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Abstract

We propose and analyze a posteriori energy-norm error estimates for weighted interior

penalty discontinuous Galerkin approximations to advection-diffusion-reaction equations

with heterogeneous and anisotropic diffusion. The weights, which play a key role in the

analysis, depend on the diffusion tensor and are used to formulate the consistency terms

in the discontinuous Galerkin method. The error upper bounds, in which all the constants

are specified, consist of three terms: a residual estimator which depends only on the el-

ementwise fluctuation of the discrete solution residual, a diffusive flux estimator where

the weights used in the method enter explicitly, and a non-conforming estimator which is

nonzero because of the use of discontinuous finite element spaces. The three estimators

can be bounded locally by the approximation error. A particular attention is given to

the dependency on problem parameters of the constants in the local lower error bounds.

For moderate advection, it is shown that full robustness with respect to diffusion hetero-

geneities is achieved owing to the specific design of the weights in the discontinuous Galerkin

method, while diffusion anisotropies remain purely local and impact the constants through

the square root of the condition number of the diffusion tensor. For dominant advection,

it is shown, in the spirit of previous work by Verfürth on continuous finite elements, that

the constants are bounded by the square root of the local Péclet number.

Mathematics subject classification: 65N30, 65N15, 76Rxx

Key words: Discontinuous Galerkin, weighted interior penalty, a posteriori error estimate,

heterogeneous diffusion, advection-diffusion

1. Introduction

In this work, we are interested in a posteriori energy-norm error estimates for a partic-

ular class of discontinuous Galerkin (dG) approximations of the advection-diffusion-reaction

equation

{

−∇·(K∇u) + β·∇u+ µu = f in Ω,

u = 0 on ∂Ω,
(1.1)

where for simplicity homogeneous Dirichlet boundary conditions are considered. Here, Ω is a

polygonal domain in R
d with boundary ∂Ω, µ ∈ L∞(Ω), β ∈ [L∞(Ω)]d with ∇·β ∈ L∞(Ω),
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µ̃ := µ − 1
2∇·β is assumed to be uniformly positive, the diffusion tensor K is a symmetric,

uniformly positive definite field in [L∞(Ω)]d,d and f ∈ L2(Ω). Owing to the above assumptions,

(1.1) is well-posed.

DG methods received extensive interest in the past decade, in particular because of the

flexibility they offer in the construction of approximation spaces using non-matching meshes and

variable polynomial degrees. For diffusion problems, various DG methods have been analyzed,

including the Symmetric Interior Penalty method [5, 6], the Nonsymmetric method with [34]

or without [30] penalty, and the Local Discontinuous Galerkin method [16]; see [4] for a unified

analysis. For linear hyperbolic problems (e.g., advection–reaction), one of the most common

approaches is to use upwind fluxes to formulate the DG method [26, 29]. A unified theory of

DG approximations encompassing elliptic and hyperbolic PDE’s can be found in [19, 20]. The

approximation of the advection-diffusion-reaction problem (1.1) using DG methods has been

analyzed in [25] and more recently in [21] with a focus on the high Péclet regime with isotropic

and uniform diffusion. The case of high contrasts in the diffusivity poses additional difficulties.

Recently, a (Symmetric) Weighted Interior Penalty method has been proposed and analyzed to

approximate satisfactorily (1.1) in this situation [23]. The key idea is to use weighted averages

(depending on the normal diffusivities at the two mesh elements sharing a given interface) to

formulate the consistency terms and to penalize the jumps of the discrete solution by a factor

proportional to the harmonic mean of the neighboring normal diffusivities; the idea of using

weighted interior penalties in this context can be traced back to [12].

The present paper addresses the a posteriori error analysis of the weighted interior penalty

method. Many significant advances in the a posteriori error analysis of dG methods have been

accomplished in the past few years. For energy-norm estimates, we refer to the pioneering

work of Becker, Hansbo and Larson [8] and that of Karakashian and Pascal [27], while further

developments can be found in the work of Ainsworth [2, 3] regarding robustness with respect

to diffusivity and that of Houston, Schötzau and Wihler [24] regarding the hp-analysis; see also

[13, 35]. Furthermore, for L2-norm estimates, we mention the work of Becker, Hansbo and

Stenberg [9], that of Rivière and Wheeler [32], and that of Castillo [15]. Broadly speaking, two

approaches can be undertaken to derive a posteriori energy-norm error estimates; in [2, 8, 13],

a Helmholtz decomposition of the error is used, following a technique introduced in [17, 14],

while the analysis in [24, 27] relies more directly on identifying a conforming part in the discrete

solution. The analysis presented herein will be closer to the latter approach. We also mention

recent work relying on the reconstruction of a diffusive flux; see [22, 28].

This paper is organized as follows. §2 presents the discrete setting, including the weighted

interior penalty bilinear form used to formulate the discrete problem. §3 contains the main

results of this work. The starting point is the abstract framework for a posteriori error estimates

presented in §3.1 and which is closely inspired from the work of Vohraĺık for mixed finite element

discretizations [42]. Then, §3.2 addresses the case of pure diffusion with heterogeneous and

possibly anisotropic diffusivity. We derive an upper bound for the error consisting of three error

indicators, i.e. a residual, a diffusive flux and a non-conforming one. This form is similar to that

obtained in previous work. The key point however is that the diffusive flux error indicators also

provide local lower error bounds that are fully robust with respect to diffusivity heterogeneities

and that depend on the local (elementwise) degree of anisotropy; see Propositions 3.1 and 3.2.

A key ingredient to obtain this result is the use of weighted averages in writing the consistency

term. §3.3 extends the previous analysis to the advection-diffusion-reaction problem. Here, the
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focus is set on achieving a certain degree of robustness in the high Péclet regime, namely that

achieved by Verfürth [38] for a posteriori energy-norm error estimates with conforming finite

elements and SUPG stabilization. Although these estimates are not independent of the Péclet

number (see, e.g., [39] for fully robust estimates with suitable norm modification), their present

extension to dG methods constitutes the first results of this type. Finally, numerical results are

presented in §4.

2. The discrete setting

Let {Th}h>0 be a shape-regular family of affine triangulations covering exactly the polygonal

domain Ω. The meshes Th may possess hanging nodes, as long as the number of hanging nodes

per mesh element is uniformly bounded. A generic element in Th is denoted by T , hT denotes

the diameter of T and nT its outward unit normal. Let an integer p ≥ 1. We consider the usual

dG approximation space

Vh = {vh ∈ L2(Ω);∀T ∈ Th, vh|T ∈ Pp}, (2.1)

where Pp is the set of polynomials of degree less than or equal to p. The L2-scalar product

and its associated norm on a region R ⊂ Ω are indicated by the subscript 0, R. For s ≥ 1, a

norm (seminorm) with the subscript s,R designates the usual norm (seminorm) in Hs(R). For

s ≥ 1, Hs(Th) denotes the usual broken Sobolev space on Th and for v ∈ H1(Th), ∇hv denotes

the piecewise gradient of v, that is, ∇hv ∈ [L2(Ω)]d and for all T ∈ Th, (∇hv)|T = ∇(v|T ).

