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GLOBAL RIGIDITY IN CR GEOMETRY: THESCHOEN�WEBSTER THEOREMBenoît KLOECKNER 1 and Vin
ent MINERBE 2Abstra
t. S
hoen-Webster theorem asserts a pseudo
onvex CRmanifold whose automorphism group a
ts non properly is eitherthe standard sphere or the Heisenberg spa
e. The purpose of thispaper is to survey su

essive works around this result and thenprovide a short geometri
 proof in the 
ompa
t 
ase.Keywords: CR geometry, rigidity.MS 
lassi�
ation numbers: 32V05, 32V20, 53C24.Among the many aspe
ts of geometri
 rigidity, the vague prin
iplea

ording to whi
h a given geometry is rigid when �few manifolds admita large automorphism group� has a fairly ri
h history. In this surveypaper, we try to show how stri
tly pseudo
onvex CR geometry �ts intothis 
on
ept of rigidity.André Li
hnerowi
z �rst raised the question in the 
onformal 
ase.It is well known that the isometry group of a 
ompa
t Riemannianmanifold is 
ompa
t, due to the 
ompa
tness of the group O(n) (seeSe
tion 1.2). Sin
e the 
orresponding group CO(n) of 
onformal ge-ometry is not 
ompa
t, one might expe
t some 
ompa
t manifolds tohave non
ompa
t 
onformal groups. There is a simple example: theEu
lidean sphere has 
onformal group SO(1, n + 1). The Li
hnerow-i
z 
onje
ture stating that there are no other examples was settled inthe early seventies by Ja
queline Ferrand [LF71℄ and in a weak formby Morio Obata3 [Oba72℄; it was extended by Ferrand a while later[Fer96℄.A few years after Obata and Ferrand's works, it appeared that Li
h-nerowi
z 
onje
ture was not spe
i�
 to 
onformal geometry: SidneyWebster extended parts of the proof of Obata in the setting of (stri
tlypseudo
onvex) CR geometry [Web77℄. The question raised a lot of in-terest again in the nineties, several mathemati
ians trying to work theirway out from Webster's result to the full statement. Ri
hard S
hoen1bkloe
kn�fourier.ujf-grenoble.fr, Institut Fourier, 100 rue des Maths, BP 74,38402 St Martin d'Hyères, Fran
e.2minerbe-v�univ-nantes.fr, Laboratoire de mathématiques Jean Leray, Univer-sité de Nantes, 2 rue de la Houssinière, BP 92208, 44322 Nantes, 
edex 3, Fran
e.3It appeared later that the proof was �awed at some point, but Ja
ques La-fontaine gave a 
orre
ted proof in [Laf88℄1



2 THE SCHOEN�WEBSTER THEOREMgave the �rst 
omplete proof, using original analyti
 methods related tothe Yamabe problem [S
h95℄. In fa
t, he gave a proof in the 
onformal
ase that adapts to CR geometry and obtained the following result.4Theorem (S
hoen�Webster) � Let M be a stri
tly pseudo
onvex CRmanifold, not ne
essarily 
ompa
t. If its automorphism group Aut(M)a
ts non-properly, then M is either the standard CR sphere S or Swith one point deleted.Let us re
all that an a
tion of a topologi
al group G is proper if forany 
ompa
t subset K of M , the subset
GK = {g ∈ G; g(K) ∩ K 6= ∅}of G is 
ompa
t. In parti
ular if M is 
ompa
t, Aut(M) a
ts properlyif and only if it is 
ompa
t.The paper is organised as follows. The �rst se
tion is devoted to pre-liminaries, in
luding CR geometry, two properties that are importantin the sequel and (G, X)-stru
tures. We then survey the su

essiveworks on the S
hoen�Webster Theorem, trying to give for (almost)ea
h result the �avor of the proof without getting into too mu
h detail.The word �proof� will therefore often be followed by quite impre
isearguments. The last se
tion is devoted to a 
leaned geometri
 proof ofthe theorem when M is 
ompa
t, based on some of the ideas exposed.Before getting started, let us point out that Bun Wong proved avery 
lose theorem for domains of Cn+1 [Won77℄. Many developmentsarose from his result and parts of the S
hoen�Webster Theorem 
anbe dedu
ed from this work. Indeed, unless n = 1, a 
ompa
t stri
tlypseudo
onvex CR manifold M2n+1 
an always be embedded as theboundary of a domain of Cn+1 and its automorphisms 
an be extendedto automorphisms of the domain. See [Lee96℄ for details due to DanielBurns.However, we will not dis
uss Wong's theorem and its improvements.First, it 
annot be of any help for the least dimensional 
ase. Se
ond,we are interested in more intrinsi
 methods of proof, independant of anyembedding. For further informations on this topi
, the reader shouldrefer to [Won03℄.For the sake of 
ompleteness, note that in [Pan90℄ Pierre Pansu gavea hint of how one 
ould try to adapt Ferrand's proof to the CR 
ase.1. Preliminaries1.1. Basi
s of CR geometry. We only give a glimpse on CR geom-etry. The interested reader 
an refer to [D'A93℄ or [Ja
90℄.Given a 2n + 1-dimensional manifold M , a CR stru
ture on M is a
ouple (ξ, J) where:4We 
hose to name it after both Webster, who initiated the topi
, and S
hoen,who gave the �rst 
omplete proof.



THE SCHOEN�WEBSTER THEOREM 3(1) ξ is a 2n-dimensional subbundle of TM ,(2) J is a pseudo
omplex operator on ξ:
Jx : ξx → ξx, J2

x = −Id ∀x ∈ M,(3) for all ve
tor �elds X, Y tangent to ξ, the ve
tor �eld [JX, Y ]+
[X, JY ] is tangent to ξ and the following integrability 
onditionholds:

J([JX, Y ] + [X, JY ]) = [JX, JY ] − [X, Y ].Any smooth hypersurfa
e H in a 
omplex manifold X admits a nat-ural CR-stru
ture: denoting by J the 
omplex stru
ture of X, one 
ande�ne ξ = TH ∩ J(TH) so that J a
ts on ξ; note that the vanishingof the Nijenhuis tensor implies the integrability 
ondition.A di�erentiable map between two CR manifolds is a CR map if it
onjugates the hyperplanes distributions and the pseudo
omplex oper-ators. An automorphism of a CR manifold M is a di�eomorphism of
M that is a CR map. The group of those is denoted by Aut(M) andits identity 
omponent by Aut0(M).1.1.1. Calibrations, the Levi form and the Webster metri
. Given a CRstru
ture (ξ, J) on M , a (possibly lo
al) 1-form θ su
h that ξ = ker θis 
alled a (lo
al) 
alibration. One 
an always �nd lo
al 
alibrations. If
M is orientable, one 
an always �nd a global 
alibration. However, a
alibration need not be preserved by automorphisms.From now on, all the manifolds under 
onsideration are assumedto be 
onne
ted and orientable; all the 
alibrations are assumed to beglobal.Given a 
alibration θ, one de�nes on ξ the Levi form:

