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M-shaped Specimen for the High-strain Rate Tensile Testing

Using a Split Hopkinson Pressure Bar Apparatus

D. Mohr & G. Gary

Abstract An experimental technique is proposed to deter-
mine the tensile stress–strain curve of metals at high strain
rates. An M-shaped specimen is designed which transforms
a compressive loading at its boundaries into tensile loading
of its gage section. The specimen can be used in a
conventional split Hopkinson pressure bar apparatus,
thereby circumventing experimental problems associated
with the gripping of tensile specimens under dynamic
loading. The M-specimen geometry provides plane strain
conditions within its gage section. This feature retards
necking and allows for very short gage sections. This new
technique is validated both experimentally and numerically
for true equivalent plastic strain rates of up to 4,250/s.

Keywords Finite element analysis . Fracture . High strain
rates . Hopkinson bar . Kolsky bar . Plasticity . Tensile
testing . Transverse plane strain

Introduction

The virtual design of engineering structures subject to
impact loading requires reliable experimental data for the

development and calibration of computational material
models. It is common practice to make use of the split
Hopkinson pressure bar (SHPB) technique [1, 2] to
determine the dynamic response of materials under uniaxial
compressive loading. In addition to compression testing,
the split Hopkinson bar technique has been developed for
the torsion testing of hollow cylindrical specimens [3].
Direct dynamic tensile tests may also be performed by the
means of the split Hopkinson bar apparatus [4]. However,
due to experimental difficulties, direct dynamic tensile tests
are not very often used to characterize the high strain rate
response of engineering materials. Consequently, most
existing strain-rate dependent plasticity models have been
developed on the basis of experimental data for uniaxial
compression and torsion.

While the deformation response of metals under tension
at high strain rates may be estimated within reasonable
accuracy based on data for compression or shear, dynamic
tensile tests are indispensable in characterizing the crack
initiation in metals. Most challenges in designing dynamic
tensile experiments are related to the gripping of the
specimen. When measuring the forces and displacements
by means of bars, the tensile specimen needs to be attached
to the respective ends of the so-called incident and
transmitter bars. For this, specimens with threaded speci-
men shoulders are usually directly screwed into the bar
ends. As pointed out by Nicholas [5], reliable testing of
threaded specimens requires the elimination of all play from
the joints; in addition, perfect alignment of short tensile
specimens is needed [4]. The threads inside the bar ends
cause spurious wave reflections in the vicinity of the bar-
specimen interface. Failure to eliminate all gaps amplifies
these reflections further, making it difficult to obtain

D. Mohr :G. Gary
Solid Mechanics Laboratory, CNRS UMR 7649,
Department of Mechanics, École Polytechnique,
91128 Palaiseau Cedex, France

D. Mohr (*)
Impact and Crashworthiness Laboratory, Department of
Mechanical Engineering, Massachusetts Institute of Technology,
Cambridge, MA, USA
e-mail: mohr@mit.edu

1



accurate measurements of the forces and displacements at
the specimen boundaries.

In this paper, we propose a specimen for tensile testing
in a split Hopkinson pressure bar apparatus. In close
conceptual analogy with Luong’s tensile specimen for
geological materials [6], the specimen transforms an
incident pressure pulse at its boundaries into tensile loading
of its gage section. The key advantage of this technique is
that these tests may be performed without attaching the
specimen to the bar ends. Instead, the specimen is freely
positioned between the flat ends of the incident and
transmitter bars. Moreover, a conventional split Hopkinson
pressure bar apparatus may be used to generate the loading,
thereby avoiding several difficulties related to the genera-
tion of a tensile pulse in the incident bar.

Materials and Methods

All specimens are made from aluminum 2024-T351. The
reference stress–strain curve for static loading (2 mm/min)
is determined from uniaxial tensile tests on flat dogbone-
shaped specimens of 3.5 mm thickness (gage section
dimensions: 8.95 mm wide and 57.15 mm long). The solid
curve in Fig. 1 shows the true stress as a function of the
logarithmic plastic strain. A Young’s modulus of E=
73,980 MPa is found from optical displacement measure-
ments (digital image correlation). The material begins to
deform plastically at a true stress of about s0=330 MPa and
exhibits strain hardening up to about 550 MPa. In the
uniaxial test, necking initiates at a plastic strain of about
0.15. The mass density of Al2024-T351 is ρ=2.8 g/cm3

which corresponds to a uniaxial wave propagation speed of
about c0 ¼

ffiffiffiffiffiffiffiffi

E=ρ
p

¼ 5; 140m=s.