We say that F is an interior face of the mesh if there are T−(F ) and T+(F ) in Th such

that F = T−(F ) ∩ T+(F ). We set T (F ) = {T−(F ), T+(F )} and let nF be the unit normal

vector to F pointing from T−(F ) towards T+(F ). The analysis hereafter does not depend on

the arbitrariness of this choice. Similarly, we say that F is a boundary face of the mesh if there

is T−(F ) ∈ Th such that F = T−(F ) ∩ ∂Ω. We set T (F ) = {T−(F )} and let nF coincide with

the outward normal to ∂Ω. All the interior (resp., boundary) faces of the meshes are collected

into the set F i
h (resp., F∂Ω

h ) and we let Fh = F i
h ∪ F∂Ω

h . Henceforth, we shall often deal with

functions that are double-valued on F i
h and single-valued on F∂Ω

h . This is the case, for instance,

of functions in Vh. On interior faces, when the two branches of the function in question, say v,

are associated with restrictions to the neighboring elements T∓(F ), these branches are denoted

by v∓ and the jump of v across F is defined as

[[v]]F = v− − v+. (2.2)

We set [[v]]F = v|F on boundary faces. On an interior face F ∈ F i
h, we also define the standard

(arithmetic) average as {v}F = 1
2 (v− + v+). The subscript F in the above jumps and averages

is omitted if there is no ambiguity. We define the weighted average of a two-valued function v

on an interior face F ∈ F i
h as

{v}ω = ω−v− + ω+v+, (2.3)

where the weights are defined as

ω− =
δK+

δK+ + δK−
, ω+ =

δK−

δK+ + δK−
, (2.4)

with δK∓ = nF (K|T∓)nF . We extend the above definitions to boundary faces by formally

letting δK+ = +∞ so that ω− = 1 and ω+ = 0. For the standard average, it is instead more
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convenient to set {v}F = 1
2v|F on boundary faces. On interior faces F ∈ F i

h, we will also need

the conjugate weighted average defined such that

{v}ω̄ = ω+v− + ω−v+, (2.5)

and make use of the identity [[vw]] = {v}ω[[w]] + {w}ω̄[[v]].

The weak formulation of (1.1) consists of finding u ∈ V := H1
0 (Ω) such that

B(u, v) = (f, v)0,Ω, ∀v ∈ V, (2.6)

with the bilinear form

B(v, w) = (K∇hv,∇hw)0,Ω + (β·∇hv, w)0,Ω + (µv,w)0,Ω. (2.7)

Piecewise gradients are used so as to extend the domain of B to functions in V + Vh. The

energy norm is

‖v‖2
B =

∑

T∈Th

‖v‖2
B,T , ‖v‖2

B,T = (K∇hv,∇hv)0,T + (µ̃v, v)0,T . (2.8)

The discrete problem consists of finding uh ∈ Vh such that

Bh(uh, vh) = (f, vh)0,Ω, ∀vh ∈ Vh, (2.9)

with the bilinear form

Bh(v, w) = (K∇hv,∇hw)0,Ω + ((µ−∇·β)v, w)0,Ω − (v, β·∇hw)0,Ω

+
∑

F∈Fh

[(γF [[v]], [[w]])0,F − (nt
F {K∇hv}ω, [[w]])0,F − θ(nt

F {K∇hw}ω, [[v]])0,F ]

+
∑

F∈Fh

(β·nF {v}, [[w]])0,F . (2.10)

The penalty parameter γF is defined for all F ∈ Fh as γF = γK,F + γβ,F with

γK,F = ̟h−1
F δF , γβ,F = 1

2 |β·nF |, (2.11)

where

δF =
δK+δK−

δK+ + δK−
, (2.12)

and ̟ is a positive parameter (̟ can also vary from face to face). Note that by the above

convention, γK,F = ̟h−1
F δK− on boundary faces. Finally, the parameter θ can take values in

{−1, 0,+1}. The particular value taken by θ plays no role in the subsequent analysis.

To avoid technicalities, the diffusion tensor K is assumed to be piecewise constant on Th

and its restriction to an element T ∈ Th is denoted by KT . We will indicate by λm,T and λM,T

respectively the minimum and the maximum eigenvalue of K on T . The minimum value of µ̃

on T is indicated by µ̃m,T . The degree of diffusion anisotropy on an element T is evaluated by

the condition number of KT , namely ∆T =
λM,T

λm,T
.
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3. A posteriori error analysis

3.1. Abstract setting

In this section we present the basic abstract framework for our a posteriori error estimates.

The following result is directly inspired from the abstract framework introduced by Vohraĺık

[42].

Lemma 3.1. Let Z and Zh be two vector spaces. Let A be a bounded bilinear form defined on

Z ′ × Z ′ with Z ′ := Z + Zh. Assume that A can be decomposed into the form A = AS + ASS

where AS is symmetric and nonnegative on Z ′ and where ASS is skew-symmetric on Z (but not

necessarily on Z ′). Then, defining the semi-norm | · |∗ := AS(·, ·)1/2, the following holds for all

u, s ∈ Z and uh ∈ Zh,

|u− uh|∗ ≤ |s− uh|∗ + |A(u− uh, φ) +ASS(uh − s, φ)|, (3.1)

where φ = u−s
|u−s|∗

.

Proof. Suppose first that |u− s|∗ ≤ |u− uh|∗. Then,

|u− uh|
2
∗ = A(u− uh, u− uh) −ASS(u− uh, u− uh)

= A(u− uh, u− s) +A(u− uh, s− uh) −ASS(u− uh, u− uh)

= A(u− uh, u− s) +AS(u− uh, s− uh) +ASS(u− uh, s− uh) −ASS(u− uh, u− uh)

= A(u− uh, u− s) +AS(u− uh, s− uh) +ASS(u− uh, s− u)

= A(u− uh, u− s) +AS(u− uh, s− uh) +ASS(uh − s, u− s),

where we have used ASS(u− s, u− s) = 0 since (u− s) ∈ Z. Introducing φ yields

|u− uh|
2
∗ ≤ |u− s|∗A(u− uh, φ) + |u− uh|∗|s− uh|∗ + |u− s|∗ASS(uh − s, φ). (3.2)

Having hypothesized that |u− s|∗ ≤ |u− uh|∗, we infer

|u− uh|∗ ≤ |s− uh|∗ + |A(u− uh, φ) +ASS(uh − s, φ)|. (3.3)

Consider now the case |u− uh|∗ ≤ |u− s|∗. Since ASS(u− s, u− s) = 0,

|u− s|2∗ = A(u− s, u− s) = A(u− uh, u− s) +AS(uh − s, u− s) +ASS(uh − s, u− s)

≤ |u− s|∗A(u− uh, φ) + |uh − s|∗|u− s|∗ + |u− s|∗ASS(uh − s, φ).

Thus

|u− uh|∗ ≤ |u− s|∗ ≤ A(u− uh, φ) + |s− uh|∗ +ASS(uh − s, φ). (3.4)

Combining the results we obtain (3.1).

