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Quasi-semi-stable representations

Fix K a p-adic field and denote by GK its absolute Galois group. Let K∞ be the extension of K obtained by adding p n -th roots of a fixed uniformizer, and G∞ ⊂ GK its absolute Galois group. In this article, we define a class of p-adic torsion representations of G∞, named quasi-semi-stable. We prove that these representations are "explicitly" described by a certain category of linear algebra objects. The results of this note should be consider as a first step in the understanding of the structure of quotients of two lattices in a crystalline (resp. semistable) Galois representation.

Introduction

Let p be an odd prime number and k a perfect field of characteristic p. Put W = W (k) the ring of Witt vectors with coefficients in k, and K 0 = Frac W . Denote by σ the Frobenius on k, W and K 0 . Let K be a totally ramified extension of K of degree e and O K its ring of integers. Fix π an uniformizer of O K . We denote by K an algebraic closure of K, by O K its ring of integers and by G K its absolute Galois group. Fix a sequence (π n ) of elements of K satisfying π 0 = π and π p n+1 = π n . Put K n = K(π n ), K ∞ = n∈N K n and denote by G ∞ ⊂ G K the absolute Galois group of K ∞ . and Max r,φ /S∞ , quasi-inverse one to the other. If r = 1, quasi-semi-stable representations are linked with geometry. In this case, the category Mod r,φ /S∞ is dually equivalent to the category of finite flat group schemes over O K killed by a power of p (see [START_REF] Breuil | Groupes p-divisibles, groupes finis et modules filtrés[END_REF]). Under this equivalence, the functor Min r (resp. Max r ) corresponds to the maximal (resp. minimal) models defined by Raynaud in [START_REF] Raynaud | Schémas en groupes de type[END_REF]. The following result is then a direct consequence of theorem 1.

Theorem 2. The category of minimal (resp. maximal) finite flat group schemes over O K killed by a power of p is abelian.

Finally, always in the case r = 1, we can derive from our results a new proof of the following theorem.

Theorem 3. Let G and G ′ two finite flat group schemes over O K killed by a power of p. Put T = G( K), T ′ = G ′ ( K) and consider f :

T → T ′ a G ∞ -equivariant map. Then f is G K -equivariant.
Unfortunately, if r > 1, quasi-semi-stable representations do not have anymore a geometric interpretation. Then, it is difficult to derive concrete results from theorem 1 in general. Actually, theorem 1 should be seen as a preliminary for the study of the more interesting category Mod r,φ,N /S∞ ; a first part of this work will be achieved in a forthcoming paper (see [START_REF] Caruso | F p -représentations semi-stables de torsion[END_REF]). Now, we detail the structure of the article. First, we recall definitions of categories of Breuil modules. This allows us to explain more precisely and more clearly our motivations and results. In the second section, we introduce the category Mod r,φ /S∞ and we prove that it is equivalent to the category Mod r,φ /S∞ . This result is interesting because it will be easier to work with objects of Mod r,φ /S∞ . Section 3 is devoted to the study of the structure of Mod r,φ /S∞ = Mod r,φ /S∞ : essentially we give a proof of theorem 1. Then, we assume r = 1 and show how the previous theory easily imply theorem 3. The paper ends with some perspectives and open questions.

Motivations and settings

Since, in the rest of the paper, we will make an intensive use of Breuil modules, we choose to gather below all basic definitions about it. Maybe, the reader may skip it in a first time and come back after when objects are really used.

Breuil modules

Fix an integer r < p -1. Recall that π is a fixed uniformizer. Denote by S the p-adic completion of the PD-envelope of W [u] with respect to the kernel of the surjection W [u] → O K , u → π (and compatible with the canonical divided powers on pW [u]). This ideal is principal generated by E(u), the minimal polynomial of π over K 0 . The ring S is endowed with the canonical filtration associated to the PD-envelope and with two endomorphisms:

• a Frobenius φ: it is the unique continuous map σ-semi-linear which sends u to u p • a monodromy operator N : it is the unique continuous map W -linear that satisfies the Leibniz rule and sends u to -u.

They satisfy N φ = pφN . We have φ(Fil r S) ⊂ p r S (recall r < p -1) and we define φ r = φ p r : Fil r S → S. Put c = φ 1 (E(u)): it is a unit in S.

First, we define a "big" category 'Mod r,φ,N /S

whose objects are the following data:

1. a S-module M; • the module M is free of finite rank over S;

• the quotient M/Fil r M have no p-torsion;

• the image of φ r generates M (as an S-module).

The second category is Mod r,φ,N /S1 : these objects are the M ∈ 'Mod r,φ,N /S such that

• the module M is free of finite rank over S 1 = S/pS;

• the image of φ r generates M (as an S-module).

Finally, let Mod r,φ,N /S∞ be the smallest subcategory of 'Mod 

→ M ′ → M → M ′′ → 0 is an exact sequence in 'Mod r,φ,N /S
and if M ′ and M ′′ are objects of Mod r,φ,N /S∞ , then M is also). The three former categories are equipped with a contravariant functor T st with values in the category of Z p -representations of G K . On Mod r,φ,N /S , it is defined by the formula

T st (M) = Hom 'Mod r,φ,N /S (M, Âst )
where Âst is a certain period ring, object of 'Mod r,φ,N /S endowed with an action of G K . We refer to [START_REF] Breuil | Construction de représentations p-adiques semi-stables[END_REF] ( §3.1.1) for the precise definition of Âst . On the category Mod r,φ,N /S∞ it is defined by

T st (M) = Hom 'Mod r,φ,N /S (M, Âst ⊗ Zp Q p /Z p ).
We define similarly categories 'Mod r,φ /S , Mod r,φ /S , Mod r,φ /S1 and Mod r,φ /S∞ by forgetting the operator N . The three last ones are equipped with a functor T qst with values in the category of Z prepresentations of G ∞1 (defined in the introduction): definitions are obtained by replacing the period ring Âst by A cris . We have a collection of forgetting functors, and if M is an object of Mod r,φ,N /S (resp. Mod r,φ,N /S∞ ), we have a canonical and functorial G ∞ -equivariant isomorphism

T st (M) ≃ T qst (M) (1) 
(see lemma 2.3.1.1 of [START_REF] Breuil | Représentation semi-stables et modules fortement divisibles[END_REF]).

Aim of the paper

Semi-stable Q p -representations of G K are classified by (weakly) admissible filtered (ϕ, N )-modules (see [START_REF] Fontaine | Représentations p-adiques semi-stables[END_REF]). Our motivations are to describe quotients of two lattices in such representations, in term of linear algebra. If the Hodge-Tate weights of the semi-stable representations is in {0, . . . , r}, such a description exists for lattices (stable by G K ):

Theorem 1.2.1 (Liu, [START_REF] Liu | On lattices in semi-stable representations: a proof of a conjecture of Breuil[END_REF]). The functor T st from Mod r,φ,N /S

to the category of lattices in semistable representations with Hodge-Tate weights in {0, . . . , r} is an anti-equivalence.

Furthermore, we have the following lemma:

Lemma 1.2.2. Let M ′ ⊂ M be two strongly divisible modules such that M ′ ⊗ Zp Q p ≃ M ⊗ Zp Q p and Fil r M ′ ⊗ Zp Q p ≃ Fil r M ⊗ Zp Q p . Then M/M ′ is an object of 'Mod r,φ,N /S
and the following sequence of G K -representations:

0 → T st (M) → T st (M ′ ) → Hom 'Mod r,φ,N /S (M/M ′ , Âst ⊗ Zp Q p /Z p ) → 0 is exact.
Proof. The argument is the same as in lemma V.4.2.4 of [START_REF] Caruso | Conjecture de l'inertie modérée de Serre[END_REF].

Knowing this, we can draw a plan to study our representations:

1. recognize objects in 'Mod r,φ,N /S that can be written as a quotient of two divisible modules as in lemma 1.2.2; 2. study the functor Hom 'Mod r,φ,N /S (-, Âst ⊗ Zp Q p /Z p ) on this subcategory.

The aim of this article is to explain how we can lead to end the previous plan in the case of objects of 'Mod r,φ /S and Mod r,φ /S (i.e. without N ). Precisely we prove that the category of torsion quotients of two objects of Mod r,φ /S is exactly the category Mod r,φ /S∞ , and then theorem 1.

We can imagine that a representation arising from an object of Mod r,φ /S should be just a lattice in a crystalline representation, but unfortunately the situation is quite more complicated. Lattices in crystalline representations correspond to objects of Mod r,φ,N /S for which N (M) ⊂ (uS +Fil 1 S)M.

Let's call Mod r,φ,(N ) /S their subcategory. We can see easily that a N satisfying the previous condition is necessary unique. However, the following lemma shows that it does not exist in general.

Lemma 1.2.3. Assume r 2 and consider M the object of Mod r,φ /S defined by the following equations :

1. M = Se 1 ⊕ Se 2 ; 2. Fil r M = E(u) r-2 e 1 S + E(u) r e 2 S + Fil p S M ; 3. φ(e 1 ) = p 2 (e 1 + ue 2 ) and φ(e 2 ) = ue 1 + e 2 .
Then, it is impossible to equip M with a monodromy operator N .

Proof. For simplicity, we assume e > 1 (the proof is little more technical when e = 1 and is left to the reader in this case). Assume by contradiction that such an N : M → M exists. Put x 1 = N (e 1 ) and x 2 = N (e 2 ). The relation N φ = pφN implies the following equalities : (S) :

px 1 + pux 2 = φ(x 1 ) + pue 2 ux 1 + x 2 = pφ(x 2 ) + ue 1 .
For all integer n, denote by J n the topological closure of the ideal of S generated by all u i q(i)! for i n, where q(i) is the quotient in the Euclidean division of i by e. The first equation of (S) shows that φ(x 1 ) ∈ J 1 M, and consequently x 1 ∈ J 1 M. From φ(J 1 ) ⊂ J p , we deduce φ(x 1 ) ∈ J p M. By the same way, it follows from the second equation of (S) that x 2 ≡ pφ(x 2 ) (mod J 1 ). Since S/J 1 ≃ W , this congruence proves that x 2 ∈ J 1 M and then, as before, φ(x 2 ) ∈ J p M. Resolving (S), we obtain :

x 1 ≡ - u 2 1 -u 2 e 1 + u 1 -u 2 e 2 (mod J p M)
which gives φ(x 1 ) ≡ u p e 2 (mod J p+1 M). Hence, φ(x 1 ) is not divisible by p in S (here, we use e > 1). But, on the other hand, the first equation of (S) shows directly that φ(x 1 ) have to be divisible by p. This is a contradiction. Briefly, we have an inclusion Mod r,φ,(N ) /S ⊂ Mod r,φ /S but it is always strict if r > 1. We call G ∞ -representations arising from objects of Mod r,φ /S quasi-semi-stable representations. Note that if V is a lattice in a semi-stable representation of G K , its restriction to G ∞ is quasi-semi-stable2 .