Lθ(·) = dθ(·, J ·).As a 
onsequen
e of the integrability 
ondition, the Levi form is aquadrati
 form.A 
hange of 
alibration indu
es a linear 
hange in the Levi form:(1) Lλθ = λLθ,thus its signature is, up to a 
hange of sign, a CR invariant.A CR stru
ture is said to be stri
tly pseudo
onvex if its Levi formis de�nite (and then we 
hoose our 
alibrations so that it is positivede�nite). It implies that dθ is nondegenerate on ker θ, that is θ is a
onta
t form. If the Levi form vanishes at ea
h point, the CR stru
tureis said to be Levi-�at. Then dθ is zero on ξ and the Frobenius Theoremshows that ξ de�nes a foliation.One should therefore not think of CR geometry as one geometry: ea
h signature of the Levi form 
orresponds to a geometry of itsown, just like Lorentzian and Riemannian geometry (or foliations and
onta
t stru
tures) are related, but di�erent kind of geometries.



4 THE SCHOEN�WEBSTER THEOREM
Kerdθ

(θ = 1)

ξ (θ = 0)

π
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Figure 1. The Reeb ve
tor �eld of a 
alibrationGiven a 
alibration θ on a stri
tly pseudo
onvex CR manifold, thereis a single ve
tor �eld X, 
alled the Reeb ve
tor �eld of θ, that satis�es:(2) θ(X) = 1 and X y dθ = 0.See Figure 1.Denote by π : TM → ξ the linear proje
tion on ξ along the dire
tionof X. If the Levi form is positive de�nite, one gets a Riemannian metri
on M 
alled the Webster metri
:(3) Wθ = Lθ ◦ π + θ2.A 
hange of 
alibration θ′ = λθ 
hanges the metri
 by a fa
tor λ along
ξ and by a fa
tor λ2 �transversally� that is, on the quotient TM/ξ.Therefore, the Webster metri
 does not de�ne a 
anoni
al 
onformalstru
ture on a CR manifold.Note that if M has dimension 2n + 1, the 
alibration θ de�nes avolume form θ ∧ dθn whi
h is 
ompatible with the Webster metri
.1.1.2. The Webster s
alar 
urvature and the pseudo
onformal Lapla-
ian. There is also a natural metri
 
onne
tion ∇θ on TM , the so
alled Tanaka-Webster 
onne
tion; beware its torsion Torθ does notvanish in general. Contra
ting the 
urvature Rmθ of this 
onne
tionalong ξ, we obtain a s
alar 
urvature Rθ. A subellipti
 Lapla
ian ∆θarises by taking (minus) the tra
e over ξ of the Hessian 
orrespondingto ∇θ; the following integration by parts formula holds:

∀u, v ∈ C∞
c (M),

∫

M

(∆θu)vθ ∧ dθn =

∫

M

Lθ (du|ξ, dv|ξ) θ ∧ dθn,where ξ and ξ∗ are identi�ed thanks to Lθ. To understand the relevan
eof this operator, 
onsider another 
alibration θ′, whi
h we write θ′ =
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u

2

n θ for some smooth positive fun
tion u. The s
alar 
urvature thentransforms a

ording to the following law:
Rθ′ = b(n)−1u−n+2

n Lθ uwhere b(n) = n+1
4n+2

and Lθ = ∆θ + b(n) Rθ.This formula is pretty similar to a 
onformal one. Indeed, given
onformally equivalent metri
s g and h = u
4

n−2 g, for some positivefun
tion u, the Riemannian s
alar 
urvatures of g and h are relatedthe same kind of formula, where b(n) should be repla
ed by n−2
4(n−1)and Lθ by the 
onformal Lapla
ian (and ∆θ by the Lapla
e-Beltramioperator). This analogy turns out to be very e�
ient: it is the key ideabehind S
hoen's proof (see Se
tion 4).1.1.3. The �at models. The standard CR sphere S2n+1 (we will oftenomit the supers
ript) is the unit sphere on Cn+1:

S =
{

(z0, . . . , zn) ∈ C
n+1;

∑

|zk|2 = 1
}endowed with the 
orresponding CR stru
ture. It is a stri
tly pseudo-
onvex CR manifold; its automorphism group is Aut(S) = PU(1, n+1),a �nite quotient of SU(1, n + 1). It is non
ompa
t, 
onne
ted and a
tstransitively on S.The Heisenberg group is the CR non
ompa
t manifoldH obtained byremoving one point of S. It is therefore di�eomorphi
 to the Eu
lideanspa
e R

2n+1. Its automorphism group is the stabilizer of the removedpoint in Aut(S), it a
ts non properly and transitively and is 
onne
ted.These two CR manifolds are homogeneous and obviously lo
ally iso-morphi
; they are referred to as the �at models. They play the roleof the Eu
lidean spa
e in Riemannian geometry, or of the sphere andEu
lidean spa
e in 
onformal geometry.For instan
e, there are lo
al normal 
oordinates in any Riemannianmanifold, where the metri
 is very 
lose a Eu
lidean one. There is ananalogous lo
al model for 
alibrated stri
tly-pseudo
onvex manifolds:[JL89℄ provides lo
al �normal� 
oordinates in whi
h the geometry is
lose to that of the Heisenberg group H. In the Riemannian 
ase, thelo
al model (i.e. the Eu
lidean spa
e) is global for simply 
onne
ted
omplete �at manifolds. The following statement is the CR analogue.Proposition 1.1 � A simply 
onne
ted 
omplete 
alibrated stri
tly-pseudo
onvex CR manifold with vanishing 
urvature and torsion is CRequivalent to the Heisenberg group.Let us pre
ise what �
omplete� means. The form θ being 
onta
timplies that any two points in M 
an be 
onne
ted by a 
urve thatis everywhere tangent to the 
onta
t distribution. By minimizing thelength of su
h 
urves, one de�nes the Carnot distan
e dθ. It is a genuinedistan
e, but does not derive from a Riemannian metri
. By �balls� of
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M , we mean balls with respe
t to the Carnot distan
e. A stri
tlypseudo
onvex CR manifold is said to be 
omplete if 
losed balls are
ompa
t.Definition 1.2 � We say that an open subset U of a stri
tly pseudo-
onvex CR manifold M is �at if any x in U has a neighborhood whi
his CR isomorphi
 to an open subset of S.1.2. Finite order rigidity. For a general referen
e on lo
al rigidity,see [Kob95℄, Theorems 3.2 and 5.1.Let us start with the well-known rigidity of Riemannian geometry.Proposition 1.3� A Riemannian metri
 on a manifold M is rigid toorder 1, that is: two isometries that have the same value and di�erentialat some point are the same.In fa
t this result follows from a stronger statement. Let OM be thebundle of orthonormal frames on M and Isom(M) its isometry group.We look at its a
tion on OM . For ea
h element F of the total spa
e
OM (F is thus the data of a point x ∈ M and an orthonormal frameof TxM), one de�nes the map

