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MAXIMAL ENTROPY MEASURES FOR PIECEWISE AFFINE

SURFACE HOMEOMORPHISMS

JÉRÔME BUZZI

Abstract. We study the dynamics of piecewise affine surface homeomor-
phisms from the point of view of their entropy. Under the assumption of posi-
tive topological entropy, we establish the existence of finitely many ergodic and
invariant probability measures maximizing entropy and prove a multiplicative
lower bound for the number of periodic points. This is intended as a step to-
wards the understanding of surface diffeomorphisms. We proceed by building
a jump transformation, using not first returns but carefully selected “good”
returns to dispense with Markov partitions. We control these good returns
through some entropy and ergodic arguments.
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2 J. BUZZI

1. Introduction

Robust entropy conditions can often be shown to imply a non-uniform but global
hyperbolic structure with strong consequences for periodic points and probability
measures with maximum entropy. This has been shown in the case of the entropy-
expanding property [4, 8, 9] for C∞ smooth maps in all dimensions, including plane
maps of the type (x, y) 7→ (1.9−x2+ǫy, 1.8−y2+ǫx) for small ǫ and all C∞ interval
maps with nonzero topological entropy. In particular, such maps T : M →M have
a finite number of ergodic invariant probability measures with maximum entropy
(maximum measures, for short) and satisfy a multiplicative lower bound on
the number of their periodic points:

lim inf
n→∞,p|n

e−nhtop(T )#{x ∈M : T nx = x} > 0.

Remark that these results were first proved by Hofbauer [13, 14] for piecewise
monotone maps on the interval. Also, the previously quoted papers contain slightly
stronger results (e.g., a complete classification up to ”entropy-conjugacy”).

The techniques used in the above mentioned papers do not apply to diffeomor-
phisms (a diffeomorphism is never entropy-expanding). However, many properties
of interval maps generalize to surface diffeomorphisms so the following is generally
expected:

Conjecture 1. Consider a C1+ǫ, ǫ > 0, smooth diffeomorphism of a compact
surface.

The collection of ergodic and invariant probability measures with maximum en-
tropy is countable (possibly finite or empty) and the periodic points satisfy a mul-
tiplicative lower bound if there exists at least one measure with maximum entropy.

Conjecture 2. Consider a C∞ smooth diffeomorphism of a compact surface.
The collection of ergodic and invariant probability measures with maximum en-

tropy is finite and the periodic points satisfy a multiplicative lower bound.

Recall that, by a result of S. Newhouse [20], all C∞ smooth maps of compact
manifolds have at least one measure of maximum entropy. Also a classical theorem
of A. Katok [15] states that, if T is a C1+ǫ, ǫ > 0, diffeomorphism of a compact
surface M , the number of periodic points satisfies a logarithmic lower bound:

lim sup
n→∞

1

n
#log{x ∈M : T nx = x} ≥ htop(T ).

This paper presents the proof of the analogue of Conjecture 2 in the easier case
of piecewise affine homeomorphisms.

1.1. Definitions and Statements. Let M be a compact two-dimensional man-
ifold possibly with boundary, affine in the following sense. There exists a distin-
guished atlas with charts:

• identifying the neighborhood of any point of M with an open subset of
{(x, y) ∈ R2 : x ≥ 0 & y ≥ 0};
• inducing affine changes of coordinates.

These charts are called the affine charts. The phenomena we are interested are
independent of the global topology, so we could in fact restrict ourselves to the
special cases M = T2 or M = [0, 1]2.
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A map continuous T : M → M is said to be piecewise affine if there exists a
finite partition P of M such that for every A ∈ P , A and T (A) are contained in
affine charts which maps them to polygons of R2 with non-empty interiors and T :
A→ T (A) is affine w.r.t. these affine charts. It is convenient to replace the partition

P by the collection P̃ of the interiors of the elements of P . Such a partition P̃ (a
partition up to the boundaries of its elements) is called an admissible partition
with respect to T . We drop the tilde in the sequel.

Let us recall some facts about entropy for the convenience of the reader (we
refer to [26, 10] for further information). The entropy of a non-necessarily invariant
subset K ⊂M is a measure of the “number of orbits” starting from K. Recall that
the ǫ, n-ball at x ∈ M is: {y ∈ M : ∀k = 0, 1, . . . , n − 1 : d(T ky, T kx) < ǫ}. The
entropy of K is, according to Bowen [2]:

h(T, K) := lim
ǫ→0

h(T, K, ǫ) with h(T, K, ǫ) := lim sup
n→∞

1

n
log r(ǫ, n, K)

where r(ǫ, n, K) is the minimum number of ǫ, n-balls with union containing K. The
topological entropy is htop(T ) := h(T, M).