2 The category Mod r,φ /S ∞ The case of quasi-semi-stable representations is simpler because we lay out an alternative category (defined by Breuil and studied by Kisin) to describe them. In this section, we give definitions and basic properties of this category and we prove that it is equivalent to the category of Breuil modules.

Definitions and basic properties

We relax the condition r < p -1 and assume only r ∈ {0, 1, 2, 3, . . . , ∞}.

Objects of linear algebra

Put S = W [[u]] and endow it with a Frobenius φ : S → S defined by:

φ ∞ n=0 a n u n = ∞ n=0 σ(a n )u pn . Put also S 1 = S/pS = k[[u]].
As in §1.1, we define some categories of modules over S. First, the "big" category 'Mod r,φ /S : if r is finite, its objects are the S-modules M equipped with a φ-semi-linear endomorphism φ : M → M such that

E(u) r M ⊂ im φ (2) 
where im φ denotes the S-submodule of M generated by the image of φ. If φ ⋆ M = S ⊗ (φ),S M, the previous condition is equivalent to ask the cokernel of id ⊗ φ : φ ⋆ M → M to be killed by E(u) r . If r = ∞, we ask condition (2) for a non fixed integer r: in this way, 'Mod ∞,φ /S is just the union (in an obvious sense) of all categories 'Mod r,φ /S for r finite. Morphisms in 'Mod r,φ /S are just S-linear morphisms that commute with Frobenius. Now, we define full subcategories of 'Mod r,φ /S . The category Mod r,φ /S (resp. Mod r,φ /S1 ) gathers all objects M ∈ 'Mod r,φ /S free of finite rank over S (resp. over S 1 ), whereas Mod r,φ /S∞ is the smallest subcategory of 'Mod r,φ /S containing Mod r,φ /S1 and stable under extensions 3 . For simplicity, we also define the category 'Mod r,φ /S∞ as the full subcategory of 'Mod r,φ /S gathering all objects killed by a power of p. Obviously we have Mod r,φ /S∞ ⊂ 'Mod r,φ /S∞ . The following proposition summarizes basic properties of these modules.

Proposition 2.1.1. (i) Let M ∈ Mod r,φ /S∞ . Then id ⊗ φ : φ ⋆ M → M is injective.
(ii) Let M be an object of 'Mod r,φ /S . Then M is in Mod r,φ /S∞ if and only if it is of finite type over S, it have no u-torsion and it is killed by a power of p.

(iii) The category Mod r,φ /S∞ is stable under kernels and images.

Proof. See §2.3 of [START_REF] Liu | Torsion p-adic Galois representations[END_REF].

Furthermore, there is a functor M S∞ : Mod r,φ /S∞ → 'Mod r,φ /S . It is defined as follows. Let M be an object of Mod r,φ /S∞ . As an S-module, M S (M) = S ⊗ (φ),S M where the subscript "(φ)" means that S is considered as a S-module via the composite S → S → S, the first map being the canonimal map and the second the Frobenius φ. The Frobenius on M induces a S-linear map id ⊗ φ : M → S ⊗ S M. We then define Fil r M by the formula

Fil r M = {x ∈ M, (id ⊗ φ)(x) ∈ Fil r S ⊗ S M ⊂ S ⊗ S M)} .
The map φ r is given by the following composite:

Fil r M id⊗φ / / Fil r S ⊗ S M φr⊗id / / M.
Identical constructions give rise to an other functor M S : Mod r,φ /S → 'Mod r,φ /S .

Proposition 2.1.2. The functor M S∞ (resp. M S ) takes values in Mod r,φ /S∞ (resp. Mod r,φ /S ). Moreover, both functors are exact and fully faithful.

Proof. The case r = 1 is done in proposition 1.1.11 of [START_REF] Kisin | Moduli of finite flat group schemes and modularity[END_REF]. The same proof works for any r.

Proposition 2.1.3. Let M ′ ⊂ M be two objects of Mod r,φ /S such that M ′ ⊗ Zp Q p ≃ M ⊗ Zp Q p . Then, the quotient M ′′ = M/M ′ is an object of Mod r,φ
/S∞ . Moreover, the sequence

0 → M S (M ′ ) → M S (M) → M S∞ (M ′′ ) → 0 is exact.
Proof. The first point is proved in proposition 2.3.2 of [START_REF] Liu | Torsion p-adic Galois representations[END_REF]. For the second point, the proof is the same as for the exactness of M S∞ .

Functors to Galois representations

We recall the construction of the functor 'T S∞ from 'Mod r,φ /S∞ to the category of Z p -representations of G ∞ . First, we define several rings. Put R = lim ← -O K /p where the transition maps are given by Frobenius. There is a unique surjective map θ : Let E ur the maximal unramified extension of E included in W (Frac R)[1/p] and O E ur its ring of integers. Since W (Frac R) is algebraically closed (see [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF], §A.3.1.6), the residue field O E ur /p is isomorphic to k((u)) sep , a separable closure of k((u)). We will consider the tensor product

W (R) → O K to the p-adic completion O K of O K ,
O E ur ⊗ Zp Q p /Z p = E ur /O E ur . It is an object of 'Mod r,φ
/S endowed with an action of G ∞ . Finally, the functor 'T S∞ is defined by the formula

'T S∞ (M) = Hom 'Mod r,φ /S (M, O E ur ⊗ Zp Q p /Z p ) for each M ∈ 'Mod r,φ
/S∞ . We call T S∞ the restriction of 'T S∞ to the subcategory Mod r,φ /S∞ . If M ∈ Mod r,φ /S1 , the expression of T S∞ (M) can be simplified as follows: Proof. First, we show the lemma for M ∈ Mod r,φ /S1 . Put K = f ∈T S∞ (M) ker f . Since u in invertible in k((u)) sep , the quotient M/K have no u-torsion and by proposition 2.1.1 (ii), it is an object of Mod r,φ /S1 . Furthermore, by definition of K, the map M → M/K induces a bijection T S∞ (M/K) → T S∞ (M). By proposition 2.1.4, modules M/K and M have same rank and hence K = 0 as required.

T S∞ (M) = Hom 'Mod r,φ /S (M, O E ur /p) = Hom 'Mod r,φ /S (M, k((u)) sep ). Proposition 2.1.4. The composite T qst • M S∞ is T S∞ and it is an exact functor. If M ∈ Mod r,φ /S1 is free of rank d over S 1 , then T S∞ (M)
It remains to prove that if 0 → M ′ → M → M ′′ → 0 is an exact sequence in Mod r,φ /S∞ and if the conclusion is correct for M ′ and M ′′ , then it is also correct for M. Let x ∈ M such that f (x) = 0 for all f ∈ T S∞ (M). If y ∈ M ′′ is the image of x, we have g(y) = 0 for all g ∈ T S∞ (M). Thus by assumption y = 0. Hence x ∈ M ′ . Let g ∈ T S∞ (M ′ ). By exactness of T S∞ (proposition 2.1.4), g can be extended to a map f ∈ T S∞ (M). Using the assumption, we get g(x) = 0 and finally x = 0. Corollary 2.1.6. The functor T S∞ is faithful.

An equivalence of categories

The aim of this subsection is to prove the following theorem.

Theorem 2.2.1. Assume r < p -1. The functor M S : Mod r,φ /S → Mod r,φ /S is an equivalence of categories.

The full faithfulness was already seen. Hence it remains to prove the essential surjectivity. Let M ∈ Mod r,φ /S and denote by d its rank over S. The heart of the proof is the following technical lemma. (3)

Proof. If R is a ring, we denote by M d (R) the algebra of d × d matrices with coefficients in R.

We first show that we can inductively construct (α

(n) 1 , . . . , α (n) d ) ∈ Fil r M such that 1. (e (n) 1 , . . . , e (n) 
d ) = c -r φ r (α (n) 1 , . . . , α (n) d ) is a basis of M;
2. there exists matrices

B (n) ∈ M d (S) and C (n) ∈ M d (p n Fil n+p S) such that (α (n) 1 , . . . , α (n) d ) = (e (n) 1 , . . . , e (n) d )(B (n) + C (n) ).
For n = 0, the result is a consequence of the (easy part of the) lemma 4.1.1 of [START_REF] Liu | On lattices in semi-stable representations: a proof of a conjecture of Breuil[END_REF]. Note also that property (3) is satisfied with α (0) i instead of α i . Now, assume that the α (n) i 's are build. We put (α

(n+1) 1 , . . . , α (n+1) d ) = (e (n) 1 , . . . , e (n) d )B (n) . (4) 
First note that (e

(n+1) 1 , . . . , e (n+1) d ) = c -r φ r (α (n+1) 1 , . . . , α (n+1) d ) = c -r φ r ((α (n) 1 , . . . , α (n) d ) -(e (n) 1 , . . . , e (n) d )C (n) )) = (e (n) 1 , . . . , e (n) d )(I -D (n) )
where c -r φ r ((e

(n) 1 , . . . , e (n) d )C (n) ) = (e (n) 1 , . . . , e (n) d )D (n) . Now we claim that p λn+n divides D (n) where λ n = n + p -r -[ n+p p-1 ].
Recall that for all s ∈ Fil r S and x ∈ M we have φ r (sx) = c -r φ r (s)φ r (E(u) r x). Moreover, by assumption, C (n) ∈ M d (p n Fil n+p S). So to prove the claim it suffices to show that v p (φ r (s)) λ n for all s ∈ Fil n+p S. Since s can be always represented by

s = ∞ m=n+p a m (u) E(u) m m! , a m (u) ∈ W [u], a m (u) → 0 p-adically
and φ(E(u)) = pc, we reduce the proof to show that

m -v p (m!) -r > n + p -r - n + p p -1 for any m n + p which is clear, using v p (m!) < m p-1 . It is easy to check λ n 1. Since p λn+n |D (n) , (I -D (n) ) is invertible and (e (n+1) 1 , . . . , e (n+1) d
) is a basis of M. Now by (4), we have (α