3.2. Pure diffusion

Let β = 0 and µ = 0 in (1.1), i.e., we consider a diffusion problem with anisotropic and

heterogeneous diffusivity:
{

−∇·(K∇u) = f in Ω,

u = 0 on ∂Ω.
(3.5)
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The bilinear form B defined by (2.7) becomes

B(v, w) = (K∇hv,∇hw)0,Ω, (3.6)

while the definition of the (semi-)norm ‖·‖B involves only the diffusive contribution, i.e.,

‖v‖2
B,T = (K∇hv,∇hv)0,T . The discrete problem is still (2.9) with bilinear form Bh defined by

Bh(v, w) = (K∇hv,∇hw)0,Ω +
∑

F∈Fh

[(γK,F [[v]], [[w]])0,F

− (nt
F {K∇hv}ω, [[w]])0,F − (nt

F {K∇hw}ω, [[v]])0,F ]. (3.7)

Lemma 3.1 can be applied by letting Z := V , Zh := Vh, A = AS := B and ASS := 0. The

semi-norm | · |∗ coincides with ‖·‖B . This yields

‖u− uh‖B ≤ inf
s∈V

‖uh − s‖B + sup
φ∈V,‖φ‖B=1

|B(u− uh, φ)|. (3.8)

We now proceed to estimate the second term in the right-hand side of (3.8). Let Πh : L2(Ω) →

Vh denote the L2-orthogonal projection onto Vh. It is well-known that for v ∈ L2(Ω), Πhv

coincides on each mesh element with the mean value of v on the corresponding element. The

projector Πh satisfies the following approximation properties: For all T ∈ Th and for all φ ∈

H1(T ),

‖φ− Πhφ‖0,T ≤ C
1
2
p hT ‖∇φ‖T , (3.9)

‖φ− Πhφ‖0,∂T ≤ C
1
2
T h

1
2
T ‖∇φ‖0,T . (3.10)

The constant Cp in the Poincaré-type inequality (3.9) can be bounded for each convex T by

d/π, see [7, 31], while it follows from [40] that the constant CT in the trace inequality (3.10) is

given by CT = 3dρT with ρT = hT |∂T |/|T | where |∂T | denotes the (d−1)-measure of ∂T and

|T | the d-measure of T ; note that ρT is uniformly bounded owing to the shape-regularity of the

mesh family. For all T ∈ Th, define on T the volumetric residual

R(uh) = f + ∇h·(K∇huh), (3.11)

and on ∂T the boundary residual such that for F ⊂ ∂T ,

JK(uh)|F = ωT,Fn
t
T [[K∇huh]] + γK,F [[uh]], (3.12)

where

ωT,F =
nt

FKTnF

nt
FKTnF + nt

FKT ′nF
, (3.13)

with F = T ∩ T ′. Note that the convention regarding δK+ yields ωT,F = 0 on boundary faces.

Lemma 3.2. The following holds:

sup
φ∈V,‖φ‖B=1

|B(u− uh, φ)| ≤

(

∑

T∈Th

(ηT + ζT )2

)

1
2

, (3.14)
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where the residual error indicator ηT is

ηT = C
1
2
p hTλ

−
1
2

m,T ‖(I − Πh)R(uh)‖T , (3.15)

and the diffusive flux error indicator is

ζT = C
1
2
T h

1
2
T λ

−
1
2

m,T ‖JK(uh)‖0,∂T . (3.16)

Proof. Let φ ∈ V such that ‖φ‖B = 1. Using B(u, φ) = (f, φ)0,Ω and integrating by parts

we obtain

B(u− uh, φ) =
∑

T∈Th

(f + ∇h·(K∇huh), φ)0,T −
∑

F∈Fi
h

(nt
F [[K∇huh]], φ)0,F

since φ ∈ V = H1
0 (Ω). Testing the discrete equations with Πhφ yields

∑

F∈Fh

(γK,F [[uh]] − nt
F {K∇huh}ω, [[Πhφ]])0,F = (f,Πhφ)0,Ω.

Observe that

∑

T∈Th

(∇h·(K∇huh),Πhφ)0,T =
∑

F∈Fh

(nt
F {K∇huh}ω, [[Πhφ]])0,F +

∑

F∈Fi
h

(nt
F [[K∇huh]], {Πhφ}ω̄)0,F .

Combining the above equations and using [[φ]] = 0 leads to

B(u− uh, φ) =
∑

T∈Th

(f + ∇h·(K∇huh), φ− Πhφ)0,T −
∑

F∈Fh

(γK,F [[uh]], [[φ− Πhφ]])0,F

−
∑

F∈Fi
h

(nt
F [[K∇huh]], {φ− Πhφ}ω̄)0,F

=
∑

T∈Th

(R(uh), φ− Πhφ)0,T −
∑

T∈Th

∑

F⊂∂T

nT ·nF (JK(uh), φ− Πhφ|T )0,F .

The conclusion is straightforward using (3.9)–(3.10) and the fact that Πh(R(uh)) and (φ−Πhφ)

are L2-orthogonal on each T ∈ Th.

Remark 3.1. Taking off the mean value of R(uh) in the residual error estimator is possi-

ble because the discrete space contains piecewise constant functions. This is a feature of dG

approximations, but not, for instance, of continuous finite element approximations.

Theorem 3.1. Pick any sh ∈ V and define the non-conforming error indicator ιT as

ιT = ‖uh − sh‖B,T . (3.17)

Then, the following holds

‖u− uh‖B ≤

(

∑

T∈Th

(ηT + ζT )2

)

1
2

+

(

∑

T∈Th

ι2T

)

1
2

. (3.18)
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Proof. Direct consequence of Lemma 3.2 and of (3.8).

We now investigate the local efficiency of the above error indicators ηT , ζT and ιT . Here,

x . y indicates the inequality x ≤ cy with positive c independent of the mesh and of the

diffusion tensor. To simplify, the data f is assumed to be a polynomial; otherwise, the usual data

oscillation term has to be added to the estimates. The following two propositions establish that

the error indicators ηT and ζT are fully robust with respect to heterogeneities in the diffusion

tensor, while the dependency on anisotropies remains local, i.e., only the square root of the

condition numbers ∆T̃ on T and neighboring elements appears in the local lower bounds, but

not the ratios of two diffusion tensor eigenvalues from different elements.

Proposition 3.1. For all T ∈ Th,

ηT . ∆
1
2
T ‖u− uh‖B,T . (3.19)

Proof. Since ‖(I − Πh)R(uh)‖0,T ≤ ‖R(uh)‖0,T , we simply bound ‖R(uh)‖0,T . To this

purpose, we use the technique of element bubble functions introduced by Verfürth [36, 37]; the

arguments, which are fairly standard, are only briefly sketched. Let T ∈ Th, let bT be a suitable

local bubble function in T vanishing on ∂T and set νT = bTR(uh). Then,

‖R(uh)‖2
0,T . (R(uh), νT )0,T = (K∇h(u− uh),∇νT )0,T . λ

1
2
M,Th

−1
T ‖u− uh‖B,T ‖R(uh)‖0,T ,

from which follows (3.19).

Proposition 3.2. For all T ∈ Th,

ζT . ∆
1
2
T

∑

T̃∈NT

∆
1
2
T̃
‖u− uh‖B,T̃ , (3.20)

where NT is the set of elements sharing a face with the element T .

Proof. Let T ∈ Th. Observe that

|ζT | . λ
−

1
2

m,T

∑

F⊂∂T

δFh
−

1
2

F ‖[[uh]]‖F + λ
−

1
2

m,Th
1
2
T

∑

F⊂∂T

ωT,F ‖[[K∇huh]]‖F ≡ X + Y,

and let us bound X and Y .