Isom(M) → OM

f 7−→ f(F).Proposition 1.3 asserts that this map is inje
tive. In fa
t, it is anembedding and its image is a 
losed submanifold of OM . The group
Isom(M), endowed with the 
orresponding di�erential stru
ture, is aLie group.As a 
onsequen
e, sin
e the �bers of OM are 
ompa
t, the isometrygroup of a 
ompa
t Riemannian manifold is 
ompa
t. One even gets:Corollary 1.4 � Let U be an open set on a manifold M , K ⊂ Ube a 
ompa
t set with nonempty interior, g be a Riemannian metri
de�ned on U and G be a Lie group a
ting on M and preserving K and
g. Then G is 
ompa
t.Now we turn to the rigidity of stri
tly pseudo
onvex CR geometry.Proposition 1.5 � Let M be a stri
tly pseudo
onvex CR manifold.The group Aut(M) is a Lie group and is rigid to order 2, that is: if twoautomorphisms f , f ′ have the same 2-jet (the data of their derivativesup to order 2) at some point, then f = f ′.As before, there is a prin
ipal bundle on M in whi
h Aut(M) em-beds, but the �bers are no longer 
ompa
t and Aut(M) 
an thus benon
ompa
t even when M is 
ompa
t.As a dire
t 
onsequen
e of Proposition 1.5, two CR automorphismsof M that 
oin
ide on an open set are the same.The stri
t pseudo
onvexity 
ondition is of primary importan
e. Forexample, the produ
t S1 × Σ of the 
ir
le and any Riemann surfa
e



THE SCHOEN�WEBSTER THEOREM 7is a Levi�at CR manifold, and the a
tion of the in�nite-dimensionaldi�eomorphism group of S1 preserves the CR stru
ture.1.3. North-south dynami
s. The following result is a 
ommon fea-ture of all �rank 1 paraboli
 geometries�, that is of boundaries of nega-tively 
urved symmetri
 spa
es. The standard CR sphere S2n+1 is oneof them: it bounds the 
omplex hyperboli
 spa
e, seen as the unit ballof Cn+1. Note that by an unbounded sequen
e in a topologi
al spa
e,we mean a sequen
e that is not 
ontained in any 
ompa
t set.Proposition 1.6 � Let (φk)k be an unbounded sequen
e in Aut(S).There exists a subsequen
e, still denoted by (φk)k, and two points (thatmay be the same) p+ and p− on S su
h that:
limφk(p) = p+ ∀p 6= p−(4)

lim φ−1
k (p) = p− ∀p 6= p+(5)and the 
onvergen
es are uniform on 
ompa
t subsets of S − {p−},

S − {p+} respe
tively.Moreover if the φk's are powers of a single automorphism φ, then
p± are �xed point of φ. The same result holds for a non
ompa
t �ow,whi
h has thus either one or two �xed points.An unbounded �ow or automorphism5 is said to be paraboli
 if it hasone �xed point, hyperboli
 if it has two of them. A bounded �ow orautomorphism is said to be ellipti
.Proof. The prin
iple is to look at the a
tion of Aut(S) not only on thesphere S, but also in the 
omplex hyperboli
 spa
e it bounds and onthe proje
tive spa
e CPn+1 it is embedded in.The 
ase when the φk's are powers of an automorphism φ, or the 
aseof a �ow, are simple linear algebra results. They are roughly des
ribedby Figure 2, whi
h shows the link between negative 
urvature of thehyperboli
 spa
es and north-south dynami
s: when a geodesi
 γ istranslated, any other geodesi
 is shrinked toward one of the ends of γ.The general 
ase 
an be dedu
ed from the KAK de
omposition: ev-ery element φ of the group Aut(S) writes down as a produ
t φ = k1ak2where k1, k2 are elements of a maximal 
ompa
t subgroup K ⊂ Aut(S)and a is an element of a maximal non
ompa
t 
losed abelian subgroup
A. The dimension of A is the real rank of Aut(S), namely 1. Morepre
isely, A 
orresponds to a hyperboli
 �ow, that is a non
ompa
t �owwith two �xed point on S (one attra
tive, one repulsive). The generalresult then follows from the 
ompa
tness of K.5an automorphism is said to be unbounded if the sequen
e of its powers isunbounded
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S

p−

p+

γ

φφ

Figure 2. North-south dynami
s.1.4. (G, X)-stru
tures. The notion of (G, X)-stru
ture is a formali-sation of Klein's geometry. In our setting, they arise as a des
ription of�at CR stru
tures in term of the model sphere S and its automorphismgroup.Let X be a manifold and G a Lie group a
ting transitively on X.Assume that the a
tion is analyti
 in the following sense: an elementthat a
ts trivially on an open subset of X a
ts trivially on the wholeof X. A (G, X)-stru
ture on a manifold M is an atlas whose 
hartstake their values in X and whose 
hanges of 
oordinates are restri
tionsof elements of G. A di�eomorphism of M is an automorphism of its
(G, X)-stru
ture if it reads in 
harts as restri
tions of elements of G.Let us 
onsider the 
ase when G = PU(1, n + 1) and X = S. A �atstri
tly pseudo
onvex manifold M 
arries a (G, X)-stru
ture and itsCR automorphisms 
oin
ide with its (G, X) automorphisms. Indeed,the �atness of M means that it is lo
ally equivalent to S, thus it issu�
ient to prove that any lo
al automorphism of S 
an be extendedinto a global automorphism. This, in turn, follows from the order 2rigidity and the following fa
t: any 2-jet of a lo
al automorphism of S
an be realized as the 2-jet of a global automorphism (see e.g. [Spi97℄).The main tool we will need to study (G, X)-stru
tures is the so-
alled developping map. Let M be a manifold endowed with a (G, X)-stru
ture and M̃ be its universal 
overing. Then there exists a di�er-entiable map

D : M̃ → Xthat is a lo
al di�eomorphism and su
h that for all automorphism f of
M̃ , there exists some φ ∈ G satisfying(6) D ◦ f = φ ◦ D.