(n+1) 1 , . . . , α (n+1) d ) = (e (n) 1 , . . . , e (n) d )B (n) = (e (n+1) 1 , . . . , e (n+1) d )(I -D (n) ) -1 B (n) . Put A = (I -D (n) ) -1 B (n) . To achieve the induction, it remains to write A = B (n+1) + C (n+1) with B (n+1) ∈ M d (S) and C (n+1) ∈ M d (p n+1 Fil n+1+p S). For that, write D (n) = p λn+n E (n) and
E (n) = n+p i=0 b i (u) E(u) i i! + ∞ i=n+p+1 b i (u) E(u) i i! = E (n) 1 + E (n) 2 with b i (u) ∈ W [u].
A simple computation on valutation gives p λn+n i! ∈ Z p for all i n + p. Thus D

(n) 1 = p λn+n E (n) 1 ∈ M d (S)
. The conclusion then follows by expanding the series

A = ∞ i=0 (D (n) 1 + D (n) 2 ) i B (n)
where

D (n) 2 = p λn+n E (n) 2 ∈ M d (p n+1 Fil n+1+p S).
To complete the proof of the lemma, remark that equation ( 4) implies (α

(n+1) 1 , . . . , α (n+1) d 
) -(α

(n) 1 , . . . , α (n) d ) = -(e (n) 1 , . . . , e (n) 
d )C (n) (5)
and hence the convergence of all α

(n) i because p n divides C (n) . The convergence of all e

(n) i and then those of matrices B (n) follows. If α i (resp. B) is the limit of α It remains to check property [START_REF] Breuil | Représentation semi-stables et modules fortement divisibles[END_REF]. For that, we can reduce modulo p and then, the conclusion follows from the congruences α i ≡ α (0) i (mod p). Now, it is quite easy to achieve the proof of theorem 2.2.1. First, we show that there exists A ∈ M d (S) such that BA = E(u) r I. Indeed, since E(u) r e i ∈ Fil r M for all i, the condition (3) implies that there exists matrices

A ′ , C ′ such that BA ′ + C ′ = E(u) r I and C ′ ∈ M d (Fil p S). Writing A ′ = A ′ 0 + A ′ 1 with A ′ 0 ∈ M d (W [u]) and A ′ 1 ∈ M d (Fil p S), we may assume A ′ ∈ M d (W [u]). Then C ′ = E(u) r I -BA ′ has coefficients in S ∩ Fil p S. Therefore, C ′ = E(u) p C with C ∈ M d (S). Now BA ′ = E(u) r (I -E(u) p-r C) and A = A ′ (I -E(u) p-r C) -1 ∈ M d (S) is appropriate. Finally, it is easy to check that M = Sf 1 ⊕ • • • ⊕ Sf d endowed with φ defined by φ(f 1 , . . . , f d ) = (f 1 , . . . , f d )A is a preimage of M under M S .
This proves the theorem.

Consequences

The first consequence is the extension of the equivalence on torsion objects. For the exactness, take 0 → M ′ → M → M ′′ → 0 an exact sequence in Mod r,φ /S∞ . We know that M S∞ (M) → M S∞ (M ′′ ) is surjective. Call K its kernel: it is an object of Mod r,φ /S∞ and we have an exact sequence 0 → K → M S∞ (M) → M S∞ (M ′′ ) → 0. Applying the exact functor M S∞ , we see that M S∞ (K) is the kernel of M → M ′′ . Hence, it is isomorphic to M ′ and we are done.

Remark. Although the functor

M S∞ is exact, the implication (f injective) ⇒ (M S∞ (f ) injective) is not true if er p -1.
Here is a counter-example. Take M = S 1 with φ(1) = 1, M ′ = S 1 with φ(1) = u p-1 and f : M ′ → M, 1 → u. It is injective. However, M = M S∞ is just S 1 endowed with Fil r S 1 and the canonical φ r . On the other hand, M ′ = S 1 , Fil r M ′ = u er-p+1 M ′ and φ r (u er-p+1 ) = (-1) r . The map M S∞ (f ) is the multiplication by u p and sends u (e-1)p to 0; hence it is not injective. Proof. For T qst , it is a direct consequence of corollary 2.1.6 and theorem 2.3.1.

Let f : M → M ′ be a morphism in Mod r,φ,N /S∞ . It can be seen as a morphism in Mod r,φ /S∞ and we have T qst (f ) = T st (f ). If this morphism vanishes, then f have also to vanish thanks to the faithfulness of T qst . This proves the corollary.

Theorem 2.3.4. Assume r < p-1. Let M ′ ⊂ M be two objects of Mod r,φ /S such that M ′ ⊗ Zp Q p ≃ M ⊗ Zp Q p and Fil r M ′ ⊗ Zp Q p ≃ Fil r M ⊗ Zp Q p . Then the quotient M/M ′ is an object of Mod r,φ
/S∞ . Furthermore every object of Mod r,φ /S∞ can be written in this way.

Proof. For the first part of the theorem, we use a similar argument as in the proof of theorem 2.3.1. Let M ′ → M an antecedent of the inclusion M ′ → M. We first show that M ′ ⊗ Zp Q p ≃ M ⊗ Zp Q p , and then by using proposition 2.1.3, we get M S∞ (M/M ′ ) = M/M ′ . The second part is again theorem V.2.a of [START_REF] Caruso | Conjecture de l'inertie modérée de Serre[END_REF].

Remark. The condition Fil r M ′ ⊗ Zp Q p ≃ Fil r M ⊗ Zp Q p is equivalent to Fil r M ′ = M ′ ∩ Fil r M. Indeed, if x ∈ M ′ ∩ Fil r M then x ∈ Fil r M ′ ⊗ Zp Q p = Fil r M ⊗ Zp Q p and p n x ∈ Fil r M ′ for a certain integer n.
Since, by definition, M ′ /Fil r M ′ have no p-torsion, we must have x ∈ Fil r M ′ . The controverse is easy.

Duality

In [START_REF] Liu | Torsion p-adic Galois representations[END_REF], §3.1, one of the author has defined a duality on Mod r,φ /S∞ for all r < ∞. It consists in an exact functor M → M ∨ . Let's recall its definition and properties. For M ∈ Mod r,φ /S∞ , we put M ∨ = Hom S (M, S ⊗ Zp Q p /Z p ). We then have a natural pairing :

•, • : M × M ∨ → S ⊗ Zp Q p /Z p .
The Frobenius φ ∨ on M ∨ is defined by the equality φ(x), φ ∨ (y) = c -r 0 E(u) r φ( x, y ) (for all x ∈ M and y ∈ M ∨ ) where c 0 = E(0) p ∈ W ⋆ and the latest φ is gotten from the usual operator on S.

Here are main properties of the duality. We have a natural isomorphism (M ∨ ) ∨ ≃ M, and a compatibility between duality and T S∞ given by the following functorial isomorphism:

T S∞ (M ∨ ) ≃ T S∞ (M) ∨ (r). ( 6 
)
where "(r)" is for the Tate twist.

In [START_REF] Caruso | Conjecture de l'inertie modérée de Serre[END_REF], chapter V, one of the author (not the same) has defined a duality on Mod r,φ /S∞ for r < p -1. If M is an object of this category, we put

M ∨ = Hom S (M, S ⊗ Zp Q p /Z p ), Fil r M ∨ = {f ∈ M ∨ , f (Fil r M) ⊂ Fil r S ⊗ Zp Q p /Z p } and if f ∈ Fil r M ∨ , φ ∨
r (f ) is defined as the unique map making commutative the following diagram:

Fil r M φr / / f M φ ∨ r (f ) Fil r S ⊗ Zp Q p /Z p φr / / S ⊗ Zp Q p /Z p
Now, consider M ∈ Mod r,φ /S∞ (always with r < p -1). Put:

λ = ∞ n=1 φ n E(u) pc 0 ∈ S.
and define the following canonical isomorphism:

M S∞ (M ∨ ) → M S∞ (M) ∨ , s ⊗ f → 1 λ r sf.
A direct calculation gives φ(λ) = c φ(c0) λ, which implies that the previous isomorphism is compatible with φ, and hence a morphism in Mod r,φ /S∞ . We deduce the following:

Corollary 2.4.1. Assume r < p -1. For any M ∈ Mod r,φ /S∞ , there exists a natural isomorphism M → (M ∨ ) ∨ and a natural isomorphism:

T qst (M ∨ ) ≃ T qst (M) ∨ (r).
Remarks. Corollary 2.4.1 is proved (with different methods) in [START_REF] Caruso | Conjecture de l'inertie modérée de Serre[END_REF] under the assumption er < p -1 or r = 1.

In loc. cit., definition of duality is extended to the category Mod r,φ,N /S∞ : the operator N ∨ on M ∨ is defined by the formula N ∨ (f ) = N • ff • N (where N is the given operator on M). Using isomorphism (1), we directly obtain a version of corollary 2.4.1 in this new situation.

3 A construction on Mod r,φ /S ∞ This section is devoted to give a proof of theorem 1. We will use the equivalence stated in theorem 2.3.1 to make constructions with more pleasant modules. Remark. Since we are only interested in p-torsion modules, the definition does not change if we substitute the ring S[1/u] to O E (in other words, we do not need to complete p-adically). In the sequel, we will just work with S[1/u]. 

We have a functor 'T

OE : 'Mod φ /OE → Rep Zp (G ∞ ) defined by 'T OE (M ) = Hom 'Mod φ /O E (M, O E ur ⊗ Zp Q p /Z p ). Theorem 
(M) = M ⊗ S O E = M ⊗ S S[1/u] (since E(u) is invertible in O E , the map id ⊗ φ : φ ⋆ ['M OE (M)] → 'M OE (M) is bijective), the equality 'T S∞ = 'T OE • 'M OE holds.
In a slightly different situation, 'M OE is the functor j ⋆ of [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF]. From now on, we will use the notation M[1/u] for 'M OE (M). In [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF], Fontaine defines an adjoint j ⋆ to his functor j ⋆ . In the sequel, we will adapt his construction to our settings.