The entropy of an ergodic and invariant probability measure µ can be defined
similarly, according to [15]:

h(T, µ) := lim
ǫ→0

h(T, µ, ǫ) with h(T, µ, ǫ) := lim sup
n→∞

1

n
log r(ǫ, n, µ)

where r(ǫ, n, µ) is the minimum number of ǫ, n-balls whose union have a µ-measure
at least λ, for an arbitrary constant λ ∈ (0, 1).

The variational principle states that for T : M → M (in fact for any contin-
uous self-map of a compact metric space):

(1.1) htop(T ) = sup
µ

h(T, µ)

where µ ranges over the T -invariant and ergodic probability measures. A by-
product of our first investigations, is the following combinatorial expression for
this entropy.

The first step of the analysis follows from observations of S. Newhouse:

Proposition 1.1. Let T be a piecewise affine homeomorphism of a compact surface.
The topological entropy of T is given by:

(1.2) htop(T ) = lim sup
n→∞

1

n
log #{[A0 . . . An−1] : Ai ∈ P}.

It was also obtained by D. Sands and Y. Ishii by different methods.

The variational principle (1.1) brings to the fore the ergodic and invariant prob-
ability measures µ such that h(T, µ) = supν h(T, ν). We call them maximum
measures.

Corollary 1.2. (of the proof) A piecewise affine homeomorphism of a compact
surface has at least one maximum measure.

Our main result is:

Theorem 1. Let T : M → M be a piecewise affine homeomorphism of a compact
affine surface. Assume that htop(T ) > 0. Then there are finitely many ergodic,
invariant probability measures maximizing the entropy (or maximum measures).
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We also obtain as a by-product:

Proposition 1.3. Let T : M → M be a piecewise affine homeomorphism of a
compact affine surface. We have a multiplicative lower bound on the number of
periodic points: there exists an integer p ≥ 1 such that:

(1.3) lim inf
n→∞, p|n

#{x ∈M : T nx = x}e−nhtop(T ) > 0.

1.2. Outline of the Proof. We are able to analyze large entropy measures,
i.e. invariant and ergodic probability measures with entropy close enough to the
supremum. We rely on semi-uniform estimates, that is uniform estimates hold-
ing on subsets of lower bounded measure w.r.t. any large entropy measure and
discard entropy-negligible subsets, i.e., subsets which have zero measure w.r.t.
any large entropy measure.

We begin by the pointwise estimates of Section 2 dealing with local or semi-local
properties of individual orbits. We introduce the symbolic dynamics showing that
it has the same entropies as T . We establish that the (local) stable W s(x) and
unstable Wu(x) manifolds of points x ∈ M , i.e., the sets of points with the same
past or future P -itineraries, are line segments. We prove semi-uniform lower bounds
for their lengths and angles. A corollary is that the large entropy measures live off
the boundary of the partition.

Section 3 is devoted to building a Markov structure representing the large entropy
dynamics. We first build arrays of Markov rectangles which contain a significant
proportion of the dynamics and are very small w.r.t. the sizes of local manifolds so
they have ”small holes”, that is, only a small proportion of points that lie in one of
them have local manifolds that don’t cross the rectangle. Our techniques require
replacing T by some high power T L at this point.

We then define hyperbolic strips following the geometric picture of Markov rect-
angles usual in uniformly hyperbolic dynamics. We provide tools to build many
such strips around typical orbits of large entropy measures. These hyperbolic strips
are Markov in the sense that they can be freely concatenated as soon as they end
and begin in the same rectangle.

We conclude Section 3 by the construction of the Markov structure by selecting
among these hyperbolic strips a set of admissible ones to get a (weak) uniqueness
property in the decomposition of an orbit into those (this weakness will require a
more detailed ergodic analysis in Section 5). We obtain a notion of good return
times.

The core of our analysis is in Section 4. We first relate such return times to
geometric and combinatorial properties involving the visits to the Markov rectangles
and the complement set of their holes. We deduce from this that invariant measures
w.r.t. which the average return time is large must have small entropy.