M-shaped Specimen

Design Concept

Figure 2(a) shows the front view of the proposed specimen.
It is called ‘M-specimen’ because its shape resembles the
letter ‘M.’ The M-specimen is designed to transform a
compressive loading at its boundaries into tensile loading of
its two gage sections. In the following, we discuss the
specimen geometry by considering the specimen as a series
of beam segments of length li and of cross-sectional height
hi. Dashed lines in Fig. 2(a) represent the corresponding
beam segment mid-axes. As illustrated by the free body
diagram [Fig. 2(b)], the segment between the points E and
F is predominantly under compression. Similarly, the
segment A–B is subject to compressive loading while the
segments B–C and D–E are subject to shear and bending
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Fig. 1 Stress-strain curve of aluminum 2024-T351 (von Mises stress
versus equivalent plastic strain). The solid line shows the result of a
uniaxial tensile test on a flat dogbone specimen (measured outside the
neck). The open dots depict the stress-stain curve determined from the
quasi-static testing of the M-specimen
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Fig. 2 (a) Photograph of the
EDM machined specimen, (b)
simplified free-body diagram
depicting the generalized forces
acting on individual sections of
the specimen
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loading. The specimen gage sections (segment C–D) are
predominantly stretched. The key considerations in choos-
ing the specimen dimensions are:

(1) Limit plastic deformation to the gage section. The
dimensions of the specimen must be chosen such that
the gage section deforms plastically while the remain-
ing specimen structure responds in a purely elastic
manner.

(2) Minimize bending deformation. The bending of the
sections D–E and B–C affects the stress and strain
uniformity within the specimen gage section (observe
from Fig. 2(b) that there is a constant bending moment
M=0.5FlB–C acting on segment D–C). In addition, the
bending-induced rotation of point D may disturb the
otherwise uniform fields within the gage section
[Fig. 3(a)]. To minimize the bending effects, the
length of the segments B–C and D–E should be as
small as possible. This can be achieved by reducing
the heights hF–E and hA–B, the corner radii, the width
of the vertical slots, and the gage section thickness a.
Furthermore, increasing the height hD–E of section D–
E reduces the bending-induced rotation of point D.

(3) Prevent buckling of the segment A–B. The slender
segment A–B is subject to compressive loading and
therefore prone to buckling. The minimal length lA–B
is determined by the length of the gage section, the
height of the bent-sections D–E and B–C, and the
displacement to fracture of the gage sections. Observe
that the spacing between the specimen and the bottom
loading platen of the testing machine (just below point
E) needs to be sufficiently large to avoid contact prior
to specimen fracture. Increasing the cross-sectional
height of the section A–B would be beneficial, but this
measure would also reduce the advantageous wave
guidance by this particular section.

(4) Minimize the distance of wave travel. The maximum
acceptable loading velocity is limited by the time it
takes for an incoming stress wave to travel from the
top to the bottom boundary of the specimen. This

characteristic duration of wave travel must be short as
compared to the duration of significant changes in the
force level in order to guarantee quasi-static equilib-
rium throughout dynamic testing. Consequently, the
total distance of wave travel along the path F-E-D-C-
B-A shall be short. Note that this distance depends on
the maximum force within the gage section and on the
gage section length. The higher the maximum force,
the larger the required dimensions of the ‘support
structure’ around the gage section (e.g. the height of
sections B–C or D–E). Furthermore, the longer the
gage section, the longer of sections A–B and E–F.
Therefore, it is desirable to keep both the gage
thickness and length small. Keeping the gage length
small also increases the maximum strain rate at which
the specimen is still in quasi-static equilibrium.