The ordered set F r S (M)

In this subsection, we fix M ∈ 'Mod φ /OE . Our aim is to study the structure of the "set" of previous images of M under 'M OE . We begin by the following definition: /S∞ that are compatible with f . Let F r S (M ) be the (partially) ordered set (by inclusion) of

M ∈ Mod r,φ /S∞ contained in M such that M[1/u] = M .
The following lemma is easy: Lemma 3.2.2. The category F r S (M ) is equivalent to (the category associated to) the ordered set F r S (M ).

Supremum and infimum

Proposition 3.2.3. The ordered set F r S (M ) has finite supremum and finite infimum. Proof. Obviously, it suffices to prove that for any M ′ and M ′′ in F r S (M ), sup(M ′ , M ′′ ) and inf(M ′ , M ′′ ) exist.

For the supremum, it is enough to show that M = M ′ + M ′′ (where the sum is computed in M ) is an object of Mod r,φ /S∞ (it is obvious that M[1/u] = M ). For this, remark that since M ′ and M ′′ satisfy condition (2) (defined page 6), M also. The conclusion then follows from proposition 2.1.1 (ii).

In the same way, for the infimum, we want to prove that M = M ′ ∩ M ′′ satisfies M[1/u] = M and is in Mod r,φ /S∞ . Since M ′ is finitely generated, there exists an integer s such that u s M ′ ⊂ M ′′ and the first point is clear. Now, Let x ∈ M. Because M ′ and M ′′ are in Mod r,φ /S∞ , there exists

x ′ ∈ φ ⋆ M ′ and x ′′ ∈ φ ⋆ M ′′ such that E(u) r x = id ⊗ φ(x ′ ) = id ⊗ φ(x ′′ ) (if r = ∞,
it must be replaced by a sufficiently large integer). But, by definition, id ⊗ φ is injective on φ ⋆ M . It follows that x ′ = x ′′ ∈ φ ⋆ M. Consequently, condition (2) holds for M. Moreover, since S in noetherian, M ⊂ M ′ is finitely generated over S. Finally, it is obviously killed by a power of p, and without u-torsion. Proposition 2.1.1 ends the proof. Some finiteness property Lemma 3.2.4. Fix M ∈ F r S (M ). There exists an integer ℓ (depending only on M) such that lg S (M ′ /M) ℓ for any M ′ ∈ F r S (M ) with M ⊂ M ′ . Proof. First, we prove by dévissage that it is sufficient to consider the case where M is killed by p. Denote by M(p) (resp. M ′ (p)) the kernel of the multiplication by p on M (resp. M ′ ). We have the following commutative diagram:

0 / / M(p) / / M / / M/M(p) / / 0 0 / / M ′ (p) / / M ′ / / M ′ /M ′ (p) / / 0
where both horizontal sequences are exact, and all vertical arrows are injective. Snake lemma then shows that the sequence 0

→ M ′ (p) M(p) → M ′ M → M ′ /M(p) M ′ /M(p) → 0 remains exact. The induction follows. Since id ⊗ φ : φ ⋆ M → M is injective (proposition 2.1.1 (i))
, the map M/uM → im φ /u im φ induced by φ is also injective. By definition, there exists an integer s such that E(u) s M ⊂ im φ . (If r is finite, we can choose s = r.) It follows the implication

(x ∈ uM) =⇒ (φ(x) ∈ u es+1 M). (7) 
Furthermore, there exists an integer n such that u n M ′ ⊂ M. Choose n minimal (not necessary positive). Then, we can find

x ∈ M ′ such that u n-1 x ∈ M. Therefore u n x ∈ M but u n x ∈ uM.
By applying implication [START_REF] Caruso | Représentations semi-stables de torsion dans le cas er < p -1[END_REF], we get φ(u n x) ∈ u es+1 M, then u n φ(x) ∈ u 1+es-(p-1)n M. On the other hand, u n φ(x) ∈ u n M ′ ⊂ M. It follows the inequality 1 + es -(p -1)n 0 which gives n t = E( es+1 p-1 ) (here E denotes the integer part). From u n M ′ ⊂ M, we get u t M ′ ⊂ M and the conclusion follows (with ℓ = t dim k((u)) M ). Lemma 3.2.5. Assume r < ∞. There exists an integer ℓ (depending only on M ) such that lg S (M ′ /M) ℓ for any M and M ′ in F r S (M ) with M ⊂ M ′ . Proof. Proof of lemma 3.2.4 shows that ℓ can be chosen equal to lg OE (M )×E( er+1 p-1 ), which depends only on M . Corollary 3.2.6. The ordered set F r S (M ) always has a greatest element. Furthermore, if r < ∞, F r S is finite and has a smallest element. Remark. Proof of lemma 3.2.4 gives an upper bound for the length of any chain in F r S (M ), that is :

1 + lg OE (M ) × E er + 1 p -1 .
In particular, if er < p -1, the set F r S (M ) contains at most one element. This latest assertion will be used several times in the sequel.

Functoriality

In view of possible generalizations, we would like to rephrase quickly previous properties in a more categorical and functorial way. Proposition 3.2.7. The category F S (M ) has finite (direct) sums and finite products. Proposition 3.2.8. The category F S (M ) is noetherian in the following sense: if

M 1 f1 / / M 2 f2 / / • • • fn-1 / / M n fn / / • • •
is an infinite sequence of morphisms, all f n are isomorphisms for n big enough.

If r is finite, the category F S (M ) is artinian in the following sense: if

M 1 M 2 f1 o o • • • f2
o o is an infinite sequence of morphisms, all f n are isomorphisms for n big enough.

Proposition 3.2.9. Let M 1 , . . . M n (resp. M ′ 1 , . . . M ′ n ) be objects of F S (M ) (resp. F S (M ′ )). Let f i : M i → M ′ i be morphisms in Mod r,φ /S∞ . Put M = sup(M 1 , . . . , M n ) and M ′ = sup(M ′ 1 , . . . , M ′ n ).
Then, there exists a unique map f : M → M ′ making commutative all diagrams

M i fi / / M ′ i M f / / M ′ We put f = sup(f 1 , . . . , f n ).
Furthermore, the association (f 1 , . . . , f n ) → sup(f 1 , . . . , f n ) is functorial in an obvious sense.

Proof. Quite clear after the description of sup given by the proof of proposition 3.2.3.

Remark. Of course, the analogous statement with inf is also true.

Important remark. Since 'T OE is fully faithful, the functor 'M OE can be replaced by T S in definition 3.2.1. Hence, it is possible to define supremum and infimum without reference to the auxiliary category 'Mod φ /OE .

Maximal objects

In this subsection, we give (and prove) some pleasant properties of objects arising as the greatest element of one set F S (M ).

The functor Max r Definition 3.3.1. Let M ∈ Mod r,φ /S∞ . We define Max r (M) to be the greatest element of F r S (M[1/u]). It is endowed with an homomorphism ι M max : M → Max r (M) in the category Mod r,φ /S∞ . An object M of Mod r,φ /S∞ is said maximal (in Mod r,φ /S∞ )4 if the map ι M max is an isomorphism.

Remarks. By §B.1.5.3 of [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF], a φ-module over S killed by a power of p satisfies condition (2) with r = ∞, if and only if id⊗φ :

φ ⋆ M[1/u] → M[1/u] is bijective. It follows that for any M ∈ Mod ∞,φ /S∞ , Max ∞ (M) = j ⋆ (M[1/u]) where j ⋆ is the functor defined in §B.1.4 of loc. cit.
In general, Max r (M) and Max r+1 (M) does not coincide. For instance, take r such that er p and consider M = Se 1 ⊕ Se 2 with φ(e 1 ) = ue 1 + u er e 2 and φ(e 2 ) = u p e 1 . Then, M is maximal in Mod r,φ /S∞ but not in Mod r+1,φ /S∞ since the submodule of M[1/u] generated by e 1 and e2 u is in

F r+1 S (M[1/u]). Proposition 3.3.2.
The previous definition gives rise to a functor Max r : Mod r,φ /S∞ → Mod r,φ /S∞ . Proof. We have to prove that any map f :

M → M ′ induces a map Max r (M) → Max r (M ′ ). Let g = f ⊗ S S[1/u]. By proposition 2.1.1 (iii), g(Max r (M)) is in Mod r,φ
/S∞ . Hence g(Max r (M)) ⊂ Max r (M ′ ) and we are done.

Remark. The collection of homomorphisms (ι M max ) defines a natural transformation between the identity functor and Max r .

We now show several properties of the functor Max r . Proposition 3.3.3. The functor Max r is a projection, that is Max r • Max r = Max r . Thus, for any M ∈ Mod r,φ /S∞ , the object Max r (M) is maximal.

Proof. Just remark that Max r (M)[1/u] = M[1/u]. Proposition 3.3.4.
The functor Max r is left exact.

Proof. Let 0 → M ′ → M → M ′′ → 0 an exact sequence in Mod r,φ /S∞ . We have the following commutative diagram:

0 / / M ′ / / ι M ′ max M / / ι M max M ′′ ι M ′′ max / / 0 0 / / Max r (M ′ ) / / _ Max r (M) / / _ Max r (M ′′ ) _ 0 / / M ′ [1/u] / / M[1/u] / / M ′′ [1/u] / / 0
where the first line is exact by assumption and the last one is also exact because of the flatness of S[1/u] over S. We have to show that the middle line is exact. Injectivity is obvious. Let's prove the equality Max

r (M ′ ) = Max r (M) ∩ M ′ [1/u]. The inclusion ⊂ is clear. Now, remark that M ′ max = Max r (M)∩M ′ [1/u] is a S-submodule of M ′ [1/u] of finite type, which is stable under φ. Moreover, consider x ∈ M ′ max . Then, there exists y ∈ φ ⋆ Max r (M) and z ∈ φ ⋆ M ′ [1/u] such that E(u) r x = id ⊗ φ(y) = id ⊗ φ(z) (if r = ∞,
it must be replaced by a sufficiently large integer). Since id ⊗ φ :

φ ⋆ M[1/u] → M[1/u] is injective, we have y = z ∈ φ ⋆ M ′ max . Hence M ′ max
is an object of 'Mod r,φ /S and the claimed equality is indeed true. This gives directly the exactness at middle.

Remark.

