HAAS-VAN ALPHEN OSCILLATIONS

The oscillatory magnetization can be obtained putting
the expression of the chemical potential given by Eq.
(9) back into the expression for the free energy F using
Eqs. (2). As above discussed, the chemical potential is
field-independent for me = mh and the Lifshits-Kosevich
(LK) formula [17] holds in this case. However, for
m∗

e 6= m∗
h, the oscillatory magnetization differs from

the LK theory. Examples of Fourier analysis of the
magnetization are given in Fig. 2. In addition to the
absence of frequency combinations in the Fourier spec-
tra, the striking feature is the large amount of harmonics.

It is useful for experimentalists, to check to what extent
it is possible to determine a temperature and field range
in which the LK formalism provides a satisfactory ap-
proximation of the oscillatory behavior in the case where
m∗

e 6= m∗
h. The b/t dependence of the Fourier compo-

nents of the magnetization with frequencies F0 and 2F0

are given in Fig. 3. The LK formula satisfactorily ac-
count for the field and temperature dependence of the
first harmonics. Furthermore, it can be noticed that in
the case where m∗

h is strongly different from m∗
e, the con-

tribution of the orbit with the smallest effective mass
dominates in a large field range (see the dashed line in
Fig. 3a). It has also been checked that, in the oppo-
site case where m∗

e is close to m∗
h, the data can be ac-

counted for by the contribution of only one orbit with a
mean effective mass, namely, m∗

mean ≃ (m∗
e + m∗

h)/2. In
contrast, the LK formula cannot account for the second
harmonics in the case where m∗

e and m∗
h significantly dif-

fer. The observed behavior of the second harmonics in
this latter case is reminiscent to that observed for two
electronic orbits [10].

MAGNETIC BREAKDOWN

Provided the magnetic field is high enough to over-
come the MB gap, combinations of different orbits can
be observed. Assuming that ip and q are the probabil-
ity amplitude of tunnelling and of staying on the same
band yields p2 + q2 = 1 [3, 17]. Depending on the
band type (electron or hole), a quasiparticle acquires a
phase either σe = Se/2πb or σh = Sh/2πb. The semi-
classical actions are given by Se = 2πm∗

eE > 0 and
Sh = 2πm∗

h(∆ − E) > 0. Taking into account the turn-
ing points and the chirality of the orbits, the LLs are now
solution of the implicit equation:

(1 + q exp iσe)(1 + q exp−iσh)

+p2 exp i(σe − σh) = 0 (10)

In the case where the bands are independent (p =
0), Eq. (10) can be factorized and reduces simply to
1+exp(iσe) = 0 or 1+exp(−iσh) = 0, which corresponds
to the two independent sets of levels given by Eq. (1).
Eq. (10) can be solved numerically for p 6= 0: the field de-
pendence of the LLs energy is given in Fig. 4 in the high
field range for q = 0.8. For p 6= 0, gaps open at the for-
mer LL intersections, and the structure of the two bands
is modified. Alike the case where p = 0, a quasi-hole and
a quasi-electron band can be defined. Indeed, levels that
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FIG. 3: t/b dependence of the Fourier components of the
magnetization with frequencies F0 and 2F0. The effective
mass of the electronic-type orbit is m∗

e = 1. The effective
mass of the hole-type orbit is m∗

h = 5/2 and 1.1 in (a) and (b),
respectively. Solid lines are obtained from the LK formula.
The dashed line in (a) corresponds to the contribution of the
electronic orbit.

go upwards above E = EF (B) (see red solid lines in Fig.
4) and downwards below EF (B) (see black solid lines)
with the field variation can represent quasi-electron and
quasi-hole bands, respectively. At zero temperature, the
compensation condition Ne = Nh is replaced by the con-
dition that the lower quasi-hole band is filled completely,
the upper electron-band being empty. The two bands are
therefore separated by the chemical potential, as shown
in Fig. 4 where the Fermi energy in zero-field (EF ) as
well as the field-dependent Fermi energy (EF (B)) are
also plotted. As the magnetic field decreases, the field-
dependent Landau levels near the Fermi energy are flatter
since the levels of the two bands can not cross the line

FIG. 4: (color online) Energy levels for a reflection amplitude

q = 0.8 (or, equivalently, tunnelling amplitude p =
√

1− q2)
∆ = 1, m∗

e = 1 and m∗
h = 5/2. Levels that belong to a

quasi-electron band (going upwards when the field increases,
red lines) above the Fermi energy can be distinguished from
levels that belong to a quasi-hole band (respectively going
downwards, black lines). Above ∆ the LLs correspond to the
electron band only, with energies Ee(n), whereas LL Eh(n)
describe the negative sector.

defined by the chemical potential.