THE SCHOEN�WEBSTER THEOREM 9Note that in general, this developping map need not be a di�eomor-phism onto his image, nor a 
overing map. It is unique, up to 
ompo-sition with an element of G. More details on (G, X)-stru
tures 
an forexample be found in the 
lassi
al [Thu97℄.2. Webster: a lo
al TheoremIn 1977, Sydney Webster published the �rst work toward the S
hoen�Webster Theorem, [Web77℄. Until the end of the paper, M denotes astri
tly pseudo
onvex CR manifold of dimension 2n + 1.Theorem 2.1 � If M is 
ompa
t and Aut0(M) is non
ompa
t, then
M is �at.There are several reasons why this result has raised a lot of e�ortsto be improved. First, it is a lo
al statement though Webster gave inthe same paper a very spe
i�
 global result:Theorem 2.2 � If M is 
ompa
t and has �nite fundamental groupand Aut0(M) is non
ompa
t, then M is globally equivalent to the stan-dard sphere.Se
ond, he assumes that M is 
ompa
t and that the identity 
om-ponent Aut0(M) is non
ompa
t. We refer to these hypotheses as the
ompa
tness assumption and the 
onne
tedness assumption.His paper also 
ontains a result on 
onne
ted groups of CR auto-morphisms having a �xed point we shall dis
uss brie�y.Theorem 2.3 � If M is 
ompa
t and Aut0(M) admits a non
ompa
tone-parameter Lie subgroup G1 that has a �xed point p0, then M isglobally equivalent to the standard sphere S.Let us turn to the proofs of these three results.2.1. Canoni
al 
alibration. The following result is the key to thelo
al statement.Lemma 2.4 � For ea
h 
alibration θ on M there is a 
ontinuous non-negative fun
tion Fθ on M su
h that:(1) Fθ vanishes on a given open set U if and only if U is �at,(2) on the open set where Fθ is positive, it is smooth,(3) the family (Fθ)θ is homogeneous of degre −1 :(7) Fλθ = |λ|−1 Fθ.Su
h a family of fun
tions (Fθ)θ is 
alled a relative invariant afterCartan's one (see the proof below). Most of the time, the are given bythe norm of a 
urvature tensor.A point where Fθ vanishes for some (thus for all) 
alibration θ is saidto be umbili
.



10 THE SCHOEN�WEBSTER THEOREMLet us show the interest of su
h fun
tions. Pi
k any 
alibration θ of
M whose Levi form is positive and de�ne(8) θ∗ = Fθθ.Then θ∗ is a 
ontinuous 1-form that vanishes on the �at part of M andis a smooth 
alibration everywhere else. It is 
anoni
al, for if θ′ = λθis another 
alibration with λ > 0 (that is, whose Levi form is positive),

θ′∗ = Fλθλθ

= λ−1Fθλθ

= θ∗.We 
all θ∗ the 
anoni
al 
alibration of M although it is not a genuine
alibration unless M 
ontains no umbili
 points. If M is �at, θ∗ is zeroand, therefore, useless.Proof. Lemma 2.4 follows from the study of invariants of 
alibrated CRmanifolds.If n > 1, one 
an derive from the Chern-Mother 
urvature a tensor
S on some bundle T over M that only depends upon the CR stru
tureand vanishes on an open set U if and only if U is �at. A 
alibration
θ indu
es, via the Levi form, a metri
 on T . The 
orresponding norm
‖S‖θ of S yields the desired fun
tion. See [BS76, page 201℄ or [Web78,page 35℄ for details.If n = 1, S is always zero even when M is not �at so that Cartan'srelative invariant is needed. It is a fun
tion rθ on M , asso
iated to a
alibration θ, that vanishes on an open set if and only if it is �at; thefamily (rθ) is homogeneous of order −2, thus Fθ =

√
r does the job.For details, one 
an look at Élie Cartan's work [Car32a, Car32b℄ or,for a more modern presentation, at the book of Howard Ja
obowitz[Ja
90℄.2.2. The lo
al theorem. Let us give an outline of the proof of Theo-rem 2.1 given by Webster. We shall see later that a stronger statement
an be proved with the same tools.Proof. Assume M is not �at; we will show that any one-parametersubgroup of Aut0(M) has a 
ompa
t 
losure, whi
h implies the 
om-pa
tness of Aut0(M) by a theorem of Deane Montgomery and LeoZippin [MZ51℄.Let G1 be a nontrivial one-parameter subgroup of Aut0(M) within�nitesimal generator Y on M . Choose some 
alibration θ; by as-sumption Fθ is positive on an open set U . Sin
e the vanishing of Fθ isindependent of θ, U is invariant under the �ow of Y .Consider the fun
tion η = θ∗(Y ), on U . Assume it vanishes identi-
ally. Then Y lies in the 
onta
t distribution. Moreover, sin
e θ∗ is a



THE SCHOEN�WEBSTER THEOREM 11CR invariant form, LY θ∗ vanishes. Cartan's magi
 formula yields:
0 = LY θ∗ = Y y dθ∗ + dη = Y y dθ∗,so Y is identi
ally zero, whi
h 
ontradi
ts the order two rigidity.We may therefore assume that η > 0 somewhere, repla
ing Y by −Yif ne
essary. Choosing ε su�
iently small, the set Uε de�ned by theinequation η(p) > ε has non empty interior. It is 
losed in M , thus is
ompa
t, and is invariant under the �ow of Y .The 
losure G1 of G1 in Aut0(M) is a Lie group that preserves the
ompa
t Uε and the Webster metri
 of θ∗ on it, thus is 
ompa
t (Corol-lary 1.4).2.3. The global result. Webster derives Theorem 2.2 from a weakform of Proposition 1.6 and a (now) standard use of (G, X)-stru
tures.Proof. By Theorem 2.1, M and its universal 
overing M̃ are �at. There-fore they 
an be developped as (SU(1, n + 1),S)-stru
tures. Sin
e Mhas �nite fundamental group, M̃ is 
ompa
t and the developping map