Unfortunately, Max r is not right exact (even on Mod r,φ /S1 ) if er p -1. For instance, consider M = S 1 e 1 ⊕ S 1 e 2 equipped with φ defined by φ(e 1 ) = e 1 and φ(e 2 ) = ue 1 + u p-1 e 2 . Denote by M ′ the submodule of M generated by e 1 . We can easily see that M and M ′ are both maximal objects of Mod r,φ /S1 . However, M/M ′ is isomorphic to S 1 with φ(1) = u p-1 . It is not maximal since 1 u S 1 is finitely generated and stable under φ.

Proposition 3.3.5. Let M ∈ Mod r,φ /S∞ . The couple (Max r (M), ι M max ) is characterized by the following universal property:

• the morphism T S∞ (ι M max ) is an isomorphism;

• for each couple (M ′ , f ) where M ′ ∈ Mod r,φ /S∞ and f : M → M ′ becomes an isomorphism under T S∞ , there exists a unique map g :

M ′ → Max r (M) such that g • f = ι M max .
Proof. The first point is clear. Take (M ′ , f ) as in the proposition. Since the quotient M/Max r (M) is killed by a power of u, the map g is uniquely determinated. On the other hand, by full faithfulness of 'T OE , f induces an isomorphism f :

M[1/u] → M ′ [1/u].
Denote by g the restriction of f -1 to M ′ . Since M ′ is finitely generated over S, g(M ′ ) is also and hence g(M ′ ) ⊂ Max r (M) (by definition of Max r ). In other words, g induces a map M ′ → Max r (M) and it is easy to check that g • f = ι M max . It remains to prove that the universal property characterizes Max r (M). But if M ′ satisfies also the universal property, we get two maps M ′ → Max r (M) and Max r (M) → M ′ whose composites must be identity.

The category Max r,φ /S∞ Definition 3.3.6. We put Max r,φ /S∞ = Max r (Mod r,φ /S∞ ). It is a full subcategory of Mod r,φ /S∞ .

We now show several pleasant properties of this category.

Proof. By description of kernels and cokernels given in theorem 3.3.8, we have the following: the sequence 0 → M ′ → M → M ′′ → 0 is exact in Max r,φ /S∞ if and only if 0 → M ′ → M → M ′′ is exact (as a sequence of S-modules) and coker (M → M ′′ ) is killed by a power of u. The first part of lemma then follows.

Since for all M ∈ Max r,φ /S∞ , we have M ⊂ M[1/u], the functor 'M OE is clearly faithful. Let M and M ′ be two objects of Max r,φ /S∞ and f :

M[1/u] → M ′ [1/u].
We have to show that f sends M to M ′ . Using proposition 2.1.1 (iii), we have f (M) ∈ Mod r,φ /S∞ and by the proof of proposition 3.2.3, f (M) + M ′ (computed in M ′ [1/u]) is also an object of Mod r,φ /S∞ . Hence, by definition of minimal objects f (M) + M ′ ⊂ M ′ , and then f (M) ⊂ M ′ as required. with respect to morphisms f such that T S∞ (f ) is an isomorphism.

Proof. Take C a category and F : Mod r,φ /S∞ → C a functor that satisfies the following implication: if T S∞ (f ) is an isomorphism, then F (f ) too. We have to show that there exists a unique functor G making the following diagram commutative:

Mod r,φ /S∞ F / / Max r ' ' N N N N C Max r,φ /S∞ G ; ; If M is in Max r,φ /S∞ , we must have G(M) = F • Max r (M) = F (M)
. This proves the unicity and gives a candidate for G. Finally, we only have to check that for all M ∈ Mod r,φ /S∞ , there exists a canonical isomorphism between F (M) and G(Max r (M)) = F (Max r (M)). It is given by F (ι M max ).

How to recognize maximal objects?

It seems to be difficult to find a criteria to recognize maximal objects among objects of Mod r,φ /S∞ . Nevertheless, we have the following property of stability. Proposition 3.3.13. The category Max r,φ /S∞ is stable under extensions in Mod r,φ /S∞ .

Remark. The proposition means that if 0 → M ′ → M → M ′′ → 0 is an exact sequence in Mod r,φ /S∞ (and not in Max r,φ /S∞ -that does not make sense) and if M ′ and M ′′ are maximal, then M is also. Hence, the proposition does not imply that Max r,φ /S∞ is the smallest full subcategory of Mod r,φ /S∞ containing simple objects described in §3.6.

Proof. Assume that 0 → M ′ → M → M ′′ → 0 is an exact sequence in Mod r,φ /S∞ and M ′ and M ′′ are maximal. We have the following diagram:

0 / / M ′ / / M / / _ M ′′ / / f 0 0 / / M ′ / / Max r (M) / / C / / 0
where C is defined as the cokernel of M ′ → Max r (M). A diagram chase shows that f is injective. Moreover by theorem 3.3.8, C ∈ Mod r,φ /S∞ and it is easy to check that M ′′ [1/u] = C[1/u]. Since M ′′ is maximal, we must have M ′′ = C, i.e. f bijective. It follows that M = Max r (M) as required. Proposition 3.6.2. Assume r < ∞. Let (n i ) and (m i ) be two sequences in S ′ . If n i + m i = er for all i, then duality permutes objects M(n i ) and M(m i ).

Proof. Easy computation. Lemma 3.6.3. Let (n i ) ∈ S and s be a non negative integer. Let (E) be the equation φ

d (x) = u s x in variable x ∈ M(n i ) (resp. x ∈ M(n i )[1/u]).
Then (E) has a non zero solution if and only if there exists i ∈ Z/dZ (necessary unique) and v a non negative integer (resp. an integer) such that ss i = v(p d -1). In this case, the set of solutions is {αu v e i , α ∈ k ∩ F p d }.

Proof. First, remark that if p d -1 divides ss i and ss j , we get s i ≡ s j (mod p d -1) and then t i ≡ t j (mod Z). Hence, by assumption, i = j (in Z/dZ). This justifies the unicity of i.

An easy computation gives φ d (e i ) = u si e i for all i.

Write x = x 0 e 0 + • • • + x d-1 e d-1 with x i ∈ S 1 = k[[u]] (resp x i ∈ S[1/u]).
Then, the equation (E) becomes the system u si x p d i = u s x i , and the lemma follows. Proposition 3.6.4. Let (n i ) and (n ′ i ) be in S. The objects M(n i ) and M(n ′ i ) are isomorphic if and only if there exists an integer b such that n ′ i+b = n i for all i. Proof. The condition is obviously sufficient. Now, take (n i ), d and s i , etc. as in the definition 3.6.1. We have to show that knowing M = M(n i ), we can recover the sequence (n i ) up to a shift. Since d is the dimension of M, it is clearly determined. Remark that by lemma 3.6.3, integers s i are exactly integers s for which there exists x ∈ M, x ∈ uM such that φ d (x) = u s x. So, their set is also determined. Moreover if x i is a non zero solution of φ d (x i ) = u si x i , we can write x i = α i e i with α i ∈ k. It follows that φ maps x i S 1 to x i+1 S 1 and then that the sequence (s i ) is determined up to circular permutation. It remains to prove that the knowledge of (s i ) determines the sequence (n i ). But we have an equality

     s 0 s 1 . . . s d-1      = M      n d-1 n 0 . . . n d-2     
where M is a matrix with integer coefficients whose reduction modulo p is identity. The proposition follows.

Maximum and minimum objects Here, we compute functors Min r and Max r on objects M(n i ). We first define several subsets of S ′ . Definition 3.6.5. Put m = min{er, p -1}. Let S max ⊂ S ′ be the set of sequences of integers between 0 and m that are periodic except that the constant sequence with value p -1 is removed from S max (if necessary).

If r < ∞, define S min ⊂ S ′ as the set of sequences of integers between erm and er that are periodic except that the constant sequence with value er -(p -1) is removed from S min (if necessary). Lemma 3.6.6. We have S max ⊂ S and S min ⊂ S (if r is finite).

Proof. Exercise. (For Max, one may consider expansion of t i 's in p-basis.)

Until the end of this subsection, the assumption r < ∞ will always be implicit when dealing with minimal objects. Proposition 3.6.7. Let (n i ) ∈ S max (resp (n i ) ∈ S min ). Then, M(n i ) is maximal (resp. minimal).

Proof. By duality, we only have to prove the statement with Max. By examining the proof of lemma 3.2.4, we see that Max(M(n i )) ⊂ 1 u M(n i ). Assume by contradiction, that there exists an element x ∈ Max(M(n i )), x ∈ M(n i ) and write ux = x 0 e 0 + • • • + x d-1 e d-1 with x i ∈ S 1 and x j ∈ uS 1 for one index j. A computation gives:

φ(x) = φ(x 0 ) u p-n0 e 1 + • • • + φ(x d-2 ) u p-n d-2 e d-1 + φ(x d-1 ) u p-n d-1 e 0 .
Instead of using properties of T S∞ , we can translate Serre's proof to obtain a classification of simple objects of 'Mod φ /OE (which then implies easily the proposition). Since it seems difficult to find a reference for this classification, we give it here.

Let M be a simple object in 'Mod φ /OE . We will prove that M is isomorphic to M(n i )[1/u] for a sequence (n i ) ∈ S max . First remark that simplicity shows directly that M is killed by p, and hence is k((u))-vector space. Let's call L(M ) the k((u))-vector space of all k((u))-linear endomorphisms of M and denote by E the subset of L(M ) consisting of those that commute with Frobenius. Since M is simple, Schur lemma implies that E is a field. Moreover, it is an F p -vector space and we have a canonical k((u))-linear map α : k((u)) ⊗ Fp E → L(M ). We claim that α is injective. Indeed, consider (f i ) i∈I a basis (not necessarly finite) of E over F p and assume by contradiction that ker α = 0. Consider an element f ∈ ker α written f = j∈J a j ⊗ f j where J ⊂ I is finite and not empty, and where a j = 0 for all j ∈ J. Assume moreover that Card J is minimal. Applying Frobenius to f , we find f φ = j∈J a p j ⊗ f j ∈ ker α. Since α |E is obviously injective, it is impossible that all the a j 's are congruent modulo F ⋆ p . Hence, a suitable linear combination of f and f φ gives a non-trivial element in ker α that can be written j∈J ′ b j ⊗ f j with J ′ J, J = ∅, contradicting the minimality of Card J and proving the claim.