In order to estimate the total free energy, it is neces-
sary to modelize the lower quasi-hole band since the GS
energy ∆E0 given by Eq. (3) is no more well defined, due
to the mixing between electron and hole levels. In partic-
ular, the GS energy should correspond to the sum of all
the quasi-hole energies below the Fermi energy EF (B).
However, in our model, the energies are not bounded by
below and the GS energy is formally infinite. We propose
to account for this problem by fixing the number NL of
quasi-hole LLs and incorporate formally a reservoir of
electrons, in such a way that the total number of parti-
cles is fixed. The reservoir consists in a continuous band
between the energies −E+ > −E− with E± > 0. This
band is assumed to be situated below the lowest of the
N th

L level and its quasi-particle density is fixed to unity.
The total and constant quasi-particle number ρ0 is then
given by

ρ0 = E+ − E− + NLb. (11)

This gives a relation between E± and the field. We can
for example either fix E+ and express E− as function of
b, or conversely. The two cases q = 1 and q = 0 can be
solved exactly: for q = 1, the total energy of the hole
band Eh(n), when it is completely filled, is

E0 = ∆bNL −
1

2
Chb2N2

L +
1

2
(E2

− − E2
+), (12)
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and the GS energy EGS when we include the electron
band is

EGS(q = 1) = E0 + ∆E0(q = 1) < E0 (13)

where ∆E0(q = 1) is given by Eq. (4). E0 is a quadratic
function of the field and therefore does not contribute to
the magnetic oscillations. In the opposite case when q =
0, the LL energies between 0 and ∆ are easily obtained
by solving Eq. (10):

Eeh(n) = EF − b
CeCh

Ce + Ch
(n +

1

2
) =

Ce

Ce + Ch
Eh(n)(14)

where EF is the Fermi energy in zero field. Within the
semi-classical approach, this means that the cross-section
area of the FS corresponding to the parabolic quasi-hole
band, which is completely filled, is zero. Since it is pro-
portional to the frequency of the oscillations, these os-
cillations should vanish as q = 0. This simple feature
is in line with the prediction of the semiclassical model
for two compensated orbits in the case where q = 0,
keeping in mind that these orbits have opposite signs
[3]. Below energy zero, the LLs given by Eq. (14) join
continuously the LL Eh(n) above zero. In our model,
there are np = [x∆/Ch + 1

2 ] levels with positive energies
Eeh(n = 0..np − 1) (Eeh(np − 1) > 0 > Eeh(np)), and
NL−np levels with negative energies Eh(n = np..NL−1).
The total GS energy is then given by the formula

EGS(q = 0) = EF bnp −
1

2

CeCh

Ce + Ch
b2n2

p

+ ∆b(NL − np) −
1

2
Chb2(N2

L − n2
p)

+
1

2
(E2

− − E2
+). (15)

The last expression can be rewritten as EGS(q = 0) =
E0 + ∆E0(q = 0), with

∆E0(q = 0) =
Ch

Ce + Ch

(

−∆bnp +
1

2
Chb2n2

p

)

. (16)

In particular, as the magnetic field goes to zero, we
obtain ∆E0(q = 0) = ∆E0(q = 1) = −∆2/2(Ce + Ch).
For ∆ = 1, Ce = 1 and Ch = 2/5, ∆E0 ≃ −0.357, which
is the average value around which the free energy is os-
cillating. In the general case, ∆E0(q = 0) oscillates with
a frequency equal to ∆/Ch > F0 which comes from the
oscillation of np with the field. This frequency gradu-
ally appears in the spectrum of the magnetization as q
decreases, while the amplitude of the main physical fre-
quency F0 vanishes with q, as expected. This artefact is
due to the way we modelize the bottom of the lower band.

FIG. 5: (color online) Oscillation of the chemical potential
at t = 0.001 for different values of q; ∆ = 1, m∗

e = 1 and m∗
h

= 5/2.

Indeed at the junction where the LLs cross the zero en-
ergy, there is a discontinuity of their slope as function of
the field (in Fig. 4 this is more obvious for small values
of q) which can be viewed as a discontinuity of the mass
since there is no band mixing below the zero energy.

However, the chemical potential is not affected by this
artificial oscillation pattern, as we can see in Fig. 5,
where the field-dependent variation of the chemical po-
tential has been plotted for different values of q. As q de-
creases, i.e., as the probability amplitude of tunnelling in-
creases, the chemical potential oscillations decreases until
it finally vanishes at q = 0.