Finally, Section 5 proves the main results by using the above Markov structure.
The proof of Theorem 1 analyzes of the jump transformation (or more exactly, the
tower) defined by the good return times to lift large entropy measures of T to a
countable state Markov shift. We show that this lift is a finite extension and in
particular preserves maximum measures so we can apply results of Gurevic [11] to
conclude the proof of the Theorem.
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Showing Proposition 1.3 uses a classical estimate of Vere-Jones [25] on the num-
ber of periodic sequences in the previous Markov shift together with a combinatorial
argument to bring it back to T .

The three appendices (A) recall some well-known upper-bounds on measure-
theoretic entropy, (B) prove a lifting theorem for the tower defined by a return
time and (C) give some examples of piecewise affine maps.

1.3. Some Comments. In the setting of this paper, the distortion of diffeomor-
phism is replaced by more easily understood singularities. Beyond the analysis of
a simple and natural class of dynamics, we illustrate an alternative approach to
Markov partitions: we ask less of geometry (tolerating ”holes” in our rectangles)
by using more ergodic theory and entropy estimates to accommodate the resulting
non-uniqueness of representation. More precisely, the ”holes” are avoided by using
generalized induction (that is, one waits for a good return, not necessarily the first
return to the rectangle –see Appendix B). This directly yields a Markov graph
with a simpler structure than those obtained by Hofbauer for piecewise monotonic
maps or in [6]. However the relation between T and the Markov dynamics is more
indirect.

Strengthening this link and proving that the Markov shifts obtained are suf-
ficiently well-behaved (strongly positive recurrent, see [12]) would yield further
results like a classification w.r.t. large entropy measures by the topological entropy
[3] or a meromorphic extension of Artin-Mazur zeta function defined by periodic
points [9].

It would be natural to apply the techniques of this paper to more general dynam-
ics. A first direction is that of more general chaotic piecewise affine maps. Most
questions are still open despite some partial results (see, e.g., [7, 24, 18]) and we
should stress that new problems immediately appear. From the point of view of
entropy alone:

• there exist piecewise affine continuous maps on surfaces and piecewise affine
homeomorphisms in dimension 3 for which the right hand side of (1.2) is
strictly larger than the entropy (see Examples 1, 3 in the Appendix C);
• The example 4 in Appendix C is a piecewise affine discontinuous map on

a surface with no maximum measure (one can give a continuous, piecewise
quadratic version of it, see example 5). However, I don’t know examples of
continuous piecewise affine maps without maximum measures.

For diffeomorphisms, the main difficulty with our approach is to find a link
between short stable/unstable manifolds and small entropy, e.g., one would need
to relate small Lyapunov charts to entropy bounds for smooth diffeomorphism.

2. Pointwise Estimates

2.1. Symbolic Dynamics. An admissible partition P for the map T defines a
symbolic dynamics which, in addition to its intrinsic interest, will be a key tool until
we are able to show that ∂P has zero measure w.r.t. any µ ∈ Perg

0(T ), where Perg
h(T )

denotes the set of ergodic, invariant probability measures of T with h(T, µ) > h.

Definition 2.1. x ∈M is nice if for every n ∈ Z, T nx belongs to an element An

of the admissible partition P . The sequence A ∈ P Z thus defined is the P -itinerary
of x.
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The symbolic dynamics of T, P is:

Σ := {A ∈ P Z : ∃x ∈M ∀n ∈ Z T nx ∈ An}
endowed with the shift map: σ(A) = (An+1)n∈Z.

Observe that Σ being a subshift, it admits at least one maximum entropy measure
by standard results (see, e.g., [26]). Hence, a “close enough” relation between the
invariant measures of Σ and T will imply existence of an maximum measure also
for T . By the variational principle, we shall also get that T and Σ have the same
topological entropy. The well-known formula for the topological entropy of the
subshift Σ:

h(Σ) = lim
n→∞

1

n
log #{[A0 . . . An−1] := {x ∈ Σ : x|n0 = An

0 } : A ∈ Pn}

where x|n0 := x0 . . . xn−1 will then prove the Misiurewicz-Slenk formula for T , fin-
ishing the proof of Proposition 1.1.

Neither of these two systems being an extension of the other in general, it is
convenient to introduce the following common extension:

Σ ⋉ M := {(A, x) ∈ P Z × x : ∀n ∈ Z T nx ∈ intAn} with T̂ (A, x) = (σA, Tx).