It follows that E is finite dimensional over F p and then himself finite. Thus, E is a finite field. In particular, by Wedderburn's theorem, it is commutative. Moreover, by definition, it acts on M , making M a module over E ⊗ Fp k((u)). Since k is algebraically closed, this tensor product splits completely. Precisely, if d is the degree of E over F p , we have an isomorphism E ⊗ Fp k((u)) ≃ k((u)) d , x ⊗ y → (x p -i y) i∈Z/dZ . Considering idempotents of this decomposition, we have a canonical splitting M = M 1 ⊕ M 2 ⊕ • • • ⊕ M d where M i is a vector space over k((u)).

Examining the semi-linearity of φ, it is easily seen that φ maps M i to M i+1 . Consequently φ d maps M 1 to himself, and since k is algebraically close, it must exist an eigenvector E 1 of φ d : M 1 → M 1 , say φ d (E 1 ) = λE 1 with λ = 0 by étaleness of M . Replacing E 1 by µE 1 changes λ into µ p d -1 λ. This allows us to assume that λ = u s for an integer s ∈ {0, 1, . . . , p d -2}. Writing s in p-basis, we have s = n 1 p d-1 + n 2 p d-2 + • • • + n d for some sequence (n i ) ∈ S max . Now, we define further E i 's by the inductive formula E i+1 = u -ni φ(E i ). A simple computation gives E d+1 = E 1 . Finally, if d ′ is the smallest period of (n i ) (which is a divisor of d), it remains easy to check that the map M(n i )[1/u] → M , e i → E i + E i+d ′ + E i+2d ′ • • • + E i+d-d ′ is an injective morphism in 'Mod φ /OE . Since M is simple, it is an isomorphism and we are done.

Reformulation with Mod r,φ /S∞

Under the equivalence of the theorem 2.3.1, previous results imply theorem 1 of the introduction. Moreover, with notations of theorem 1, duality on Mod r,φ /S∞ discussed in §2.4 permutes functors Max r and Min r and categories Max r,φ /S∞ and Min r,φ /S∞ (here r < p -1).

Furthermore, if k is algebraically close, we have a classification of simple objects of Max r,φ /S∞ and Min r,φ /S∞ . For any sequence (n i ) ∈ S (see definitions 3.6.1) put M(n i ) = M S∞ (M(n i )). It is described as follows:

• M(n i ) = i∈Z/dZ f i S 1 ; • Fil r M(n i ) = i∈Z/dZ u er-ni f i S 1 ;
• for all i ∈ Z/dZ, φ r (u er-ni f i ) = (-1) r f i+1 . Theorem 3.7.1. Assume the residue field k algebraically closed, and r < p -1.

For all sequence (n i ) ∈ S max (resp. (n i ) ∈ S min ), the object M(n i ) is simple in Max r,φ /S∞ (resp. in Min r,φ /S∞ ). Every simple object of Max r,φ /S∞ (resp. of Min r,φ /S∞ ) is isomorphic to M(n i ) for a certain sequence (n i ) ∈ S max (resp. (n i ) ∈ S min ). Moreover, two objects M(n i ) and M(m i ) are isomorphic if and only if there exists an integer b such that n i = m i+b for all i.

2 .

 2 a submodule Fil r M ⊂ M such that Fil r S M ⊂ Fil r M; 3. a φ-semi-linear map φ r : Fil r M → M; 4. a W -linear map N : M → M such that:• (Leibniz condition) N (sx) = sN (x) + N (s)x for all s ∈ S, x ∈ M • (Griffiths transversality) E(u)N (Fil r M) ⊂ Fil r M • the following diagram is commutative: Morphisms in 'Mod r,φ,N /Sare whose that are S-linear and compatible with Fil r , φ r and N . There exists in 'Mod r,φ,N /S a notion of exact sequence: a sequence 0 → M ′ → M → M ′′ → 0 is said exact if both sequences 0 → M ′ → M → M ′′ → 0 and 0 → Fil r M ′ → Fil r M → Fil r M ′′ → 0 are exact as sequences of S-modules. Now, we are ready to define full subcategories of 'Mod r,φ,N /S . The first one is the category of strongly divisible modules, namely Mod r,φ,N /S : it consists of objects M ∈ 'Mod r,φ,N /S satisfying the following conditions:

  which lifts the projection R → O K /p onto the first factor. Recall that we have fixed a sequence π n ) n 0 of compatible p n -th root of π. It defines an element of R and we denote by [π] its Teichmüller representative. We have an embedding S → W (R), u → [π] which is compatible with Frobenius. Let O E be the p-adic completion of S[1/u]. It is a discrete valuation ring with residue field k((u)). Put E = Frac O E . The embedding S → W (R) extends to an embedding E → W (Frac R).

  is a vector space of dimension d over F p . Proof. It has been proved in §B.1.8.4 and §A.1.2 in [10]. Lemma 2.1.5. Let M ∈ Mod r,φ /S∞ . Then f ∈T S∞ (M) ker f = 0.

Lemma 2 . 2 . 2 .

 222 With previous notations, there exists α 1 , . . . , α d ∈ Fil r M and a basis e 1 , . . . , e d of M such that e i = 1 c r φ r (α i ), (α 1 , . . . , α d ) = (e 1 , . . . , e d )B with B a d × d matrix with coefficients in S and Fil r M = d i=1 Sα i + Fil p SM.

  (n) i (resp. B (n) ), we have φ r (α 1 , . . . , α d ) = c -r (e 1 , . . . , e d ) and (α 1 , . . . , α d ) = (e 1 , . . . , e d )B with B ∈ M d (S).

Theorem 2 . 3 . 1 .Proposition 2 . 3 . 2 .

 231232 Assume r < p -1. The functor M S∞ : Mod r,φ /S∞ → Mod r,φ /S∞ is an equivalence of categories.Proof. It remains to show the essential surjectivity. Let M be an object of Mod r,φ /S∞ . By theorem V.2.a of[START_REF] Caruso | Conjecture de l'inertie modérée de Serre[END_REF], there exists two objects M and M′ in Mod r,φ /S∞ , together with an exact sequence 0 → M′ → M → M → 0 in 'Mod r,φ /S . Now, by theorem 2.2.1, we can find M and M′ two objects of Mod r,φ /S such that M S ( M) = M and M S ( M′ ) = M′ . We can also find a map f : M′ → M inducing the canonical inclusion M′ → M. The map F = T S (f ) is an injective application between two free Z p -modules of same (finite) rank. Consequently, there exists G :T S ( M′ ) → T S ( M) such that F • G = G • F = p nid for an integer n. By full faithfulness of T S , there exists a mapg : M → M′ satisfying f • g = g • f = p n id. It follows that f ⊗ Zp Q p is bijective.Then, we can apply proposition 2.1.3: M = M/ M′ is in Mod r,φ /S∞ and M S∞ (M) = M. The theorem follows. Assume r < p -1 and choose M S∞ a quasi-inverse of M S∞ . If f : M → M ′ is an injective (resp. surjective) morphism in Mod r,φ /S∞ , then M S∞ (f ) is also. Moreover, the functor M S∞ is exact.Proof. Let f : M → M ′ be a morphism in Mod r,φ /S∞ . Put M = M S∞ (M), M ′ = M S∞ (M ′ ) and g = M S∞ (f ).Assume f injective and denote by K the kernel of g. By proposition 2.1.1 (iii), we have K ∈ Mod r,φ /S∞ . Put K = M S∞ (K). Let h : K → M the image under M S∞ of the inclusion K → M. The composite f • h is zero and since f is injective, h = 0. By faithfulness, the inclusion K → M vanishes, and consequently K = 0 and g is injective.Now suppose f surjective and denote by C the cokernel of g. Then S ⊗ (φ),S C = 0. By reducing modulo p, we get S 1 ⊗ (φ),S1 C/pC = 0. Since C/pC is a module of finite type over the principal ring k[[u]], it is a direct sum of some k[[u]] or k[[u]]/u nfor a suitable integers n. By computing the tensor product, it follows that the only solution is C/pC = 0, i.e C = pC. Since C is finitely generated, Nakayama's lemma gives C = 0 as required.

Corollary 2 . 3 . 3 .

 233 Assume r < p -1. Functors T qst on Mod r,φ /S∞ and T st on Mod r,φ,N /S∞ are faithful.

3. 1

 1 The category 'Mod φ /O E Let's recall classical results about the classification of Z p -representations of G ∞ . Denote by 'Mod φ /OE the category of torsion étale φ-modules over O E . By definition, an object of 'Mod φ /OE is an O E -module M killed by a power of p and equipped with a Frobenius φ : M → M that induces a bijection id ⊗ φ : φ ⋆ M → M (where φ ⋆ M = O E ⊗ (φ),OE M).

Definition 3 . 2 . 1 .

 321 Let F r S (M ) the category whose objects are couples (M, f ) where M is an object of Mod r,φ /S∞ and f : M[1/u] → M is an isomorphism. Morphisms in F r S (M ) are morphisms in Mod r,φ

Corollary 3 . 3 . 10 .Corollary 3 . 3 . 11 .

 33103311 The functor T S∞ defined on Max r,φ /S∞ is exact and fully faithful. The functor Max r : Mod r,φ /S∞ → Max r,φ /S∞ is exact.Theorem 3.3.12. The functor Max r : Mod r,φ /S∞ → Max r,φ /S∞ realizes the localization of Mod r,φ /S∞

Tqst(M) is not endowed with an action of G K since this group does not act trivially on u ∈ A cris .

The converse is not true in general. In fact, there exists a full subcategory of Mod r,φ /S , whose objects are called quasi-strongly divisible lattices, which is anti-equivalent to the category of G∞-lattices in semi-stable representations. See[START_REF] Liu | On lattices in semi-stable representations: a proof of a conjecture of Breuil[END_REF] for details.

An sequence of objects of 'Mod r,φ /S is said exact if it is exact as a sequence of S-modules.

When the value of r in clear by the context, we will only say maximal.

In this reference, the classification is made for G K -representations, but it is easily seen that the same arguments works with G∞-representations.

Proposition 3.3.7. The functor Max r : Mod r,φ /S∞ → Max r,φ /S∞ is a left adjoint to the inclusion functor Max r,φ /S∞ → Mod r,φ /S∞ .