D : M̃ → S is a 
overing map. But S admits no nontrivial 
overingand M̃ is globally equivalent to S. By Montgomery-Zippin Theorem[MZ51℄, there exists some 
losed non
ompa
t one-parameter subgroup
G1 of Aut0(M). This group lifts to a one parameter subgroup G̃1 a
tingon M̃ = S.>From Proposition 1.6, we know that G̃1 has either one or two �xedpoints. In both 
ases G1 has at least a �xed point.Let p be a �xed point of G1. The lifts of p are �xed points of G̃1of the same type (attra
tive, repulsive or both). But G̃1 has at mostone �xed point of a given type, thus M̃ → M must be a one-sheeted
overing.2.4. One-parameter subgroups with a �xed point. Theorem 2.3is based on a prin
iple of extension of lo
al 
onjuga
y, making use ofthe dynami
s on the model spa
e. We detail a similar argument atthe end of the paper, using it in the proof of the 
ompa
t 
ase of theS
hoen�Webster Theorem.Proof. Let Y be an in�nitesimal generator of G1. A

ording to Theo-rem 2.1, M is �at so there is an isomorphism between a neighborhood
U of p0 and an open set U ′ of S. Denote by Y ′ the ve
tor �eld on U ′
orresponding to the restri
tion of Y to U . Then Y ′ extends uniquelyto a CR ve
tor �eld on S, whi
h has a �xed point p′0.If Y ′ is ellipti
, then it follows from the �nite order rigidity that G1 is
ompa
t, in 
ontradi
tion with the assumptions. If Y ′ is paraboli
, thenone 
an use it to extend the 
onjuga
y between U and U ′ to the basinsof attra
tion and repulsion of p′0, therefore M is globally equivalent to
S. If Y ′ is hyperboli
, the same argument shows that there is an open
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onjugate to either S or S with a point (namely these
ond �xed point of Y ′) deleted. Sin
e Y is a 
omplete ve
tor �eldwith isolated zeros, M itself must be globally equivalent to either S or
S with a point deleted.3. Kamishima and Lee: two ways from lo
al flatness toglobal rigidityYoshinobu Kamishima seems to be the �rst to prove the lo
al toglobal statement (under both the 
ompa
tness and 
onne
tedness as-sumptions) in a workshop in honor of Obata held at Keio Universityin 1991. He announ
ed the result in the pro
eedings [Kam93℄ and the
omplete proof appeared a while after [Kam96℄.Theorem 3.1 � If M is �at, 
ompa
t and Aut0(M) is non
ompa
tthen M is globally equivalent to the standard sphere.We will not detail his proof at all, but let us quote an interesting
orollary he gave in relation with the so-
alled Seifert 
onje
ture. This
elebrated 
onje
ture states that any non singular ve
tor �eld on the
3-dimensional sphere has at least one 
losed orbit. It was disproved for
C 1 ve
tor �elds by Paul S
hweitzer [S
h74℄, then in C ∞ regularity byKrystyna Kuperberg [Kup94℄. The question was then raised for ve
-tor �elds preserving some geometri
 stru
ture. Kamishima's followingresult gives an answer for ve
tor �elds preserving a CR stru
ture.Corollary 3.2 � If M is a rational homology sphere endowed witha stri
tly pseudo
onvex CR stru
ture, then any nonsingular CR ve
tor�eld on M has a 
losed orbit.In [Lee96℄, John Lee proved Theorem 3.1 independently of Kamishi-ma. His method relies on Webster's Theorem 2.3: he provesTheorem 3.3 � If M is 
ompa
t and Aut0(M) admit a 
losed non-
ompa
t one-parameter subgroup G1, then G1 has a �xed point.On
e again, the Montgomery�Zippin Theorem is used to dedu
e The-orem 3.1 from Theorems 3.3, 2.1 and 2.3.Proof. Let Y be an in�nitesimal generator of G1 and assume by 
on-tradi
tion that Y has no zero on M .Note �rst that Y must be somewhere tangent to the 
onta
t dis-tribution ξ: otherwise Y would be the Reeb ve
tor �eld of a unique
alibration, thus would preserve the asso
iated Webster metri
.The �rst part of the proof 
onsists in understanding the set of pointswhere Y ∈ ξ; it is a 
lassi
al 
omputation that involves only the 
onta
tstru
ture on M : pi
k any 
alibration θ of M and de�ne η = θ(Y ). Thenone 
an show, using that Y has no zero, that 0 is a regular value of
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η. Therefore H = {η = 0} ⊂ M is a nonempty, 
ompa
t, embeddedhypersurfa
e along whi
h Y is tangent to both H and ξ.The next step 
onsists in proving that one 
an �nd a new 
alibrationsu
h that LY θ = 0 and LY dθ = 0 at every point of H . It is easy to getthe �rst 
ondition by res
aling θ; then a rather tedious 
omputationallows Lee to re�ne the res
aling in order to get the se
ond 
ondition.These two 
onditions imply that the Webster metri
 on TM is pre-served by the �ow of Y along H . It follows for any sequen
e (fi) in
G1, (fi|H) 
onverges in C

∞ topology. Using the 
omplex operator J , itis then possible to prove that the 2-jets of the sequen
e (fi) 
onvergeat all points of H . By the order 2 rigidity, (fi) is 
onvergent in G1, a
ontradi
tion.
4. S
hoen: Yamabe problem methodsThe aim of this se
tion is to survey the proof of S
hoen�Webstertheorem by R. S
hoen in [S
h95℄. For 
onvenien
e, we only deal withthe 
ompa
t 
ase, even though [S
h95℄ also 
onsiders the non-
ompa
t
ase with the same kind of te
hniques, based on global analysis. R.S
hoen �rst proves that the 
onformal group is 
ompa
t for any 
losedRiemannian manifold whi
h is not 
onformally equivalent to the stan-dard sphere. Then he explains how to adapt the proof in a CR setting,whi
h is what we want to develop below. Another proof of the 
on-formal group 
ompa
tness is given in [Heb97℄ : it is a bit shorter butrelies on the positive mass theorem, whi
h makes it less elementarythan what follows.4.1. Yamabe theorem. The 
elebrated Yamabe problem is basi
 in
onformal geometry: is there a metri
 with 
onstant s
alar 
urvaturein ea
h 
onformal 
lass of a given 
losed manifold ? This question wasthe beginning of a long story: see the ex
ellent [Heb97℄ or [LP87℄ foran exhaustive a