The close relation between the measures of T and Σ alluded to above is:

Lemma 2.2. Both maps π1 : Σ⋉M → Σ and π2 : Σ⋉M →M are entropy preserv-
ing: for every invariant probability measure µ on Σ⋉ M , h(σ, π1µ) = h(T, π2M) =

h(T̂ , µ). Moreover, π1 and π2 induce onto maps between the sets of (ergodic) in-
variant probability measures.

In particular, the topological entropies of the three systems must be equal by the
variational principle.

The proof of the above Lemma rests on two geometric/combinatorial properties.
The first is the following observation by S. Newhouse, very specific of our setting
(it is false in higher dimensions or without the invertibility assumption, see the
Appendix):

Lemma 2.3. The multiplicity entropy [5]:

hmult(T ) := lim sup
n→∞

1

n
log max

x∈M
mult(Pn, x) with mult(Q, x) := #{A ∈ Q : x ∈ Q}

is zero for any piecewise affine homeomorphism of a surface.

The second is a property of linear maps:

Lemma 2.4. Let d ≥ 1. For each n ≥ 0, let Tn : Rd → Rd be a linear map. Then

lim
ǫ→0

lim sup
n→∞

1

n
log max{#S : ∀0 ≤ k < n diam(Tk−1 . . . T1T0S) ≤ 1 and

∀x 6= y ∈ S ∃0 ≤ k < n ‖Tk−1 . . . T1T0(x− y)‖ > ǫ} = 0.

We leave the easy proofs of Lemmas 2.3 and 2.4 to the reader.

Proof of Lemma 2.2: Lemma 2.3, resp. Lemma 2.4, implies that for all x ∈M ,
resp. Σ, for i = 2, resp. i = 1,

h(T̂ , π−1
i {x}) = 0.
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Now, π1 : Σ ⋉ M → Σ and π2 : Σ ⋉ M → M are both compact topological
extensions. Hence, one can apply Bowen’s result [2]:

h(T̂ , µ̂) = h(σ, π1µ) = h(T, π2µ)

for all invariant probability measures µ̂ of Σ ⋉ M . �

2.2. Invariant Manifolds and Lyapunov Exponents. The partition P being
given, we have the following:

Definition 2.5. The stable manifold at A ∈ Σ is the following set (convex in
the affine charts):

W s(A) :=
⋂

n≥1

T−nAn

The unstable manifolds Wu(A) and Wu(x) are defined by replacing n ≥ 1 by
n ≤ −1 in the above equation.

The forward (+) and backward (−) upper Lyapunov exponents along A ∈ Σ
are:

λu
±(A) := lim sup

n→±∞

1

n
log ‖(T n

A)′
±1‖ and λs

±(A) := lim sup
n→±∞

1

n
log ‖(T n

A)′
∓1‖−1

where T n
A is the affine composition (T |An−1)◦· · ·◦(T |A0) (if n ≥ 0) or [(T |A−1) ◦ · · · ◦ (T |An)]

−1

(if n < 0).
If x ∈ M is nice then it defines a unique itinerary A and one writes W s(x) for

W s(A), λu
+(x) for λu

+(A) and so on.

The first goal of this section is the following “non-singularity” result:

Proposition 2.6. Let µ ∈ Perg
0(T ). The following holds:

• µ(∂P ) = 0 (in particular, µ-a.e. x ∈M is nice);
• λs

−(x) = λs
+(x) ≤ −h(T, µ) < 0 < h(T, µ) ≤ λu

+(x) = λu
−(x) for µ-a.e.

x ∈M (so we can omit the index ±);
• W s(x) and Wu(x) are line segments containing x in their relative interiors

intW s(x) and intWu(x) for µ-a.e. x ∈M .

To prove Proposition 2.6, let µ ∈ Perg
0(T ). As we have not yet proved that

a.e. x ∈M is nice, we have to work in the extension Σ ⋉ M to be able to speak of
itineraries, invariant manifolds and so on. By compactness, there exists an invariant
and ergodic probability measure µ̂ of T̂ : Σ ⋉ M ←֓ such that π2µ̂ = µ. We have
h(T̂ , µ̂) > 0 by Lemma 2.2.

We first consider the invariant manifolds.

Claim 2.7. µ̂-a.e. (A, x) ∈ Σ ⋉ M , (i) Wu(A) is a line segment; (ii) x is not an
endpoint of this segment.