Proof. Let f : M → M ′ a morphism in Mod r,φ /S∞ and assume that M ′ is maximal. We have to prove that there exists a unique map f : Max r (M) → M ′ such that f • ι M max = f . The unicity is implied by the following observation: M ′ have no u-torsion, and Max r (M)/M is cancelled by a power of u. For the existence, just remark that f = Max r (f ) is appropriate. Theorem 3.3.8. The category Max r,φ /S∞ is abelian. More precisely, if f : M → M ′ is a morphism in Max r,φ /S∞

• the kernel of f in the usual sense is an object of Max r,φ /S∞ and is the kernel of f in the abelian category Max r,φ /S∞ ;

• the cokernel of f in the usual sense, coker f , is an object of 'Mod r,φ /S∞ and Max r ( coker f u-torsion ) is the cokernel of f in the abelian category Max r,φ /S∞ ; moreover if f is injective, then coker f have no u-torsion ;

• the image (resp. coimage) of f in the usual sense is an object of Mod r,φ /S∞ and its image under the functor Max r is the image (resp. coimage) of f in the abelian category Max r,φ /S∞ .

Proof. Let f : M → M ′ be a morphism in Max r,φ /S∞ . By proposition 2.1.1 (iii), K = kerf is in object of Mod r,φ /S∞ . It remains to prove that it is maximal. Denote by M max the S-submodule of M[1/u] generated by Max r (K) and M. It satisfies condition (2) (because Max r (K) and M satisfy it) and hence, by proposition 2.1.1 (ii), it is an object of Mod r,φ /S∞ included in M[1/u]. Since M is assumed to be maximal, we get M max ⊂ M and then Max r (K) ⊂ M. It follows Max r (K) ⊂ M ∩ K[1/u] ⊂ K (for the last inclusion, use K[1/u] = ker (f ⊗ S S[1/u])), and Max r (K) = K.

With proposition 3.3.7, it is easy to prove that Max r ( coker f u-torsion ) is the cokernel of f in Max r,φ /S∞ . The implication (f injective) ⇒ (coker f ∈ Mod r,φ /S∞ ) is showed as in proposition 3.3.4. It remains to prove the last statement. We have already seen that the usual image of f , say im f , is an object of Mod r,φ /S∞ (proposition 2.1.1 (iii)). Let g : im f → M ′ the natural inclusion. We have cokerg = cokerf . On the other hand, since Max r (g) is an injective morphism between two maximal objects, its cokernel have no u-torsion. Together with g ⊗ S S[1/u] = Max r (g)⊗ S S[1/u], it implies coker Max r (g) = coker f u-torsion . Now, applying the left-exact functor Max r (see proposition 3.3.4) to the exact sequence 0

Statement about image is then proved. Finally, by definition, the usual coimage (resp. coimage in Max r,φ /S∞ ) of f is the usual cokernel (resp. cokernel in Max r,φ /S∞ ) of the inclusion ker f → M. It follows the announced property about coimages and then the identification between image and coimage.

Moreover, the functor 'M OE : Max r,φ /S∞ → Mod r,φ /OE is fully faithful.

Remark: The reader should be very careful with the following point. There is two different notions of exact sequences in Max r,φ /S∞ . The first one is given by the structure of abelian category whereas the second one is just the "restriction" of the notion of exact sequence in Mod r,φ /S∞ . From now on, we will only consider the first one. This is for instance the reason why corollary 3.3.11 is not in contradiction with the counter-example given after proposition 3.3.4.

Then, we have a sufficient condition to be maximal. 

Minimal objects

We develop in this subsection a dual notion of maximal objects (called minimal objects), that satisfies analogous properties. According to corollary 3.2.6, we need to assume r < ∞. Proof. Consider f : M 1 → M 2 a map in Mod r,φ /S∞ . In order to prove that Min r is a functor, we have to show that f (Min r (M 1 )) ⊂ Min r (M 2 ). Since Mod r,φ /S∞ is stable under images (proposition 2.1.1 (iii)), we can assume successively that f is surjective, then injective.

Assume

Hence coker (id ⊗ φ ′ 1 ) can be seen as a submodule coker (id ⊗ φ ′ 2 ) and so it is killed by E(u) r (if r = ∞, it must be replaced by a sufficiently large integer). Therefore, by proposition 2.1.1 (ii),

The conclusion follows. Now, assume f injective: we will consider M 1 as a subobject of

1 , and we are done. The last statement of the proposition is then obvious. 

Proof. First note that f (M) is an object of Mod r,φ /S∞ (proposition 2.1.1 (iii)) and consequently the formula Min(f (M)) makes sense.

The inclusion ⊂ has been proved in proposition 3.4.2. Put

Dualizing the example given after proposition 3.3.4, we see that Min is not "middle-exact". Proposition 3.4.6. Let M ∈ Mod r,φ /S∞ . The couple (Min(M), ι M min ) is characterized by the following universal property:

• the morphism T S∞ (ι M min ) is an isomorphism;

• for each couple (M ′ , f ) where M ′ ∈ Mod r,φ /S∞ and f : M ′ → M becomes an isomorphism under T S∞ , there exists a unique map g : Proof. We have to prove that if

min . This is a a direct consequence of proposition 3.4.2.

Theorem 3.4.9. The category Min r,φ /S∞ is abelian. More precisely, if

• the kernel of f in the usual sense is an object of Mod r,φ /S∞ whose image under Min r is a kernel of f in the abelian category Min r,φ /S∞

• the cokernel of f in the usual sense, coker f , may have u-torsion; however coker f u-torsion is an object of Min r,φ /S∞ which is a cokernel of f in the abelian category Min r,φ /S∞

• the image (resp. coimage) of f in the usual sense is an object of Min r,φ /S∞ and is the image (resp. coimage) of f in the abelian category Min r,φ /S∞ . Proof. During the proof, we will denote by ker f , coker f , im f and coim f the objects computed in the usual sense.

The assertion about kernels results from propositions 2.1.1 (iii) and 3.4.8. Let's prove the assertion about cokernels. Denote by C the quotient of coker f by its u-torsion. Obviously C have no u-torsion. Moreover, it satisfies condition (2), it is finitely generated and it is killed by a power of p (since it is a quotient of M ′ ). Hence, by proposition 2.1.1 (ii), C ∈ Mod r,φ /S∞ . Lemma 3.4.4 applied to the surjective morphism M ′ → C then shows that C is minimal.

By definition, the image (in Min r,φ /S∞ ) of f , called I, is the kernel (in Min r,φ /S∞ ) of M ′ → C. Hence imf ⊂ I and the quotient I/imf is killed by a power of u. It follows that Min r (imf ) = Min r (I) = I. But, by lemma 3.4.4, im f is already minimal. Thus I = im f as required. The argument is quite similar for coimage (remark that since coim f is isomorphic to im f , it is also minimal).

Moreover, the functor 'M OE : Min r,φ /S∞ → Mod r,φ /S∞ is fully faithful.

Proof. The first part of lemma follows from the description of kernels and cokernels given above.

Since for all M ∈ Min r,φ /S∞ , we have M ⊂ M[1/u], the functor is clearly faithful. Let M and M ′ two objects of Min r,φ /S∞ and f :

We have to show that f sends M to M ′ . The proof is the same as in proposition 3.4.2.

Corollary 3.4.11. The functor T S∞ defined on Min r,φ /S∞ is exact and fully faithful.

Corollary 3.4.12. The functor Min r : Mod r,φ /S∞ → Min r,φ /S∞ is exact.

Link with duality

Proposition 3.4.13. Assume r finite. For all M ∈ Mod r,φ /S∞ , we have natural isomorphisms

In particular, duality permutes subcategories Min r,φ /S∞ and Max r,φ /S∞ .

Proof. Formula (6) implies that, given a morphism f in the category Mod r,φ /S∞ , T S∞ (f ) is an isomorphism if and only if T S∞ (f ∨ ) is. Then, the proposition is a formal (and easy) consequence of the universal properties defining Max r (proposition 3.3.5) and Min r (proposition 3.4.6) on the one hand, and the full faithfulness of T S∞ on Max r,φ /S∞ (corollary 3.3.10) and Min r,φ /S∞ (corollary 3.4.11) on the other hand.

A reciprocity formula

In this subsection, we will use the functor j ⋆ of Fontaine defined in §B.1.4 of [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF]. For M ∈ 'Mod φ /OE , define the ordered set G S (M ) as the set of S-submodules M ⊂ M such that M is of finite type over S, stable under φ and id ⊗ φ :

Recall that, by definition:

In the same way, we put for any r ∈ {0, 1, . . . , ∞}:

M

where G r S (M ) is the ordered set of all M ∈ Mod r,φ /S∞ with M ⊂ M (we do not ask M[1/u] to be equal to M ). By §B.1.5.3 of [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF], the equality G S (M ) = G ∞ S (M ) holds. Moreover, if M is an object of Mod r,φ /S∞ , (the proof of) proposition 3.2.3 shows that greatest elements of F r S (M ) and G r S (M ) coincide. Hence Max r (M) = j r ⋆ (M[1/u]). Following [START_REF] Liu | Torsion p-adic Galois representations[END_REF], we define for r ∈ {0, 1, . . . , ∞}:

For all integer n, S f,r n is an object of 'Mod r,φ /S∞ , and obviously S f,∞ n = r∈N S f,r n . By proposition 2.5.1 of loc. cit., they are stable under φ and the action of G ∞ . Furthermore, this proposition implies that S f,∞ is the period ring S ur traditionally used in this context (for instance in [START_REF] Kisin | Crystalline representations and F-crystals, Algebraic Geometry and Number Theory[END_REF], [START_REF] Liu | On lattices in semi-stable representations: a proof of a conjecture of Breuil[END_REF], [START_REF] Liu | Torsion p-adic Galois representations[END_REF]). Finally, if M ∈ Mod r,φ /S∞ is cancelled by p n , the formula for T S∞ (M) can be "simplified" as follows:

T S∞ (M) = Hom 'Mod r,φ /S (M, S f,r n ).

(To prove this, it is enough to remark that the image of any f ∈ T S∞ (M) is an object of Mod r,φ /S∞ , which follows more or less from proposition 2.1.1 (iii).)

Here is the main theorem of this subsection: Theorem 3.5.1. Let M ∈ Mod r,φ /S∞ killed by p n . Then Max r (M) = Hom Zp[G∞] (T S∞ (M), S f,r n ).