(i) Bound on X. Let F ⊂ ∂T . We use the result obtained by Achdou, Bernardi and Coquel [1]:

h
−

1
2

F ‖[[uh]]‖0,F .
∑

T ′∈T (F )

‖∇h(u− uh)‖0,T ′ , (3.21)

to infer

X . λ
−

1
2

m,T

∑

F⊂∂T

∑

T ′∈T (F )

δF ‖∇h(u− uh)‖0,T ′

= ∆
1
2
T

∑

F⊂∂T

∑

T ′∈T (F )

(λ
−

1
2

M,Tλ
−

1
2

M,T ′δF )∆
1
2
T ′‖u− uh‖B,T ′ . ∆

1
2
T

∑

T̃∈NT

∆
1
2
T̃
‖u− uh‖B,T̃ ,
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since δF ≤ min(nFKTnF , nFKT ′nF ), nFKTnF ≤ λM,T and nFKT ′nF ≤ λM,T ′ .

(ii) Bound on Y . Let F ⊂ ∂T . Using the technique of edge bubble functions introduced by

Verfürth [36, 37], it is shown that

h
1
2
F ‖nt

F [[K∇huh]]‖0,F .
∑

T ′∈T (F )

λ
1
2
M,T ′‖u− uh‖B,T ′ .

Hence,

Y . λ
−

1
2

m,T

∑

F⊂∂T

ωT,F

∑

T ′∈T (F )

λ
1
2
M,T ′‖u− uh‖B,T ′

. ∆
1
2
T

∑

F⊂∂T

∑

T ′∈T (F )

(λ
−

1
2

M,Tλ
1
2
m,T ′ωT,F )∆

1
2
T ′‖u− uh‖B,T ′ . ∆

1
2
T

∑

F⊂∂T

∑

T ′∈T (F )

∆
1
2
T ′‖u− uh‖B,T ′ ,

since

λ
−

1
2

M,Tλ
1
2
m,T ′ωT,F ≤

(nFKTnF )
1
2 (nFKT ′nF )

1
2

(nFKTnF ) + (nFKT ′nF )
≤

1

2
.

The proof is complete.

To analyze the local efficiency of the non-conforming error indicator ιT , a particular choice

must be made for sh ∈ V . Presently, one of the state-of-the-art approaches consists in con-

sidering the so-called Oswald interpolate of the discrete solution uh. For vh ∈ Vh, its Oswald

interpolate IOs(vh) ∈ Vh ∩V is defined by prescribing its values at the usual Lagrange interpo-

lation nodes on each mesh element by taking the average of the values of vh at the node,

IOs(vh)(s) =
1

|Ts|

∑

T∈Ts

vh|T (s), (3.22)

where Ts is the set of mesh elements that contain the node s and where |Ts| denotes the cardinal

of that set. On boundary nodes, IOs(vh)(s) is set to zero. The Oswald interpolation operator

IOs yields the following local approximation properties [1, 27]: For all vh ∈ Vh and for all

T ∈ Th,

‖vh − IOs(vh)‖2
0,T ≤ C

∑

F∈Fh,F∩∂T 6=∅

hF ‖[[vh]]‖2
0,F , (3.23)

‖∇h(vh − IOs(vh))‖2
0,T ≤ C

∑

F∈Fh,F∩∂T 6=∅

h−1
F ‖[[vh]]‖2

0,F , (3.24)

where the constant C depends on the space dimension, the polynomial degree p used to construct

the space Vh, and the shape-regularity parameter associated with the mesh Th; the dependency

of the constant C on p has been recently explored in [11]. Setting sh := IOs(uh) to evaluate

ιT , it is inferred using (3.21) and (3.24) that

ιT . λ
1
2
M,T

∑

T ′∈RT

λ
−

1
2

m,T ′‖u− uh‖B,T ′ , (3.25)

where RT = {T ′ ∈ Th;T ∩ T ′ 6= ∅}. Clearly, the above estimate is not robust with respect

to heterogeneities and/or anisotropies in the diffusion tensor. In the isotropic case, the result
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can be improved by using weighted averages in (3.22) to define the nodal values of the Oswald

interpolate. The weights depend on the diffusivity and a robust bound can be inferred on ιT
when evaluated with this modified Oswald interpolate provided a monotonicity property of the

diffusivity around vertices is assumed to hold; see [2, 10, 18]. To the authors’ knowledge, no

fully satisfactory result on a modified Oswald interpolation operator is yet available in the case

of anisotropic diffusivity. We will not explore this issue further here. Finally, we point out that

the local efficiency of the error indicator ιT has to be weighted against the computational costs

required for its evaluation. Indeed, since any reconstructed function sh ∈ V can be chosen to

evaluate it and since

inf
s∈V

‖uh − s‖B,T ≤ ‖uh − u‖B,T , (3.26)

the local efficiency properties of ιT can be improved at the expense of solving more detailed

local problems. Developments along this line go beyond the present scope.

Remark 3.2. Using a triangle inequality, the flux error indicator ζT can be split into two con-

tributions, one associated with the jump of the diffusive flux and the other associated with the

jump of the discrete solution itself, and the latter can be regrouped with the non-conforming

error indicator ιT . Both contributions are locally efficient and fully robust with respect to het-

erogeneities in the diffusivity, as shown in the proof of Proposition 3.2 where the quantities X

and Y are bounded separately. By proceeding this way, the error upper bound is somewhat less

sharp because a triangle inequality has been used, but the final form of the a posteriori error

estimate takes a more familiar form.

3.3. Advection-diffusion-reaction

In this section we turn to the general case of an advection-diffusion-reaction problem. Our

purpose is to extend the a posteriori error indicators derived in Lemma 3.2 and in Theorem 3.1

to this situation, with a particular emphasis on the robustness of the estimates in the high-

Péclet regime in the sense of Verfürth [38]. The starting point is again the abstract estimate

derived in Lemma 3.1 which is now applied with Z := V , Zh := Vh,

AS(v, w) = (K∇hv,∇hw)0,Ω + (µ̃v, w)0,Ω, (3.27)

ASS(v, w) = (β·∇hv, w)0,Ω + 1
2 ((∇·β)v, w)0,Ω, (3.28)

and A = AS + ASS = B as defined by (2.7). Observe that AS is symmetric and nonnegative

on Z + Zh, that | · |∗ coincides with ‖·‖B , and that ASS is skew-symmetric on Z (but not on

Z + Zh). As a first step, we rewrite the quantity B(u − uh, φ) + ASS(uh − s, φ) in a more

convenient form.