(5) Achieve transverse plane strain conditions. The stress
and strain fields also depend on the specimen width
i.e. the dimension perpendicular to the plane shown
in Fig. 2(a). If the specimen width w is of the order of
the gage section thickness, the stress state within the
gage section is uniaxial. However, in view of prob-
lems related to the specimen alignment (with respect
to the loading platens) as well as the onset of fracture
near the corner radii, the specimen width must be large
as compared to the gage section thickness a and gage
length l,

w � a andw � l

which ultimately guarantees transverse plane strain
conditions within the gage section. In other words, the
strains along the width direction are approximately
zero, ɛzz≅0. Detailed analysis of transverse plane
strain specimens [7] has shown that the stress and
strain fields are perturbed along a characteristic
distance from the free boundary. One can either
correct for such perturbations using simplified formu-
las or chose w sufficiently large such that these
perturbations may be neglected.

Fig. 3 Finite element estimation
of the M-specimen response
after applying a vertical dis-
placement of 0.5 mm under
static conditions: (a) without
and (b) with spacer blocks and
base frame. The dashed lines
indicate the initial shape of the
specimen (identical for both
configurations); the superposed
contour plot shows the von
Mises stress distribution within
the specimen
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Based on the above considerations, we conclude that the
gage section should be as thin and short as possible for
optimal specimen performance in terms of field uniformity
within the gage section and of maximum strain rate. Here,
we chose a gage section thickness of a=0.5 mm which
results in overall specimen dimensions that can still be
manufactured within reasonable accuracy using a computer-
controlled wire EDM [Fig. 2(a)]. We use a set of spacer
blocks [see Fig. 3(b)] to prevent the bending-induced lateral
motion of point C. In addition, an exterior base frame is put
in place to prohibit the lateral motion of point A. As a result,
the effective buckling length of section A–B is significantly
increased, thereby improving the specimen’s structural
stability and stress uniformity within the gage sections.

Determination of the Stress–strain Curve

Throughout the experiment, the forces and displacements
are measured at the specimen boundaries, i.e. at the top and
bottom surfaces of the M-specimen. Assuming that the
specimen is in quasi-static equilibrium (Ftop=Fbot), the
resulting experimental output is a single force–displacement
curve F(u) where u ¼ utop � ubot. In the following, we
determine the stress–strain curve from experiments on
specimens made of Levy–von Mises materials. For small
to moderate deformations, it is assumed that the total
displacement corresponds to the sum of the elastic part, ue,
which is proportional to the actual applied force, and the
plastic part, up, which results from the plastic deformation
of the specimen gage sections,

u ¼ ue þ up ð1Þ

and

F ¼ Kue ð2Þ

where the stiffness K accounts for the elastic stiffness of the
specimen (including the gage section) and of the testing de-
vice. The nominal stress along the gage length, ∑yy , reads

X

yy
tð Þ ¼ F tð Þ

A0
ð3Þ

where A0=2aw denotes the total initial cross-sectional area
of the gage sections. Assuming a constant effective gage
section length leff [Fig. 7(b)], the corresponding nominal
plastic strain, Ep

yy, reads:

Ep
yy tð Þ ¼ up

leff
¼ u tð Þ

leff
� F tð Þ

Kleff
ð4Þ

Assuming purely deviatoric plasticity (zero volumetric
strain), we calculate the true stress

syy ¼ 1þ Ep
yy

� �

Σyy: ð5Þ

The logarithmic (true) plastic strain is:

e
p
yy ¼ ln 1þ Ep

yy

� �

ð6Þ

Assuming transverse plane strain conditions (along with the
von Mises yield surface), we have the corresponding
equivalent plastic strain:

e
p tð Þ ¼ 2

ffiffiffi

3
p e

p
yy tð Þ ð7Þ

and the equivalent von Mises stress

s tð Þ ¼
ffiffiffi

3
p

2
syy tð Þ ð8Þ

Thus, using equations (7) and (8), the stress–strain curve
s ¼ s e

pð Þ can be determined based on the experimental
measurements F(t) and u(t) (provided that K is identified
with the initially purely elastic response of the specimen).

Effect of the Specimen Width

The procedure of determining the stress–strain curve from
the measured force and displacement histories at the
specimen boundaries requires that the assumption of
transverse plane strain holds true within the specimen
cross-section. In a computational model, we may directly
impose plane strain conditions to obtain a reference
solution. Subsequently, fully three-dimensional computa-
tional models are used to demonstrate the effect of the finite
specimen width on the experimental results. It is noted that
the effect of specimen width in the case of the M-specimen
is conceptually very similar to conventional flat transverse
plane strain specimens.