Remark. It seems that such a formula does not exist with Min r (instead of Max r ). Indeed, it would probably imply the left-exactness of Min r , which is known to be false (see remark after corollary 3.4.5).

Proof. Put M = Hom Zp[G∞] (T S∞ (M), S f,r n ). It is endowed with a Frobenius φ (given by the Frobenius on S f,r n ). Moreover, biduality gives a natural map compatible with Frobenius:

By remark A.1.2.7.(a) of [START_REF] Fontaine | Représentations p-adiques des corps locaux[END_REF], the composite

is bijective. Hence, ι⊗ S S[1/u] is also a bijection. We want to prove that ι itself is an isomorphism. Injectivity is clear since Max r (M) have no u-torsion. Since Max r (M) = j r ⋆ (M[1/u]), surjectivity will follow from the statement "every f ∈ M is contained in an object N ∈ G r S (M[1/u])". Let us prove the claim. Consider e 1 , . . . , e d a generating family of M and put x i = f (e i ). By definition of S f,r n , there exists N i ⊂ O E ur /p n O E ur with N i ∈ Mod r,φ /S∞ and x i ∈ N i . Then, as usual using proposition 2.1.1, we can check that N = Hom Zp[G∞] (T S∞ (Max r (M)), Proof. Noting that T S∞ (Mod r,φ /S∞ ) = T S∞ (Max r,φ /S∞ ), the corollary is a direct consequence of property 6.4.2 of [START_REF] Caruso | Représentations semi-stables de torsion dans le cas er < p -1[END_REF].

Simple objects

For simplicity, we assume in this subsection c 0 = 1 (recall that c 0 = E(0) p ). Of course, it is not crucial but assuming this will allow us to simplify several formulas and several definitions of objects.

We fix an element r ∈ {0, 1, 2, . . . , ∞}.

Definitions and basic properties Definition 3.6.1. Let S ′ be the set of sequences of integers between 0 and er that are periodic (from the start). To a sequence (n i ) ∈ S, we associate several numeric invariants:

• its dimension d: it is the smallest period of (n i );

We also associate an object M(n i ) ∈ Mod r,φ /S1 defined as follows:

• as a S 1 -module, M(n i ) = i∈Z/dZ e i S 1 ;

• for all i ∈ Z/dZ, φ(e i ) = u ni e i+1 .

Let S be the subset of S ′ consisting of all sequences (n i ) for which the elements t 0 , . . . , t d-1 are pairwise distinct (in Q/Z).

This element have to lie in Max(M(n i )), which implies pn j 1, i.e. n j p -1. So n j = p -1.

Repeating the argument with φ(x) instead of x, we obtain n j+1 = p -1, and so on. Finally, n i = p -1 for all i and (n i ) ∈ S max .

Proposition 3.6.8. For any (n i ) ∈ S, there exists a sequence (m i ) ∈ S max (resp.

Proof. By duality, we only have to prove the statement with Max. Denote by s ′ i the unique integer in [0, p d -1[ congruent to s i modulo p d -1, and define m i to be the quotient in the Euclidean division of s ′ i by p. It is easy to see that the m i 's (0 i d -1) are digits in p-basis of s ′ 0 , and that this property implies (m i ) ∈ S max . Now, put q i = si-s ′ i p d -1 : it is the quotient in the Euclidean division of s i by p. These numbers are non negative integers and they satisfy the relation pq i + m i = q i+1 + n i for all i ∈ Z/dZ.

Denote by M ′ the submodule of M[1/u] generated by e ′ i = 1 u q i e i . A direct computation gives φ(e ′ i ) = u mi e ′ i+1 , and then M ′ ≃ M(m i ). Moreover proposition 3.6.7 shows that M ′ is maximal. The conclusion follows.

Remark. If (n i ) is in S ′ but not in S, almost all arguments of the proof are still correct. The only problem is that the sequence (m i ) obtained is periodic with period less than d.

Corollary 3.6.9.

Proof. By proposition 3.6.8, we can find a sequence (m i ) ∈ S max such that M(n i ) = Max(M(n i )) ≃ M(m i ). By proposition 3.6.4, there exists an integer b such that n i = m i+b for all i, and then

) are isomorphic if and only if there exists an integer b such that t ≡ p b t ′ (mod Z) (with obvious notations).

Proof. Easy after proposition 3.6.4 and proof of proposition 3.6.8.

Classification With notations of §1 of [START_REF] Serre | Propriétés galoisiennes des points d'ordre fini des courbes elliptiques[END_REF], an easy computation gives the following theorem. Theorem 3.6.11. We assume k to be algebraically closed. Let (n i ) ∈ S max . Then T S∞ (M(n i )) is an irreducible representation of G ∞ whose tame inertia weights are exactly the n i 's. Remark. For (n i ) ∈ S min , tame inertia weights of T S∞ (M(n i )) are not simply linked with the n i 's. Precisely, to make the computation, the method is to write the rational number t i in p-basis and then to read its digits. Proposition 3.6.12. We assume k to be algebraically closed. Let

/S∞ (resp. Min r,φ /S∞ ). All simple objects can be written in this form.

Proof. If er < p -1, the proposition was already proved in §4 of [START_REF] Caruso | Représentations semi-stables de torsion dans le cas er < p -1[END_REF]. From now on, we assume er p -1. Moreover, it suffices, using duality, to show the proposition with Max.

By the exactness and the full faithfulness of T S∞ on Max r,φ /S∞ (corollary 3.3.10), in order to show that Max(M(n i )) is simple, it is enough to justify that T S∞ (Max(M(n i ))) is an irreducible representation, which is a direct consequence of the previous theorem. Now, consider M ∈ Max r,φ /S∞ a simple object. By the previous theorem and the classification of irreducible representations given in §1.5 and §1.6 of [START_REF] Serre | Propriétés galoisiennes des points d'ordre fini des courbes elliptiques[END_REF] 5 , there exists a quotient of T S∞ (M) isomorphic to T S∞ (M(n i )) for some sequence (n i ) ∈ S max . Since er p -1, we have M(n i ) ∈ Mod r,φ /S∞ and M(n i ) = Max r (M(n i )) (since (n i ) is in S max ). Finally, full faithfulness of T S∞ on Max r,φ /S∞ gives a non-vanishing morphism M(n i ) → M, and the proposition follows.

The G ∞ -representation T qst (M(n i )) is irreducible and its tame inertia weights are exactly the n i 's. [START_REF] Breuil | Groupes p-divisibles, groupes finis et modules filtrés[END_REF] The case r = 1

We assume r = 1. The forgetting functor Mod

/S∞ is an equivalence of categories (see lemma 5.1.2 of [START_REF] Breuil | On the modularity of elliptic curves over Q : wild 3-adic exercices[END_REF]), and therefore, quasi-semi-stable representations are exactly restrictions to G ∞ of quotients of two lattices in a crystalline representation with Hodge-Tate weights in {0, 1}. Moreover, they are also (restrictions to G ∞ of) representations of the form G( K) where G is a finite flat group scheme over O K killed by a power of p. Let denote by Rep [0,1] ∞ (G K ) (resp. Rep [0,1] ∞ (G ∞ )) their category. We have the following commutative diagram Mod

where vertical arrows represent forgetting functors. Proof. By the last statement of theorem 1, it is sufficient to prove that if T qst (f ) is an isomorphism, then T st (f ) is also (where f in any map in Max 1,φ /S∞ ). But it is obvious since T qst (f ) = T st (f ).

Corollary 4.0.3. The functor

Moreover,

Proof. If M and M ′ are objects of Max 1,φ /S∞ , the composite

is bijective (by full faithfulness of T qst ) whereas the second map is obviously injective. This implies that both maps are bijective. Since

∞ (G K )), the corollary follows.

Remark. The first part of corollary was already known (theorem 3.4.3 of [START_REF] Breuil | Integral p-adic Hodge theory[END_REF]). However, the proof given here is slightly different.

Perspectives and questions

The semi-stable and crystalline case Of course, one may ask if the previous theory can be extended to the semi-stable case. Precisely:

Question 1. Can we find a simple criteria to recognize an object of Mod r,φ,N /S∞ that can be written as a quotient of two strongly divisible modules? Question 2. Are theorems 1 and 3.7.1 (with N (f i ) = 0) still true if we replace Mod r,φ /S∞ by Mod r,φ,N /S∞ (Max r,φ /S∞ by Max r,φ,N /S∞ , and T qst by T st )?

It seems quite difficult to find a satisfying answer to question 1. For the moment, the authors do not know if any object can be written such as a quotient, although they conjecture it is false. On the other hand, question 2 seems more accessible and will be partially answered in a forthcoming paper.

Finally note that links between crystalline and semi-stable torsion theory seem to be more complicated than it looks. Denote by Mod and Mod r,φ /S∞ . However, if r > 1, this functor is not anymore fully faithful and consequently one can not identify Mod r,φ,(N ) /S∞ as a subcategory of Mod r,φ /S∞ . Here is a counter-example. Assume e p-1 r-1 . Assume also that there exists λ ∈ S 1 such that λ p-1 ≡ c (mod p). Put M = e 1 S 1 ⊕ e 2 S 1 , and let Fil r M be the submodule of M generated by e 1 , u e+p-1 e 2 and Fil p S 1 M. Equip M with a Frobenius by putting φ r (e 1 ) = e 1 and φ r (u e+p-1 e 2 ) = e 2 . Then, it is possible to define on M two monodromy operators N 1 and N 2 by the formulas N 1 (e 1 ) = N 2 (e 1 ) = 0, N 2 (e 1 ) = λu p e 2 , N 2 (e 2 ) = 0. These operators give rise to two objects M 1 and M 2 of Mod /S∞ (resp. Max r,φ /S∞ ) as global sections of some presheaves (resp. sheaves) on a certain site, in such a way that the functor Max corresponds to the functor "associated sheaf"? Is it possible to find such presheaves and sheaves in certain cohomology groups of certain varieties?

In order to precise the latest question, assume r = 1. Consider G a finite flat group scheme killed by a power of p over O K . In [START_REF] Breuil | Groupes p-divisibles, groupes finis et modules filtrés[END_REF], Breuil manages to associate to G an object M ∈ Mod r,φ /S∞ using geometric construction. We can ask the following: Question 4. Is it possible to find an only geometric recipe that associates to G the object Max(M)? For instance, can we obtain this recipe by sheafifying (in a certain way) the construction of Breuil?