ount. The answer to the problem is yes and the proofrelies on a 
areful study of the 
onformal Lapla
ian.As explained in [JL87℄, there is a deep analogy between 
onformaland CR geometry. In parti
ular, Yamabe theory has a 
ounterpartin the CR realm, whi
h enables R. S
hoen to extend his 
onformalgeometry arguments to the CR 
ase.In order to develop a Yamabe theory in the CR setting, one needs aSobolev-like analysis. In the 
onformal 
ase, the natural 
onformal op-erator is ellipti
, so that its analysis is rather standard. In the CR 
ase,the 
orresponding natural operator Lθ is only subellipti
. G. Follandand E. Stein [FS74℄ (see also paragraph 5 of [JL87℄) have nonethelessdevelopped a powerful theory whi
h yields the ne
essary tools.
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onformal geometry, given a 
alibration θ, we de�ne the CRYamabe invariant Q(M, θ) as the in�mum of the fun
tional
∫

M

φLθ φ θ ∧ dθnover the elements φ of the unit sphere in the Lebesgue spa
e L
2n+2

n (M).The 
hoi
e of this exponent is related to the transformation law for thevolume form: if θ′ = u
2

n θ for some positive fun
tion u, then
θ′ ∧ (dθ′)n = u

2n+2

n θ ∧ dθn.It turns out that Q(M, θ) is a CR invariant.D. Jerison, J. M. Lee [JL87℄, N. Gamara and R. Ya
oub [Gam01℄,[GY01℄ adapted the proof of the 
onformal Yamabe theorem to provetheTheorem 4.1 � A 
losed stri
tly pseudo
onvex CR manifold admitsa 
alibration with 
onstant s
alar 
urvature 1 (resp. 0 and −1) if itsCR Yamabe invariant is positive (resp. zero and negative).We will only need the nonpositive (and easiest) 
ase, whi
h wassettled by [JL87℄.4.2. The proof. Theorem 4.1 leads to theProposition 4.2 � When the CR Yamabe invariant is nonpositive,the CR automorphism group is 
ompa
t.Proof. We prove that CR automorphisms are isometries for the Webstermetri
 of a 
alibration; sin
e the isometry group of a 
losed Riemannianmanifold is 
ompa
t, the result will follow. Endow M with a 
alibration
θ. If Q(M) = 0, we 
an assume θ has vanishing s
alar 
urvature (Yam-abe). A CR automorphism F of M then obeys F ∗θ = u

2

n θ with
Lθ u = ∆θu = 0 (F ∗θ has s
alar 
urvature F ∗Rθ = 0). An integra-tion by parts yields

0 =

∫

u∆θu =

∫

Lθ (du|ξ, du|ξ) θ ∧ dθn.So we 
an write du = fθ, whi
h implies 0 = df ∧ θ + fdθ. Sin
e dθ isde�nite on the kernel ξ of θ, f vanishes, so u is 
onstant. Sin
e
volθ(M) = volθ(F (M)) = volF ∗θ(M) = u

2n+2

n volθ(M),

u is 
onstant to 1: F preserves θ hen
e Wθ.If Q(M) < 0, we 
an make a similar argument: we are left to showthat a solution u of
∆θu = b(n)

(

u − u
n+2

n

)is 
onstant to 1. It follows from a weak maximum prin
iple. At amaximum point, ∆θu is nonnegative so that the equation ensures u ≤ 1.



THE SCHOEN�WEBSTER THEOREM 15At a minimum point, one �nds u ≥ 1 for the same reason. Therefore
u is 
onstant to 1.The following lemma is the key to 
omplete the proof. We denoteby Dr the ball of radius r in R2n+1. To avoid te
hni
al details, we donot give the pre
ise statement (
f. [S
h95℄).Lemma 4.3 � Let F : (D1, θ) → (N, σ) be a CR di�eomorphism. Weassume θ is 
lose to the Heisenberg 
alibration and σ has vanishings
alar 
urvature. If λ :=

√

(F ∗σ/θ)(0) denotes the dilation fa
tor at
0, then:

• the dilation fa
tor is almost 
onstant to λ, i.e. F ∗σ/θ ≈ λ on
D1/2 ;

• images of balls have moderate e

entri
ity, i.e. F (D1/2) ≈
B(F (0), λ/2) ;

• the total 
urvature and the torsion are small when the dila-tion fa
tor is large, i.e. |Rmσ| . λ−2 and |Torσ| . λ−2 on
B(F (0), λ/2).Proof. By s
aling σ, we 
an assume λ = 1. Write F ∗σ = u

2

n θ andobserve that Rσ = 0 implies Lθ u = 0. Sin
e θ is 
lose to the Heisenberg
alibration, Lθ is 
lose to the Heisenberg subellipti
 Lapla
ian, so that
u satis�es a Harna
k inequality ([JL87℄, 5.12) : sup u ≤ C inf u, with a
ontrolled 
onstant. The �rst and se
ond assertions follow. Subellipti
regularity ([JL87℄, 5.7) also yields a C2 bound on u, hen
e the thirdassertion.Now we 
an �nish the proof of theTheorem 4.4 (S
hoen�Webster) � The CR automorphism group ofa 
losed stri
tly pseudo-
onvex CR manifold whi
h is not CR equivalentto a standard sphere is 
ompa
t.Here, we only deal with C0 topology. Thanks to a bootstrap argu-ment, [S
h95℄ proves that all Ck topologies, k ≥ 0, are the same. Theyalso 
oin
ide with the Lie group topology.Proof. Assume M2n+1 is a 
losed stri
tly pseudo-
onvex CR manifoldwith non-
ompa
t 
onformal group and 
hoose a 
alibration θ. As-
oli theorem yields CR automorphisms Fi and points xi su
h that thedilation fa
tors

λi :=
√

(F ∗
i θ/θ)(xi) = max

√

(F ∗
i θ/θ)go to in�nity.The rough idea of the proof 
onsists in multiplying the 
alibration