Fig. 4 3D finite element mesh (8-node solid elements) representing
one quarter of the w=28 mm wide M-specimen (symmetry planes x–y
and y–z); the contour plot indicates the intensity of the equivalent
plastic strain
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Figure 4 shows a three-dimensional finite element
discretization of the M-specimen using 8-node reduced-
integration solid elements. The model makes use of the
specimen and loading symmetry with respect to both the x–y
and y–z-planes. Simulations are performed for w=14 mm,
28 mm and 56 mm (Abaqus/implicit, geometrically nonlin-
ear static analysis, J2-plasticity model calibrated against the
uniaxial tensile test data for Al2024-T351). In addition, a
simulation with perfect plane strain conditions is carried out
by setting the z-displacement of all nodes equal to zero.
Figure 5(b) summarizes the computed force (per unit width)
versus vertical displacement. It shows that the force level is
a function of the specimen width. The wider the specimen,
the closer the force-displacement history follows the upper
curve for perfect plane strain conditions. The lower force
level for specimens of finite width is due to the free
boundary effect at the maximum and minimum z-coordinate
where ezz=0 and σzz=0. The resulting axial load carrying
capacity of the Levy–von Mises material (effect of
superposed hydrostatic tension) is lower near the boundary
than near the specimen center (ezz ffi 0 and szz > 0). A
plot of the vertical stress σyy along the z-direction reveals
that this perturbation is limited to a band of about 8 mm
width, irrespectively of the overall specimen width
[Fig. 5(a)]. Consequently, the effect of specimen width
on the force level decreases monotonically for w→∞

[Fig. 5(b)]. In the present study, we chose a specimen
width of about 30 mm. Thus, this specimen still fits on the
flat ends of a 40 mm diameter Hopkinson pressure bar
while the expected resultant error in the force level is less
than 3%.

Validation for Static Loading

Computational Validation

The static finite element simulations of the M-specimen are
also used to validate the above procedure of determining
the stress–strain curve. When analyzing the numerical
results, the macroscopically determined stress–strain curve
may be directly compared with the material model input
data used. Therefore, the use of numerical simulations
provides a powerful means to study the validity of the
proposed experimental technique.

Using the quarter model of the 28 mm wide M-specimen
(Fig. 4), the force–displacement curve is computed up to a
total displacement of 0.25 mm (in 25 implicit time steps).
Subsequently, the evolutions of the plastic displacement
up(t) and of the von Mises stress s tð Þ within the specimen
gage section are calculated using the procedure outlined in
the section “Determination of the Stress–strain Curve”. The
resultant stress–displacement curve corresponding to the

‘global’ measurement F(t) is plotted in Fig. 6(a). The same
figure also shows a dashed curve which depicts the
evolution of the ‘local’ von Mises stress at the integration
point of an 8-node reduced-integration solid element
positioned near the gage section center. The comparison
shows the excellent agreement of the local and global
measurements of the von Mises stress. The relative
deviation of about 3% is attributed to the finite width of
the specimen. Due to the apparent proportionality of this
error, one may correct for the effect of finite width by
increasing the macroscopically determined curve by 3%.

Figure 6(b) shows the evolution of the equivalent plastic
strain. It is found by matching the slopes of the locally and
globally measured evolution curves that the length of the
straight section (excluding transition radii) provides a good
approximation for the effective gage length [Fig. 7(b)]. The
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Fig. 5 FEA simulation results: (a) Vertical stress fields within the
gage sections of specimens of width w=28 mm (solid line) and w=
56 mm (dashed line); (b) force per unit width as a function of the
applied displacement for specimens of different widths
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curves follow each other very closely except for an initial
offset in strain of about Δep ¼ 0:0025. Note that according
to equation (4) it is assumed that all nonlinearities in the
global force–displacement curve are due to uniform plastic
deformation within the gage section. However, the deflec-
tion of segments B–C and D–E involves the formation of
plastic bending hinges at the points C and D before the
gage section deforms plastically due to uniform stretching
(Fig. 7). Once the initial yield stress has been overcome
within the gage section, the plastic bending contribution to
the overall plastic displacement becomes insignificant. As a
result, we observe a constant offset between the local and
global measurement of the equivalent plastic strain
[Fig. 6(b)].