Lemma 3.3. Let s ∈ V . For all T ∈ Th, define on T the volumetric residual

R(uh) = f + ∇h·(K∇huh) − β·∇huh − µuh, (3.29)

let JK(uh) be defined on ∂T by (3.12), and let Jβ(uh − s) be defined such that for F ⊂ ∂T ,

Jβ(uh − s)|F = 〈γβ [[uh − s]] + β·nF {uh − s}〉F , (3.30)

where 〈·〉F denotes the mean value over F . Then, for all φ ∈ V ,

B(u− uh, φ) +ASS(uh − s, φ) = X1 +X2 +X3, (3.31)
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with

X1 =
∑

T∈Th

((I − Πh)R(uh), φ− Πhφ)0,T , (3.32)

X2 = −
∑

T∈Th

∑

F⊂∂T

nT ·nF (JK(uh), φ− Πhφ|T )0,F , (3.33)

X3 =
∑

T∈Th

[((I − Πh)(β·∇h(uh − s)), φ− Πhφ)0,T + 1
2 (∇·β(uh − s), φ− 2Πhφ)0,T ]

+
∑

F∈Fh

(Jβ(uh − s), [[Πhφ]])0,F . (3.34)

Proof. Let φ ∈ V . Using B(u, φ) = (f, φ)0,Ω and integrating by parts, we infer

B(u− uh, φ) =
∑

T∈Th

(R(uh), φ)0,T −
∑

F∈Fi
h

(nt
F [[K∇huh]], φ)0,F .

Testing the discrete equations with Πhφ yields

∑

F∈Fh

(γ[[uh]] − nt
F {K∇huh}ω + β·nF {uh}, [[Πhφ]])0,F + ((µ−∇·β)uh,Πhφ)0,Ω = (f,Πhφ)0,Ω.

Combining the two above equations and proceeding as in the proof of Lemma 3.2 for the diffusive

term leads to

B(u− uh, φ) = X1 +X2 +
∑

F∈Fh

(γβ [[uh]], [[Πhφ]])0,F −
∑

F∈Fh

(β·nF [[uh]], {Πhφ})0,F .

Using the relation

−
∑

T∈Th

((∇·β)(uh − s),Πhφ)0,T −
∑

T∈Th

(β·∇h(uh − s),Πhφ)0,T

+
∑

F∈Fh

(β·nF [[uh]], {Πhφ})0,F +
∑

F∈Fh

(β·nF {uh − s}, [[Πhφ]])0,F = 0,

and adding ASS(uh − s, φ) as evaluated from (3.28), (3.31) is inferred. Note that the upwind

related term Jβ(uh − s) can be evaluated as a mean value over each face because it is tested

against a piecewise constant function and that the mean value of β·∇h(uh − s) can be taken off

on each element because it is tested against φ− Πhφ.

Remark 3.3. The idea of evaluating the upwind related term as a mean value over each face

has been proposed by Vohraĺık [41]. Since for any function ψ ∈ L2(F ), ‖〈ψ〉F ‖0,F ≤ ‖ψ‖0,F ,

this modification can only sharpen the a posteriori error estimate.

The next step is to control φ − Πhφ for φ ∈ V in terms of the energy norm ‖φ‖B . To

obtain bounds that behave satisfactorily when the Péclet number is large, a sharper version of

inequalities (3.9)–(3.10) needs to be used. Observing that on all T ∈ Th, ‖φ−Πhφ‖0,T ≤ ‖φ‖0,T

and letting

mT = min

(

C
1
2
p hTλ

−
1
2

m,T , µ̃
−

1
2

m,T

)

, (3.35)
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the bound (3.9) can be sharpened as follows:

‖φ− Πhφ‖0,T ≤ mT ‖φ‖B,T . (3.36)

Furthermore, owing to the trace inequality

∀v ∈ H1(T ), ‖v‖0,∂T ≤ C
1
2
∗T [h

−
1
2

T ‖v‖0,T + ‖v‖
1
2
0,T ‖∇v‖

1
2
0,T ], (3.37)

where the constant C∗T depends on the space dimension, the polynomial degree p, and the

shape-regularity of the mesh Th, (3.10) can be sharpened as follows:

‖φ− Πhφ‖0,∂T ≤ C
1
2
∗T [h

−
1
2

T mT + λ
−

1
4

m,Tm
1
2
T ]‖φ‖B,T ≤ C̃

1
2
T λ

−
1
4

m,Tm
1
2
T ‖φ‖B,T , (3.38)

where we have set

C̃
1
2
T = C

1
2
∗T (1 + C

1
4
p ). (3.39)

Estimate (3.38) will be used to bound the term X2 introduced in Lemma 3.3. However, this

estimate turns out not be sharp enough when bounding the last term in X3. In this case, we

will use the trace inequality

∀φh ∈ Vh, ‖φh‖0,∂T ≤ ρ
1
2
T h

−
1
2

T ‖φh‖0,T , (3.40)

and we define for all F ∈ Fh,

m̃2
F = min

(

max
T ′∈T (F )

(CT hT ′λ−1
m,T ′), max

T ′∈T (F )
(ρT ′h−1

T ′ µ̃
−1
m,T ′)

)

. (3.41)

Finally, let κµ,β,T = 1
2‖∇·β‖L∞(T )µ̃

−
1
2

m,T .

Lemma 3.4. Let s ∈ V . The following holds

sup
φ∈V

‖φ‖B=1

|B(u− uh, φ) +A(uh − s, φ)| ≤

(

∑

T∈Th

(ηT + ζT + ι′T )2

)

1
2

, (3.42)

where the residual error indicator ηT is

ηT = mT ‖(I − Πh)R(uh)‖T , (3.43)

the diffusive flux error indicator ζT is

ζT = C̃
1
2
T λ

−
1
4

m,Tm
1
2
T ‖JK(uh)‖0,∂T , (3.44)

and the non-conforming error indicator ι′T is

ι′T = mT ‖(I − Πh)(β·∇h(uh − s))‖0,T + κµ,β,T ‖uh − s‖0,T +
∑

F⊂∂T

2m̃F ‖Jβ(uh − s)‖0,F .

(3.45)
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Proof. Let φ ∈ V such that ‖φ‖B = 1. We bound the three terms X1, X2 and X3 introduced

in Lemma 3.3. Owing to (3.36) and (3.38), it is clear that

|X1 +X2| ≤
∑

T∈Th

(ηT + ζT )‖φ‖B,T .

Decompose X3 into X3 = X3,1+X3,2 where X3,1 denotes the sum over elements and where X3,2

denotes the sum over faces. Observing that ‖φ − 2Πhφ‖0,T = ‖φ‖0,T and using again (3.36),

we obtain

|X3,1| ≤
∑

T∈Th

(mT ‖(I − Πh)(β·∇h(uh − s))‖0,T + κµ,β,T ‖uh − s‖0,T )‖φ‖B,T .

To bound X3,2, let F ∈ Fh. On the one hand, owing to (3.10),

|(Jβ(uh − s), [[Πhφ]])0,F | = |(Jβ(uh − s), [[Πhφ− φ]])0,F |

≤
∑

T ′∈T (F )

|(Jβ(uh − s),Πhφ|T ′ − φ)0,F |

≤ ‖Jβ(uh − s)‖0,F max
T ′∈T (F )

(C
1
2
T h

1
2
T ′λ

−
1
2

m,T ′)
∑

T ′∈T (F )

‖φ‖B,T ′ .

On the other hand, owing to (3.40),

|(Jβ(uh − s), [[Πhφ]])0,F | ≤
∑

T ′∈T (F )

|(Jβ(uh − s),Πhφ|T )0,F |

≤ ‖Jβ(uh − s)‖0,F max
T ′∈T (F )

(C̃
1
2
T h

−
1
2

T ′ µ̃
−

1
2

m,T ′)
∑

T ′∈T (F )

‖φ‖B,T ′ .