The problem of modeling the lower band junction
is probably intrinsic to choosing a parabolic form that
correctly describes the physics locally around the FS,
but no around the band singularities or special sym-
metry points in the Fourier space. Indeed, the geome-
try of the band can change. One example is related to
the tight-binding model, or Harper model, with a sin-
gle band (see [19, 20]). Within this model, an electron
can hop from one site to the other with an amplitude t.
Without a magnetic field, the energy spectrum is sim-
ply E(k) = −2t[cos(kx) + cos(ky)], which is symmetric
around the zero energy by the translation kx → kx ± π
and ky → ky ± π. For small k or low energy, the band is
parabolic E(k) ≃ t(−2 + k2), of electron nature. In the
presence of a small magnetic field, a spectrum of LLs with
constant gaps is obtained. As the energy increases, the
nature of the band changes, and at half filling, E = 0, the
semiclassical trajectories allowed by the LK theory are
open paths ky = ±kx±π, and, a priori, no quantification
is possible even if it has been shown that an oscillation of
frequency one half of the Brillouin zone area occurs [19],
with an amplitude which decreases as the inverse of the
logarithm of the field. This frequency corresponds to half
of the area of the Fermi surface because the band is half



6

filled, and can be viewed also as the surface enclosed by
the intersections of the straight trajectories. The surface
area of the orbits in the Fourier space in this case is

S(E) =
4

π2

∫ E/t

−2

1

2 − x
K

[

(

2 + x

2 − x

)2
]

dx (17)

where K is the complete elliptic integral of the first

kind K(m) =
∫ 1

0
dx/

√

(1 − x2)(1 − mx2). At half fill-
ing, the derivative of S(E) diverges, which means that
the gap between the LLs vanishes and the mass of the
quasi-particle becomes infinite. The singularity at E = 0
separates 2 regions of different nature (electron band near
E = −2t, and hole band near E = 2t), but related by a
translation symmetry. This example shows that a simple
model of parabolic band can not account for singularities
occurring in more complicated cases, which can be impor-
tant to compute the total energy like in EGS , even though
it describes correctly quantities, such as the chemical po-
tential, which are not sensitive to singularities far for the
FS. A modified version of this tight-binding Hamiltonian
including a full 2 band mixing could in principle be used
to modelize the singularity at the bottom of the previous
quasi-hole band, in order to avoid the complications due
to the discontinuities at the junctions when the LLs cross
the zero energy.

SUMMARY AND CONCLUSION

The field-dependent chemical potential oscillation in
a network of compensated electron and hole orbits is
strongly damped when compared to the case of a FS with
only electronic orbits [7, 8, 9, 10]. It is even suppressed
in the case where the effective mass of electron (me) and
hole (mh) band are the same. In addition, the LK for-
mula accounts for the field and temperature dependence
of the first harmonic’s dHvA oscillations amplitude in all
cases. As for the amplitude of the second harmonic, it is
accounted for by the LK formula, provided me and mh

are not strongly different. Besides, as MB develops, the
chemical potential oscillation is further damped. This set
of results provide a strong basis for the interpretation of
the dHvA spectra of networks of compensated electron
and hole orbits that are illustrated by the FS of numer-
ous organic metals. Calculations involving the topology
of the FS, which would allow to account for the contri-
bution of the MB-induced modulation of the density of
states [4, 5, 6], are now necessary in order to get a com-

prehensive understanding of the magnetic oscillations of
these systems.

∗ Electronic address: fortin@lpt1.u-strasbg.fr
† Electronic address: audouard@lncmp.org
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R. B. Lyubovskĭi, and R. N. Lyubovskaya, Europhys.
Lett. 71, 783 (2005).

[16] R. N. Lyubovskaia, O. A. Dyachenko, V. V. Gritsenko,
L. O. Mkoyan, Sh. G.and Atovmyan, R. B. Lyubovskii,
V. N. Laukhin, A. V. Zvarykina, and A. G. Khomenko,
Synth. Metals 42, 1907 (1991).

[17] D. Shoenberg, Magnetic Oscillations in Metals (Cam-
bridge University Press, Cambridge, England, 1984).

[18] The two electronic orbits considered in Fig. 1 have differ-
ent frequencies, namely f0 / f1 = 2 / 3. In the case where
f0 = f1, the chemical potential oscillations are even larger
than reported in Fig. 1 since the field-dependent contri-
butions of the two orbits are in phase.

[19] Y. Tan and T. Ziman, in Proceedings of Physical Phe-
nomena at High Magnetic Fields-II, edited by Z. Fisk, L.
Gorkov, D. Meltzer and R. Schrieffer (World Scientific,
Singapore), p. 110 (1995).

[20] Y. Tan and D. Thouless, Phys. Rev. B 46, 2985 (1992).

mailto:fortin@lpt1.u-strasbg.fr
mailto:audouard@lncmp.org