Experimental Validation

A specimen of 29.6 mm width is tested at a crosshead
velocity of 5 mm/min using a screw-driven universal
testing machine (Model G45, MTS, Eden-Prairie). The
measured force–displacement curve F(u) is depicted by the
open dots in Fig. 8. The linear elastic part of this curve of
slope K is due to elastic deformations of the loading device
and of the specimen. The steeper solid curve represents the
corresponding result as obtained from three-dimensional
finite element simulations with infinite machine stiffness.

In order to compare the experiments and simulations, we
calculated the plastic displacement according to equation
(4) and plotted the resulting curves F(up) in the same graph.
Both curves (the left dashed and dotted curves in Fig. 8) are
in excellent agreement, which confirms the reliability of the
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Fig. 6 Computational validation for static loading: (a) Stress
evolution within the center of the gage section. The solid curve
labeled ‘exact FEA’ depicts the stress evolution at the integration point
of an 8-node element positioned within the central gage section while
the dashed curve labeled ‘analytical’ is determined from the total force
history at the specimen boundary. (b) Corresponding evolution of the
equivalent plastic strain

Fig. 7 Contour plots of the equivalent plastic strain showing the
formation of plastic hinges prior to the ‘uniform stretching’ of the
gage section: (a) μpl=0.004 mm, (b) μpl=0.05 mm. The results are
obtained from a two-dimensional plane strain analysis (element type
CPE4R in Abaqus/standard) including the spacer blocks

Fig. 8 Comparison of the experiment and simulation for static
loading. The linear elastic part of the experimentally-measured
force–displacement curve F(u) corresponds to the sum of the machine
stiffness Km and the specimen stiffness Ksp. The two coinciding dotted
and solid curves at the left depict the force as a function of the plastic
displacement
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static finite element model, notably the assumption of a
Levy–von Mises material model for the Al2024-351. Since
the procedure for determining the stress–strain curve has
already been verified for the numerical model, it also holds
true for the experimental measurements. The direct com-
parison of the results from experiments on the M-shaped
specimen and flat tensile specimens (Fig. 1) demonstrates
that both experimental techniques yield the same charac-
teristic stress–strain curve for Al2024-T351 under static
loading.

Validation for Dynamic Loading

The material characterization for dynamic loading requires
the minimization of structural effects (lateral inertia) and of
axial transient effects in the specimen. In particular, the spec-
imen must be in quasi-static equilibrium throughout testing.
In other words, the force–time histories at the top and bottom
of the specimen must be approximately equal, i.e.

Fin tð Þ ffi Fout tð Þ: ð9Þ

If this important condition of quasi-static equilibrium (which
will be discussed in more detail below) is fulfilled, the above
procedure for calculating the stress and strain histories within
the M-specimen gage section can also be used in the
dynamic case (provided that the Levy–von Mises assump-
tions will also hold true at high strain rates).

The path F-E-D-C-B-A is about L≅30 mm long and
thus, the characteristic duration for a wave to travel through
the entire specimen is about L=C0 ffi 5:7ms. Recall from the
static experiment that a total displacement of 0.5 mm
induces an equivalent plastic strain of about 0.1. An
estimated loading velocity of about 5 m/s would be
required to attain this strain at a rate of 1,000/s. The
duration of such an experiment would be about 100 μs
which is still considerably long as compared to the
characteristic duration of wave travel of 5.7 μs. Therefore,
it may be expected that the specimen will still be in quasi-
static equilibrium for strain rates of the order of 1,000/s. In
the following, dynamic experiments are performed and
analyzed in detail for average loading rates above 1,000/s.
Numerical simulations are performed to gain further insight
into the specimen response for high strain rates. Special
attention will be paid to the fulfillment of the quasi-static
equilibrium hypothesis for high loading velocities.