θ by suitable Green fun
tions so as to build a sequen
e of 
onformals
alar �at blow ups; then lemma 4.3 will enable us to �nd a sequen
eof larger and larger balls endowed with a 
alibration of smaller and
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urvature and torsion: taking a limit, we will realize M minusa point as a Heisenberg group; a last e�ort will seal the fate of themissing point.To begin with, we 
an 
hoose a small ǫ > 0 su
h that the geometryof all the balls of radius ǫ in M is 
lose to that of the Heisenberg group.Then we 
hoose points yi outside Fi(B(xi, ǫ)) and use a standard tri
kin Yamabe theory. Sin
e the CR Yamabe invariant is positive (4.2),the operator Lθ is positive. Therefore, there are Green fun
tions Gi,i.e. preimages of Dira
 distributions δyi
(
f. [Gam01℄ for instan
e):outside yi, they are smooth, satisfy Lθ Gi = 0 and we 
an normalizethem so that their minimum value is 1. Put zi := Fi(xi) and 
onsiderthe 
alibration

θi :=

(

Gi

Gi(zi)

)
2

n

θ,de�ned outside yi. It has vanishing s
alar 
urvature.We 
an assume yi 
onverges to y, zi 
onverges to z and Gi 
onvergesto G on 
ompa
t sets of M−{y}. Besides, one 
an show that Gi(zi) re-mains bounded, that is y 6= z: it stems from a 
onvenient use of lemma4.3 and from a Harna
k inequality for the dilation fa
tor between F ∗
i θiand θ. So we 
an assume Gi(zi) 
onverges.Therefore θi tends to a 
alibration θ∞ = cG

2

n θ on the 
ompa
t setsof M − {y}. Now lemma 4.3 ensures that, roughly, θi has 
urvatureand torsion of magnitude λ−2
i on Fi(Bθ(xi, ǫ/2)) ≈ Bθi

(zi, λiǫ/2), sothat letting i go to in�nity, we 
on
lude our manifold, outside y, is CRequivalent to a 
alibrated stri
tly pseudo-
onvex CR manifold withvanishing 
urvature and torsion; and it happens to be 
omplete andsimply 
onne
ted (it is a nonde
reasing union of topologi
al balls), sothat it is H2n+1.Thus there is a CR di�eomorphism F between M minus y and thestandard sphere minus some point, ∞. In the neighbourhood of ∞in S2n+1, 
onsider a CR equivalent Heisenberg 
alibration σ. Writing
F ∗σ = u

2

n θ, we obtain Lθ u = 0 outside y, sin
e σ has vanishing s
alar
urvature. Extending F at y amounts to show that u has a removablesingularity at y. But the integral of u
2n+2

n over some ball is exa
tly thevolume of the image of this ball through F , whi
h is bounded by thevolume of the standard sphere; it follows (proposition 5.17 in [JL87℄)that u is a weak solution of the equation Lθ u = 0 over a neighborhoodof y so that it extends as a smooth fun
tion in the neighborhood of y(5.10, 5.15 in [JL87℄). Thus (M, θ) is CR equivalent to the standardsphere.
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es: a unified dynami
al proofCharles Fran
es re
ently gave a uni�ed proof of the Ferrand-Obataand S
hoen�Webster Theorems [Fra06℄; in fa
t he also proves analogu-ous results for quaternioni
-
onta
t and o
tonioni
-
onta
t geometries.To obtain these results, he uses the setting of Cartan geometries(see [Sha97℄ for a detailed a

ount on this topi
). Given a model ho-mogeneous spa
e X = G/P , a Cartan geometry modelled on X on amanifold M 
onsists of:
• a P -prin
ipal bundle B → M and
• a 1-form ω on the total spa
e B with values in the Lie algebra

g.The form ω is 
alled the Cartan 
onne
tion of the stru
ture and issupposed to satisfy some 
ompatibility 
onditions we do not detail.The points of B play the role of �adapted� frames (like orthonormalframes for Riemannian geometry). The Cartan 
onne
tion is used toidentify in�nitesimally B with G: in parti
ular, it is asked that at ea
hpoint p ∈ B, ωp is an isomorphism between TpB and g.The geometries Fran
es is 
on
erned with are modelled on the ho-mogeneous spa
es ∂KHd = G/P where KHd is the hyperboli
 spa
ebased on K = R, C, H or O, G is the isometry group of KH and P isthe stabilizer of a boundary point. Note that when K = C, X = S.For ea
h of these Cartan geometries, the �equivalen
e problem� hasbeen solved, that is: there exists a 
onstru
tion that gives for any 
on-formal, stri
tly pseudo
onvex CR, et
. stru
ture on M a 
orrespondingCartan stru
ture B, ω su
h that isomorphisms of the original stru
tureindu
e isomorphisms of the Cartan stru
ture and re
ipro
ally. TheCartan stru
ture is not unique, one 
an impose further assumptions.In parti
ular the Cartan 
onne
tion 
an be 
hosen �regular� (a te
hni
al
ondition involving the 
urvature of ω) for the geometries 
onsideredhere.We 
an now state the result of Fran
es.Theorem 5.1 � Let (M, B, ω) be a Cartan geometry modelled on
X = ∂KHd, with regular 
onne
tion. If Aut(M, ω) a
ts nonproperly on
M , then M is isomorphi
 to either X or X with a point deleted.Proof. The �rst and main step is to prove that any sequen
e (fk) ofautomorphisms of M that a
ts nonproperly admit a subsequen
e thatshrinks an open set U ⊂ M onto a point p. The prin
iple is to usesome sort of developping map from the spa
e of 
urves on M passingthrough p to the spa
e of 
urves on X passing through a given basepoint o. Then, 
hoosing an appropriate family of 
urves in the modeland its north-south dynami
s, one gets the desired property on M .Then one proves that an open set that 
ollapses to a point must be�at. Note that in the CR 
ase, one 
ould use the Webster metri
 of
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anoni
al 
alibration (see Se
tion 2). As a 
onsequen
e, one 
an
hoose U to be of the form
U = Γ\(X − {o})where Γ is a dis
rete subgroup of the stabilizer P of o ∈ X.The �nal step is a result on geometri
al rigidity of embeddings: if a�at manifold Γ\(X −{o}) embeds in M , then either M = Γ\(X −{o})or Γ = {Id}. In the latter 
ase, M = X or M = X − {o}.The 
on
lusion follows sin
e the automorphism group of Γ\(X−{o})a
ts properly when Γ is not trivial.6. Gathering a geometri
 proof in the 
ompa
t 
aseIn this last se
tion, we give a geometri
 proof of the S
hoen�WebsterTheorem under the 
ompa
tness assumption. It is not elementary, as itmakes use of Lemma 2.4. However: it is a geometri
 proof, thus gives analternative to S
hoen's te
hniques; it do not rely on the Montgomery-Zippin Theorem, holds without the 
onne
tedness assumption and isquite short, whi
h makes it an improvement of those of Webster, Ka-mishima and Lee together.It does not pretend to originality, sin
e it relies on arguments ofWebster [Web77℄ and Fran
es and Tarquini [FT02℄, rephrased.6.1. The lo
al statement.Theorem 6.1 � If M is 
ompa
t and Aut(M) is non
ompa
t, then