Hence,

|(Jβ(uh − s), [[Πhφ]])0,F | ≤ m̃F ‖Jβ(uh − s)‖0,F

∑

T ′∈T (F )

‖φ‖B,T ′ ,

and therefore,

|X3,2| ≤
∑

T∈Th

(

∑

F⊂∂T

2m̃F ‖Jβ(uh − s)‖0,F

)

‖φ‖B,T .

The conclusion is straightforward.

Theorem 3.2. Pick any sh ∈ V and define the non-conforming error indicator ι′′T as

ι′′T = ‖uh − sh‖B,T , (3.46)

and let ι′T be evaluated from (3.45) using sh. Then,

‖u− uh‖B ≤

(

∑

T∈Th

(ηT + ζT + ι′T )2

)

1
2

+

(

∑

T∈Th

(ι′′T )2

)

1
2

. (3.47)

Proof. Apply Lemmata 3.1 and 3.4.
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Remark 3.4. The non-conforming error indicators ι′T and ι′′T can be regrouped into a single

non-conforming error indicator ιT by setting

ι2T = 4(ι′T )2 + 2(ι′′T )2. (3.48)

Then, (3.47) becomes

‖u− uh‖B ≤

(

2
∑

T∈Th

(ηT + ζT )2

)

1
2

+

(

∑

T∈Th

ι2T

)

1
2

, (3.49)

which is less sharp but has a more familiar form.

We now investigate the local efficiency of the above error indicators ηT , ζT and ιT . Here,

x . y indicates the inequality x ≤ cy with positive c independent of the mesh and of the

parameters K, β, and µ. Again, the data f is assumed to be a polynomial; otherwise, the usual

data oscillation term has to be added to the estimates. As in the pure diffusion case, we will

not take advantage of the presence of the operator (I −Πh) in ηT and in the first term of ι′T to

derive the bounds below.

Proposition 3.3. For all T ∈ Th,

ηT . mT [λ
1
2
M,Th

−1
T + min(α1,T , α2,T )]‖u− uh‖B,T , (3.50)

where

α1,T =
‖µ‖L∞(T )

µ̃
1
2
m,T

+
‖β‖L∞(T )

λ
1
2
m,T

, α2,T =
‖µ−∇·β‖L∞(T ) + ‖β‖L∞(T )h

−1
T

µ̃
1
2
m,T

.

Proof. Let T ∈ Th, let bT be a suitable local bubble function in T vanishing on ∂T and set

νT = bTR(uh). Then,

‖R(uh)‖2
0,T . (R(uh), νT )0,T = (K∇h(u− uh),∇hνT )0,T + (µ(u− uh), νT )0,T

+ (β·∇h(u− uh), νT )0,T

. λ
1
2
M,Th

−1
T ‖u− uh‖B,T ‖R(uh)‖0,T + min (α1,T , α2,T ) ‖u− uh‖B,T ‖R(uh)‖0,T ,

where the min is obtained by integrating by parts or not the advective derivative. The conclusion

is straightforward.

Proposition 3.4. For all T ∈ Th,

ζT . ∆
1
2
T λ

1
4
m,Tm

1
2
T

∑

T̃∈NT

(∆
1
2
T̃

+mT̃α1,T̃ )m
−

1
2

T̃
λ
−

1
4

m,T̃
‖u− uh‖B,T̃ . (3.51)

Proof. Let T ∈ Th. Observe that

|ζT | . λ
−

1
4

m,Tm
1
2
T

∑

F⊂∂T

δFh
−1
F ‖[[uh]]‖F + λ

−
1
4

m,Tm
1
2
T

∑

F⊂∂T

ωT,F ‖n
t
F [[K∇huh]]‖F ≡ X + Y,
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and let us bound X and Y by the right-hand side of (3.51).

(i) Bound on X. Owing to (3.21) and the definition of δF ,

X . λ
−

1
4

m,Tm
1
2
T

∑

F⊂∂T

∑

T ′∈T (F )

δFh
−

1
2

F λ
−

1
2

m,T ′‖u− uh‖B,T ′

. ∆
1
2
Tm

1
2
T λ

1
4
m,T

∑

F⊂∂T

∑

T ′∈T (F )

(λ
−

1
2

M,Tλ
−

1
2

M,T ′δF )∆
1
2
T ′h

−
1
2

F ‖u− uh‖B,T ′

. ∆
1
2
Tm

1
2
T λ

1
4
m,T

∑

T̃∈NT

∆
1
2
T̃
h
−

1
2

T̃
‖u− uh‖B,T̃ ,

since λ
−

1
2

M,Tλ
−

1
2

M,T ′δF ≤ 1. Owing to the obvious bound h
−

1
2

T̃
≤ m

−
1
2

T̃
λ
−

1
4

m,T̃
, it is inferred that X

is bounded by the right-hand side of (3.51).

(ii) Bound on Y . Let F ⊂ ∂T . Following the ideas of Verfürth [38], let bF be a suitable bubble

function with support in F and let ℓF be the lifting of (nt
F [[K∇huh]])bF in T (F ) with cut-off

parameter

θT ′ = mT ′C
−

1
2

p h−1
T ′ λ

1
2
m,T ′ ≤ 1,

on each T ′ ∈ T (F ). Then,

‖nt
F [[K∇huh]]‖2

0,F . (nt
F [[K∇huh]], ℓF )0,F ,

‖ℓF ‖0,T ′ . h
1
2
T ′θ

1
2
T ′‖nt

F [[K∇huh]]‖0,F . m
1
2
T ′λ

1
4
m,T ′‖nt

F [[K∇huh]]‖0,F ,

‖∇ℓF ‖0,T ′ . h
−

1
2

T ′ θ
−

1
2

T ′ ‖nt
F [[K∇huh]]‖0,F . m

−
1
2

T ′ λ
−

1
4

m,T ′‖nt
F [[K∇huh]]‖0,F .

Observe that

B(u− uh, ℓF ) = (R(uh), ℓF )0,T (F) + (nt
F [[K∇huh]], ℓF )0,F ,

and that

|B(u− uh, ℓF )| .
∑

T ′∈T (F )

(λ
1
2
M,T ′m

−
1
2

T ′ λ
−

1
4

m,T ′ +m
1
2
T ′λ

1
4
m,T ′α1,T ′)‖u− uh‖B,T ′‖nt

F [[K∇huh]]‖0,F .

Furthermore, since

|(R(uh), ℓF )0,T (F)| ≤
∑

T ′∈T (F )

‖R(uh)‖0,T ′‖ℓF ‖0,T ′

.
∑

T ′∈T (F )

[λ
1
2
M,T ′h

−1
T ′ + min(α1,T ′ , α2,T ′)]‖u− uh‖B,T ′‖ℓF ‖0,T ′

.
∑

T ′∈T (F )

[λ
1
2
M,T ′h

−1
T ′ + α1,T ′ ]m

1
2
T ′λ

1
4
m,T ′‖u− uh‖B,T ′‖nt

F [[K∇huh]]‖0,F ,

and since h−1
T ′ m

1
2
T ′λ

1
4
m,T ′ ≤ m

−
1
2

T ′ λ
−

1
4

m,T ′ , it is inferred that |(R(uh), ℓF )0,T (F)| can be bounded as

|B(u− uh, ℓF )|, whence

‖nt
F [[K∇huh]]‖0,F .