Split Hopkinson Pressure Bar Apparatus

A SHPB apparatus consisting of two aluminum bars and an
aluminum striker bar is used to test the specimen under
dynamic loading. All bars have a circular cross-section of

40 mm diameter. The lengths are 1,203 mm for the striker
bar, 2,991 mm for the incident bar, and 1,850 mm for the
transmitter bar. All contact surfaces at the bar ends are flat
and perpendicular to the longitudinal bar axis. The mass
density and longitudinal wave propagation speed of the
bars are 2,820 kg/m3 and 5,140 m/s, respectively. As shown
in Fig. 9, the specimen is placed between the flat ends of
the incident and transmitter bars. In the horizontal set-up,
both the incident and transmitter bar are supported through
translational bearings positioned at a spacing of about
500 mm. The impact velocity of the striker bar (average
velocity prior to impact over 10 mm distance) is determined
from optical measurements (high contrast grating of 1 mm
pitch along with laser and photodiode). Strain gages
positioned near the center of the incident bar (at a distance
of 1,200 mm from the incident bar/specimen interface) and
on the transmitter bar (at a distance of 335 mm from the
transmitter bar/specimen interface) measure the strain
history in the two bars. The amplified signal of the strain
gages is recorded at a frequency of 1 MHz for the slow tests
and 5 MHz for the fast tests. Figure 10 shows the
characteristic incident wave trains as recorded by the
incident strain gage after striker impact at νst=4.1 m/s and
νst=9.4 m/s, respectively. The signal rises to its mean level
within about 50 μs. Significant Pochhammer–Chree oscil-
lations (of up to 10 kN magnitude) are observed for the
highest loading velocity.

The experimental recordings are processed using the
DAVID software package [8] following the procedures and
requirements described in Zhao and Gary [9] and Gary [8].

Fig. 9 Photograph of the M-specimen in the SHPB apparatus prior to
testing
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Accounting for geometric dispersion, the measured incom-
ing and reflected waves are ‘transported’ to the specimen/
incident bar interface, i.e. the top boundary of the specimen.
Analogously, the measured transmitted wave is transported
to the specimen/transmitter bar interface. Subsequently, the
velocities and forces at the top and bottom specimen
boundaries are calculated using the classical formulas

Fin tð Þ ¼ EbarAbar ein tð Þ þ ere tð Þ½ � ð10Þ

Fout tð Þ ¼ EbarAbar ebar tð Þ ð11Þ

and

nin tð Þ ¼ �Cbar ein tð Þ � ere tð Þ½ � ð12Þ

nout tð Þ ¼ �Cbar etra tð Þ ð13Þ
where ein (t)≤0, ere (t)≥0 and etra (t)≤0 are the respective
strain histories of the transported incident, reflected and
transmitted waves. The corresponding displacements read
[see Fig. 11(b)]

uin tð Þ ¼
Z t

0
nin tð Þdt ð14Þ

uout tð Þ ¼
Z t

0
nout tð Þdt ð15Þ

with the effective displacement u(t)

u tð Þ ¼ uout tð Þ � uin tð Þ ð16Þ

It is noted that the measurement of the incoming force Fin is
less accurate than that of the outgoing force Fout at the
transmitter bar/specimen interface. Therefore, if the com-
parison of the incoming and outgoing force histories
indicates that the specimen is in quasi-static equilibrium,
we evaluate the stress history based on the more accurate
transmitter bar measurement, i.e.

F tð Þ ¼ Fout tð Þ ð17Þ

While the measurement accuracy is reduced when calcu-
lating the incoming force, it is generally maintained when
evaluating the incoming velocities νin from adding the
magnitudes of the incident and reflected waves.

Finite Element Model of the Dynamic Experiment

In the dynamic case, a simple two-dimensional model is
used to study the mechanical behavior of the split
Hopkinson bar device along with the specimen (Fig. 11).

The model is used to verify the equilibrium of the
specimen, but it is not intended to investigate the response
of the experimental set-up in great numerical detail. Instead
of using a three-dimensional model, the bars are modeled
using plane stress elements (ABAQUS element CPS4R).
The round bars are represented by bars of rectangular cross-
section. Away from the bar ends, the bars are meshed with
elements of an aspect ratio of 1:5 [Fig. 11(a)]. Further, the
mesh for the linear elastic bars (E=74 GPa, υ=0.3, ρ=
2.82 g/cm3) is refined within the vicinity of the specimen/
bar contact surfaces. A penalty contact algorithm with a
friction coefficient of 0.1 is employed to model the
interaction between the specimen and bar ends [see
encircled regions in Fig. 11(b)].