M is �at.Proof. Suppose that M is not �at; then the 
anoni
al 
alibration θ∗de�ned thanks to Lemma 2.4 does not vanish identi
ally. Denote by Wthe Webster metri
 asso
iated with θ∗: it is 
ontinuous on M , smoothand positive de�nite on the open set U of nonumbili
 points and zeroon its 
omplementary F . For all x and y in M let
d(x, y) = inf

γ

∫

γ

√

W (γ̇)de�ne the natural semimetri
 asso
iated to W (not to be 
onfused withthe Carnot metri
 of Se
tion 1.1.3 : here the in�mum is taken on all
urves 
onne
ting x to y). We have d(x, y) = 0 if and only if x and yare in F , in parti
ular d is a genuine metri
 on U .If U = M , then Aut(M) preserves a Riemannian metri
, thus is
ompa
t. Otherwise, F is nonempty, the distan
e d(x, F ) is �nite forevery x ∈ M and we 
an de�ne the set Uε = {x ∈ U ; d(x, F ) > ε} forany positive ε. This set is 
ompa
t and has nonempty interior for εsmall enough.Now Aut(M) preserves Uε and its Webster metri
, thus is 
ompa
t.
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al-to-global statement.Theorem 6.2 � If M is �at and Aut(M) a
ts nonproperly, then Mis globally equivalent to the standard CR sphere S or to S with a pointdeleted.This result follows, by a prin
iple of �extension of lo
al 
onjuga
y�,from the dynami
s of unbounded sequen
es of Aut(S). Note that wedo not use the 
ompa
tness assumption for this part.The end of the se
tion is dedi
ated to the proof of Theorem 6.2.Note that it holds as it is for any �rank-one paraboli
� (G, X)-stru
ture(namely X = ∂KHn with K = R, C, H or O).6.2.1. Set up: developping the dynami
s. We assume that M is �at,thus 
arries a (SU(1, n + 1),S)-stru
ture, and that Aut(M) a
ts non-properly: there is a 
onvergent sequen
e xi ∈ M and a sequen
e
fi ∈ Aut(M) going to in�nity (that is, having no 
onvergent subse-quen
e), su
h that yi = fi(xi) 
onverges in M . We set x∞ = lim xi and
y∞ = lim yi.Let M̃ be the universal 
over of M . There are lifts (x̃i)i∈N∪{∞},
(ỹi)i∈N∪{∞} and f̃i su
h that lim x̃i = x̃∞, lim ỹi = ỹ∞ and ỹi = f̃i(x̃i).Moreover, the sequen
e (f̃i) has no 
onvergent subsequen
e in Aut(M̃).LetD : M̃ → S be the developping map of M and φi be a sequen
e of
Aut(S) su
h that Df̃i = φiD. If (φi) had a 
onvergent subsequen
e, bythe order 2 rigidity and sin
e φi and f̃i are lo
ally 
onjugated, so would
(f̃i). Thus (φi) is unbounded and admit a North-South dynami
s,whose poles are denoted by p+ and p−.Sin
e D(ỹi) = φiD(x̃i), we have either D(ỹ∞) = p+ or D(x̃∞) = p−.Up to inverting the fi's and ex
hanging the xi's and the yi's, we assumethat D(ỹ∞) = p+.6.2.2. Stret
hing inje
tivity domains. A subset of M̃ is said to be aninje
tivity domain if the developping map is one-to-one on its 
losure.We denote by U0 an open 
onne
ted inje
tivity domain 
ontaining
ỹ∞ and we let V0 = D(U0). We 
hoose an open 
onne
ted inje
tivitydomain Ω 
ontaining x̃∞ and having 
onne
ted boundary Bd Ω whoseimage D(BdΩ) does not 
ontain p−. Up to extra
ting a subsequen
e,we 
an assume that for all i, x̃i ∈ Ω and ỹi ∈ U0.A

ording to Proposition 1.6, there is an in
reasing sequen
e of opensets Vi ⊂ S (i > 0) su
h that, extra
ting a subsequen
e if ne
essary:(1) for all i, D(BdΩ) ⊂ Vi,(2) ⋃

Vi = S − {p−},(3) for all i, φi(Vi) ⊂ V0.Let δ : U0 → V0 be the restri
tion of D and de�ne the followingopen 
onne
ted inje
tivity domains: Ui = f̃−1
i ◦ δ−1 ◦ φi(Vi). Sin
e we



20 THE SCHOEN�WEBSTER THEOREMassumed x̃i ∈ Ω and ỹi ∈ U0, we get(9) Ui ∩ Ω 6= ∅ ∀iand by 
onstru
tion we have(10) D(BdΩ) ⊂ D(Ui) = Vi ⊂ D(Ui+1) = Vi+1 ∀i.6.2.3. Monotony and 
onsequen
es. We prove that (Ui) (or a subse-quen
e) is an in
reasing sequen
e.If we 
an extra
t a subsequen
e su
h that Ui ⊂ Ω for all i, sin
e Ω isan inje
tivity domain and (DUi) is in
reasing, (Ui) must be in
reasing.Otherwise we use the following Lemma.Lemma 6.3 � Let A, B be two inje
tivity domains su
h that B isopen, A is 
onne
ted and A ∩ B 6= ∅. If D(A) ⊂ D(B), then A ⊂ B.Proof. Sin
e A is 
onne
ted, we only have to prove that A∩B is openand 
losed in A.First, B is open so that A∩B is open in A. Se
ond, let y be a pointin A∩B. Sin
e D(A) ⊂ D(B), there is a z ∈ B su
h that D(z) = D(y).But sin
e B is an inje
tivity domain and y belongs to the 
losure of B,
z = y and y ∈ B. Therefore, A ∩ B is 
losed in A.When Ui 6⊂ Ω, Bd Ω∩Ui 6= ∅ and we 
an apply Lemma 6.3: Bd Ω ⊂
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