∑

T ′∈T (F )

(λ
1
2
M,T ′m

−
1
2

T ′ λ
−

1
4

m,T ′ +m
1
2
T ′λ

1
4
m,T ′α1,T ′)‖u− uh‖B,T ′ .
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As a result,

Y . λ
−

1
4

m,Tm
1
2
T

∑

F⊂∂T

∑

T ′∈T (F )

ωT,F (λ
1
2
M,T ′m

−
1
2

T ′ λ
−

1
4

m,T ′ +m
1
2
T ′λ

1
4
m,T ′α1,T ′)‖u− uh‖B,T ′

. ∆
1
2
T λ

1
4
m,Tm

1
2
T

∑

F⊂∂T

∑

T ′∈T (F )

(λ
−

1
2

M,Tλ
1
2
m,T ′ωT,F )(∆

1
2
T ′ +mT ′α1,T ′)m

−
1
2

T ′ λ
−

1
4

m,T ′‖u− uh‖B,T ′

. ∆
1
2
T λ

1
4
m,Tm

1
2
T

∑

T̃∈NT

(∆
1
2
T̃

+mT̃α1,T̃ )m
−

1
2

T̃
λ
−

1
4

m,T̃
‖u− uh‖B,T̃ .

The conclusion is straightforward.

Finally, we investigate the local efficiency of the non-conforming error estimator ιT . To

this purpose, we pick sh = IOs(uh). As discussed at the end of §3.2, a modified Oswald

interpolation operator can be considered in the case of isotropic and heterogeneous diffusivity

with a monotonicity property around vertices to sharpen the result.

Proposition 3.5. Set sh = IOs(uh). Let T ∈ Th. Then,

ιT .

(

λ
1
2
M,T + hT ‖µ̃‖

1
2
L∞(T ) +mT ‖β‖L∞(T ) + hTκµ,β,T +

∑

F⊂∂T

m̃F ‖β‖L∞(F )h
1
2
F

)

×
∑

T ′∈RT

λ
−

1
2

m,T ′‖u− uh‖B,T ′ . (3.52)

Proof. Let T ∈ Th. Observe first that using (3.23)–(3.24),

‖uh − sh‖B,T . (λ
1
2
M,T + hT ‖µ̃‖

1
2
L∞(T ))

∑

T ′∈RT

λ
−

1
2

m,T ′‖u− uh‖B,T ′ ,

where RT = {T ′ ∈ Th;T ∩ T ′ 6= ∅}. Furthermore, still using (3.23)–(3.24), the first two terms

in ι′T (see (3.45)) are bounded by

(mT ‖β‖L∞(T ) + hTκµ,β,T )
∑

T ′∈RT

λ
−

1
2

m,T ′‖u− uh‖B,T ′ ,

and it remains to bound the last term, namely
∑

F⊂∂T 2m̃F ‖Jβ(uh − sh)‖0,F . For F ⊂ ∂T , it

can be shown that for all vh ∈ Vh,

‖vh − IOs(vh)‖0,F .
∑

F ′∈Fh,F ′∩F 6=∅

‖[[vh]]‖0,F ′ .

Applying this estimate with vh := uh, the conclusion is straightforward.

To illustrate by a simple example, assume that β and µ are of order unity, that β is solenoidal

(or that its divergence is uniformly bounded by µ̃ locally), and that the diffusion is homogeneous

and isotropic, i.e., K = ǫId with real parameter 0 < ǫ ≤ 1 and where Id denotes the identity

matrix in R
d. Then, mT = min(hT ǫ

−
1
2 , 1), α1,T = 1 + ǫ−

1
2 , α2,T = 1 + h−1

T , and it is readily

verified that all the constants appearing in the upper bounds for ηT , ζT , and ιT are of the form

(1 + ǫ−
1
2 min(hT ǫ

−
1
2 , 1)), which corresponds to the result derived in [38] for continuous finite

elements with vanishing, isotropic, and homogeneous diffusion.
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4. Numerical results

In this section, the present a posteriori error estimators are assessed on two test cases. The

first one is a pure diffusion problem with heterogeneous isotropic diffusion; its aim is to verify

numerically the sharpness of the diffusion flux error indicator ζT when evaluated with the proper

weights. The second test case is an advection–diffusion-reaction problem with homogeneous

diffusion; its aim is to verify the behavior of the a posteriori error estimates in the low- and

high-Péclet regimes. We have always taken ̟ = 4 and θ = 1 in (2.11) and (2.10), respectively.

The corresponding dG method is the so-called Symmetric Weighted Interior Penalty method

analyzed recently in [23]. Moreover, we have set p = 1, i.e., used piecewise linears. In all cases,

the non-conforming error indicators have been evaluated using the standard Oswald interpolate

of the discrete solution; see (3.22).

4.1. Heterogeneous diffusion

We consider the following test problem proposed in [33]. The domain Ω = (−1, 1)× (−1, 1)

is split into four subregions: Ω1 = (0, 1) × (0, 1), Ω2 = (−1, 0) × (0, 1), Ω3 = (−1, 0) × (−1, 0),

and Ω4 = (0, 1) × (−1, 0). The source term f is zero. The diffusion tensor is isotropic, i.e.,

of the form K = ǫiI with constant value within each subregion. Letting ǫ1 = ǫ3 = 100 and

ǫ2 = ǫ4 = 1, the exact solution written in polar coordinates is

u|Ωi
= rα (ai sin(αθ) + bi cos(αθ)) , (4.1)

with α = 0.12690207 and

a1 = 0.100000000 b1 = 1.000000000,

a2 = −9.603960396 b2 = 2.960396040,

a3 = −0.480354867 b3 = −0.882756593,

a4 = 7.701564882 b4 = −6.456461752.

Non-homogeneous Dirichlet boundary conditions as given by (4.1) are enforced on ∂Ω. The

exact solution possesses a singularity at the origin, and its regularity depends on the constant

α, namely u ∈ Hα(Ω). The expected convergence order of the error in the L2-norm is 2α,

while the expected convergence order in the energy norm is α. Table 4.1 presents the results

on a series of quasi-uniform unstructured triangulations (that are compatible with the above

partition of the domain Ω). The last line of this table displays the convergence orders evaluated

on the last two meshes. The convergence orders for the error both in the L2-norm and in the

energy norm are in good agreement with the theoretical predictions. The same conclusion is

reached for the a posteriori error estimators based on ζT and ιT (observe that in the present

case, ηT = 0 because f = 0 and p = 1). Note that ‖uh − sh‖B is actually lower than the actual

error norm ‖u − uh‖B , which indicates that although the lower bound (3.26) can be invoked

to guarantee the efficiency of the non-conforming error estimators, there may be functions in

V ∩ Vh (here the Oswald interpolate of the discrete solution) that are actually closer to the

discrete solution than is the exact solution. Furthermore, the column labelled “est” in Table 4.1

reports the total a posteriori error estimator derived in Theorem 3.1, and the column labelled

“eff” reports the efficiency of the estimator, namely the ratio of the a posteriori error estimator

to the actual approximation error. The efficiency is about 4 on all meshes. Notice that all
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Table 4.1: Heterogeneous diffusion with parameter α = 0.13

h ‖u− uh‖0,Ω ‖u− uh‖B (
∑

T∈Th
ζ2
T )

1
2 (

∑

T∈Th
ι2T )

1
2 est. eff.