The specimen is modeled using plane strain elements
(Abaqus element CPE4R) along with the same strain-rate
independent J2-plasticity model as for the static simula-
tions. Instead of directly modeling the spacer block and the
base frame, we impose the boundary condition ux=0 for the
contacting nodes [see encircled nodes labeled ‘spacer
block’ and ‘base frame’ in Fig. 11(b)]. The same kinematic
constraint is applied to all nodes positioned on the
symmetry axis of the specimen and the bars. Fracture is
taken into account in the dynamic simulations by deleting
the elements from the computational model as the equiv-
alent plastic strain exceeds a critical value of 0.3. It is
emphasized that no attempt is made to model the real
material behavior (which may require the modeling of
strain rate and temperature dependency).

Experiments at Strain Rates of 1,075/s

A dynamic experiment is performed on a 28.3 mm wide M-
specimen at a striker impact velocity of 4.27 m/s. Figure 12
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Fig. 10 Characteristic incident waves for distinct striker impact
velocities (measurement near the center of the incident bar). The
dashed curve labeled “FEA” has been obtained from finite element
simulations at the high impact velocity (10 kHz cut-off frequency)
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shows the experimentally-determined time histories of the
forces at the specimen boundaries. Both curves are
reasonably close which indicates that the hypothesis of
quasi-static equilibrium holds true for this experiment (note
that the small differences are due to measurement difficul-
ties which will be discussed below). The strain history is
shown in Fig. 13(a). The slope of this curve indicates an
average equivalent plastic strain rate of about 1,075/s. The
stress–strain curve found upon evaluation of equations (3)–
(8) is shown in Fig. 13(b). The same graph also shows the
resulting stress–strain curve for an experiment performed at
4.11 m/s (open square dots). The matching of the two
curves demonstrates the repeatability of this experiment
including specimen preparation and the experimental set-
up. The comparison of the stress–strain curves for 1,075/s
with the static results [dashed line in Fig. 13(b)] indicates
that the tested Al2024-351 remains strain rate insensitive
within this range of velocities.

Experiments at Strain Rates of 4250/s

Another series of experiments is performed at a striker
impact velocity of νst=9.35 m/s. Unlike for the experiments
at lower striker velocities, the hypothesis of quasi-static
equilibrium can no longer be validated based on the
measurement of the incoming and outgoing forces
[Fig. 14(a)]. The measurement of the incoming force is
not sufficiently accurate since the magnitude of the incident
wave (about 90 kN, see Fig. 10) is much larger than the
deformation resistance of the specimen (here less than
18 kN). Consequently, both the reflected and incident

waves are of the same order of magnitude [Fig. 14(b)]; it is
difficult to obtain an accurate estimate of the difference
between these two curves (which is proportional to the
incoming force) because of a large relative measurement
error. Note that the incoming force is small as compared to
the magnitude of the reflected and incident wave while the
absolute error in the incoming force is large (it corresponds
to the sum of the errors in the incident and reflected wave
measurements). Therefore, instead of comparing the mea-
sured incoming and transmitted force histories, we make
use of the computational model to verify equilibrium for the
present loading velocity.
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Fig. 12 Plot of the (indirectly) measured force histories Fin (t) and
Fout (t) at the top and bottom specimen boundaries during an
experiment at an equivalent plastic strain rate of about "

� p
¼ 1; 075=s

Fig. 11 Two-dimensional FE-
model for transient analysis. The
meshes of the incident and
transmitter bars continue with
the same element size (10×
2 mm) along the positive and
negative y-direction, respective-
ly. The x-displacement is set to
zero for all nodes of the speci-
men in contact with the spacer
block and the base frame
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Unlike in physical experiments, the contact forces at the
specimen/bar interfaces are known in the finite element
simulations. Therefore, the response of the simplified
numerical model is analyzed for a striker velocity of
9.35 m/s (see dashed line in Fig. 10 for the corresponding
incident wave). The computed unfiltered time histories of
the contact force at the specimen/incident bar interface
(F cð Þ

in ) and that at the specimen/transmitter bar interface
(F cð Þ

out) are plotted as dashed and solid curves in Fig. 14(c).
The comparison of these two curves shows that the
specimen is still in quasi-static equilibrium (the maximum
difference in the mean force level is about 3%).