9.43e-2 4.99e-2 12.37 37.58 11.25 48.83 3.9

4.71e-2 4.24e-2 11.43 35.42 10.60 46.01 4.0

2.36e-2 3.63e-2 10.52 33.24 9.94 43.18 4.1

order 0.22 0.12 0.09 0.09 0.09 –

Table 4.2: Heterogeneous diffusion with parameter α = 0.54

h ‖u− uh‖0,Ω ‖u− uh‖B (
∑

T∈Th
ζ2
T )

1
2 (

∑

T∈Th
ι2T )

1
2 est. eff.

9.43e-2 2.35e-3 1.06e-0 5.78 3.48e-1 6.13 5.8

4.71e-2 8.29e-4 8.29e-1 4.12 2.40e-1 4.36 5.3

2.36e-2 2.95e-4 6.17e-1 2.93 1.66e-1 3.10 5.0

order 1.5 0.43 0.49 0.53 0.53 –

the constants in the estimators are explicitly evaluated. It is interesting to compare the results

of Table 4.1 to those obtained using the more conventional dG method based on arithmetic

averages (i.e., weights equal to 1
2 on all faces) and a penalty term γK,F equal to the arithmetic

mean of the normal diffusivities on each face. In this case, the efficiency is equal to 28, i.e., 7

times larger.

We have also examined a similar test case with a less singular solution corresponding to

milder contrasts in the diffusion, namely ǫ1 = ǫ3 = 5 and ǫ2 = ǫ4 = 1. In this case, the exact

solution is still given by (4.1) with α = 0.53544095 and

a1 = 0.44721360 b1 = 1.00000000,

a2 = −0.74535599 b2 = 2.33333333,

a3 = −0.94411759 b3 = 0.55555556,

a4 = −2.40170264 b4 = −0.48148148.

Table 4.2 presents the results. The conclusions are similar to those reached with the previous

test case. The efficiency is between 5 and 6 on all meshes, and thus takes comparable values to

those taken in the previous test case, confirming the robustness of the estimates with respect

to diffusion heterogeneities. If the more conventional dG method with arithmetic averages is

used instead, the efficiencies are about 7, hinting at a dependency on diffusion heterogeneities.

4.2. Advection-diffusion-reaction

Consider the domain Ω = (0, 1)×(0, 1), the advection field β = (1, 0)t, the reaction coefficient

µ = 1, and an isotropic homogeneous diffusion tensor K = ǫI. We run tests with ǫ = 1 and

ǫ = 10−4 to examine the difference between dominant diffusion and dominant advection regimes.

Since the diffusion is homogeneous and isotropic, the SWIP method coincides with the more

conventional Interior Penalty dG method. The source term f is designed so that the exact

solution is

u(x, y) = 0.5

(

1 − tanh

(

0.5 − x

γ

))

. (4.2)
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Table 4.3: Advection-diffusion with ǫ = 1

h ‖u− uh‖B (
∑

T∈Th
η2

T )
1
2 (

∑

T∈Th
ζ2
T )

1
2 (

∑

T∈Th
ι
′2
T )

1
2 (

∑

T∈Th
ι
′′2
T )

1
2 est. eff.

9.43e-2 7.47e-1 3.45e-0 2.37e-0 5.64e-2 9.83e-2 5.92 7.9

4.71e-2 4.04e-1 1.74e-0 1.05e-1 1.79e-2 7.07e-2 2.87 7.1

2.36e-2 2.05e-1 8.69e-1 3.83e-1 3.64e-3 3.37e-2 1.29 6.3

order 0.98 1.00 1.45 2.30 1.09 1.18 –

Table 4.4: Advection-diffusion with ǫ = 1e-4

h ‖u− uh‖B (
∑

T∈Th
η2

T )
1
2 (

∑

T∈Th
ζ2
T )

1
2 (

∑

T∈Th
ι
′2
T )

1
2 (

∑

T∈Th
ι
′′2
T )

1
2 est. eff.

9.43e-2 2.57e-2 6.62e-1 8.46e-3 1.93e-0 9.40e-3 2.55e-0 99

4.71e-2 9.34e-3 4.09e-1 7.64e-3 1.29e-0 3.63e-3 1.70e-0 181

2.36e-2 2.96e-3 2.08e-1 5.22e-3 6.26e-1 1.40e-3 8.36e-1 283

order 1.66 0.98 0.55 1.04 0.82 1.02 –

Here, the parameter γ = 0.05 controls the thickness of the internal layer at x = 0.5. On the left

and right boundaries of Ω (x = 0 and x = 1), non-homogeneous Dirichlet boundary conditions

as given by (4.2) are enforced, while on the lower and upper boundaries (y = 0 and y = 1),

homogeneous Neumann conditions are enforced.

In Table 4.3 we present the results for the dominant diffusion regime. The estimator and the

error converge at the same order, and the global efficiency is comparable with that obtained for

a pure diffusion problem. The dominant contributions to the total a posteriori error estimate

are the residue and the diffusive flux error indicators. When the advection becomes dominant,

the error ‖u−uh‖B converges at 1.5 (because it is dominated by the L2-contribution), while the

total a posteriori error estimate (see column labelled “est”) maintains the order of convergence

equal to one, as can be seen in Table 4.4. This is because the cut-off coefficients mT and the like

are equal to one with dominant advection. As a result, the global efficiency increases (roughly as

h−
1
2 ) as the mesh is refined. The trend will only be reversed once the mesh is sufficiently fine to

resolve the diffusion. We notice that the dominant error indicators here are the non-conforming

error indicator ι
′

T and the residue ηT , as expected.

5. Conclusions

In this work, we have proposed and analyzed a posteriori energy-norm error estimates for

weighted interior penalty dG approximations to advection-diffusion-reaction equations with

heterogeneous and anisotropic diffusion. All the constants in the error upper bounds have been

specified, so that the present estimates can be used for actual control over the error in practical

simulations. Local lower error bounds in which all the dependencies on model parameters

are explicitly stated, have been derived as well. In the case of pure diffusion, full robustness

is achieved with respect to diffusion heterogeneities owing to the use of suitable diffusion-

dependent weights to formulate the consistency terms in the dG method. This feature has

been verified numerically and stands in contrast to the results obtained with more conventional

interior penalty dG approximations. Furthermore, diffusion anisotropies enter the lower error

bounds only through the square root of the condition number of the diffusion tensor on a given

mesh cell and its neighbors. The current state-of-the-art available results have been used to
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evaluate the non-conforming error estimators through the use of so-called Oswald interpolates;

further work in this direction is needed to investigate the robustness with respect to diffusion

heterogeneities and anisotropies. In the presence of advection, we have shown, in the spirit

of the work of Verfürth for continuous finite element approximations with SUPG stabilization,

that the lower error bounds involve constants that are bounded by the square root of the local

Péclet numbers.
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