Contrary to the incoming force measurement, the
accuracy of the incoming velocity/displacement measure-
ment [see equation (12)] is not reduced by the mismatch of
the incident force and the specimen resistance. Analogously
to the evaluation of the previous experiments, the equiva-
lent plastic strain history is determined from equations (3)–

(8). The results indicate an average plastic strain rate of
about 4,250/s [Fig. 13(a)]. The corresponding Mises stress
versus equivalent plastic strain curve is depicted in
Fig. 13(b). Again, we observe reasonable repeatability of
the experiment at 4,250/s. It is noted that the deformation
resistance of Al2024-T351 increases substantially when
increasing the average strain rate from 1,075 to 4,250/s.

Discussion

The proposed experimental technique has been validated
for strain rates of up to 4,250/s. The performance at higher
strain rates is not investigated. However, it may be expected
that reliable results can still be obtained for much higher
strain rates. In the present experiments, the entire specimen
has been in quasi-static equilibrium. When testing at even
higher velocities, one may relax this constraint and apply
the requirement of quasi-static equilibrium to the path D-C-
B-A only [Fig. 2(a)]. In other words, there may still be a
significant potential in increasing the loading velocity while
maintaining quasi-static equilibrium.

The issue of determining the displacement to fracture
under dynamic loading conditions needs to be addressed in
future research. Advanced optical techniques [10] cannot be
applied in the present case since fracture initiates away
from the visible specimen surface. Alternatively, the
displacement to fracture may be determined from the
force–displacement curve. The sudden drop of the force
level due to fracture may be considered as a very high
frequency pulse which is introduced into the transmitter bar.
The challenge is to measure the full frequency content of
this force history at the specimen-bar interface using the
strain gage positioned at a distance of several bar diameters
away from the bar end. It appears that the conversion of a
local load applied at the end of the bar (note that the
specimen contact area is significantly smaller than that of
the bar) into an approximately one-dimensional wave
(which is recorded by the strain gage) involves some
physical filtering of high frequencies, i.e. despite of the
high bandwidth of the strain gage measurement, some
information is “lost” (from the classical one-dimensional
perspective) due to three-dimensional effects at the end of
the bar. The simulation results in Fig. 14(d) illustrate this
loss of information in a qualitative manner. The dashed line
depicts the outgoing force as determined from the strain at
the position of the transmitter bar strain gage, while the
solid line corresponds to the direct output of the contact
force at the transmitter bar/specimen interface. Both
measurements are essentially equivalent prior to fracture.
However, as fracture initiates, the contact force drops
abruptly while the strain gage recording shows a much
smoother decrease of the force level. Unless theoretical
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Fig. 13 Summary of the experimental results: (a) Strain history
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solutions are found, reliable three-dimensional finite ele-
ment models (significantly more advanced and efficient
than the simple model used in the present study) need to be
developed and validated experimentally in order to solve
the inverse problem of determining abrupt changes in the
force level at the end of the bars based on conventional
strain gage measurements.

The present technique is limited in its applicability to
materials for which some features of the constitutive
response are known a priori. Here, we make use of the
Levy–von Mises material model to derive the uniaxial
stress–strain within the gage section from global measure-
ments. However, it is noted that the same concern applies
when a three-dimensional Levy–von Mises material model
is calibrated based on uniaxial tensile tests.

Conclusion

Experimental issues related to the gripping of tensile
specimens are successfully eliminated using the proposed
technique. It consists of an M-shaped specimen which is
subject to high velocity impact loading. Inside the speci-
men, the incoming pressure pulse is converted into tensile
loading of the specimen gage section. Consequently, the
specimen can be used in a conventional split Hopkinson
pressure bar without the need of additional grips or special
attachments. The M-specimen gage section is designed for
transverse plane strain. The transverse plane strain concept
is of particular advantage in dynamics since it retards
necking and allows for very short gage sections. This new
experimental technique has been validated for dynamic
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Fig. 14 Verification of the equilibrium and force measurement for dynamic testing at 9.2 m/s: (a) Experimentally-determined forces at the
specimen boundaries (indirect measurement), (b) measured incident and reflected wave after dispersion-corrected shifting to the incident bar/
specimen interface (direct measurement of the strain in the incident bar), (c) contact forces at the specimen/bar interface as obtained from finite
element analysis, (d) comparison of the contact force at the specimen/transmitter bar interface (solid curve) with the outgoing force computed
from the transmitted strain wave (dashed line)

11



tensile testing at strain rates of up to 4,250/s. The
experimental results demonstrate that the measured force–
displacement curves are still free from severe oscillations at
these high strain rates.
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