Proof of the claim: To begin with, observe that Wu(σA) ⊂ T (Wu(A)) so that
dim(Wu(σA)) ≤ dim(Wu(A)). As µ̂ is invariant and ergodic, dim(Wu(A)) must
be µ̂-a.e. equal to a constant d 0, 1 or 2. Claim (i) above is that d = 1.

Let P̂ be the natural partition of Σ ⋉ M (coming from the canonical partition

of Σ). As in the proof of Lemma 2.2, h(T̂ , µ̂) = h(T̂ , µ̂, P̂ ) = Hµ̂(P̂ |P̂−) where

P̂− :=
∨

n≥1 T nP̂ . Observe that A 7→Wu(A) is P̂−-measurable.
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We exclude the cases d = 0, 2 by contradiction. Assume first d = 0, i.e., Wu(A)
is a single point x ∈M for µ̂-a.e. (A, x) ∈ Σ ⋉ M . This implies that:

h(T̂ , µ̂) = Hµ̂(P̂ |P̂−) = lim
n→∞

1

n
Hµ̂(P̂n|P̂−) ≤ hmult(T, P ) = 0,

a contradiction, excluding the case d = 0.

Now assume d = 2, so µ̂-a.e. Wu(A) = int(Wu(A)). By definition, two distinct
unstable manifolds have disjoint interiors. Therefore, there exists a countable col-
lection Wu(A1), Wu(A2), . . . such that for µ̂-a.e. A ∈ Σ, Wu(A) = Wu(Ai) for
some i ≥ 1. In particular, Wu(A) = Wu(Ai0) on a set of positive measure for some
i0. By Poincaré recurrence, there exists an integer n > 0 such that T n(Wu(Ai0)) =

Wu(Ai0 ). This implies that π1µ̂ is periodic, hence 0 = h(σ, π1µ̂) = h(T̂ , µ̂). This
contradiction proves (i).

We turn to (ii). If x ∈ ∂Wu(A), then T (x) ∈ ∂Wu(σ(A)). Thus if (ii) is false,
then x ∈ ∂Wu(A) µ-a.e. But this implies that, for any ǫ > 0, any large n,

nh(T̂ , µ̂) = Hµ̂(P̂n|P̂−) ≤ log 2+logmax
x∈M

#{A ∈ Pn : A ∋ x} ≤ log 2+(hmult(T, P )+ǫ)n.

As hmult(T, P ) = 0, it would follow that h(T̂ , µ̂) = 0, a contradiction. �

We now turn to the exponents. First observe that λu
+(A) = λu

−(A) λs
+(A) =

λs
−(A) for µ̂-a.e. A ∈ Σ is part of the classical Oseledets Theorem (see, e.g., [16]).

Claim 2.8. For π1µ̂-a.e. A ∈ Σ, the Lyapunov exponents satisfy: λs(A) < 0 <
λu(A).

Remark 2.9. The above result will be a consequence of Ruelle-Margulis inequality
[16] once we shall have proved that µ(∂P ) = 0.

Proof: We establish the existence of a positive Lyapunov exponent µ-a.e. The
existence of a negative exponent will follow by considering T−1. Consider the family
of norms ‖ · ‖′A, A ∈ Σ defined from an arbitrary one ‖ · ‖A, A ∈ Σ by:

‖v‖′A := ‖v‖A/|Wu(A)|A for v ‖Wu(A)

| · |A being the length w.r.t. to ‖ · ‖A (this is meaningful because of the affine
structure of M). As T (Wu(A)) ⊃Wu(σA), we have that ‖T ′|Eu(A)‖′A ≥ 1 (where
Eu(A) is the unstable direction at A –the invariant family of directions defined by

Wu(A)) for µ-a.e. A ∈ Σ. T (Wu(A)) = Wu(σA) µ-a.e. would imply h(T̂ , µ̂) =

Hµ̂(P̂ |P̂−) = 0. Hence, ‖T |Eu(A)‖′A > 1 on a set of positive measure and:

λu(A) =

∫
log ‖T ′|Eu(B)‖′B dµ̂(B) > 0

for µ-a.e. A ∈ Σ. �

Proof of Proposition 2.6: Let µ ∈ Perg
0(T ). Let µ̂ be a lift of µ to Σ ⋉ M . By

Lemma 2.2, h(T̂ , µ̂) = h(T, µ) > 0.
Claims 2.7 and 2.8 prove all the claims of the Proposition except µ(∂P ) = 0.
Now, Wu(A) and W s(A) are line segments a.e. by Claim 2.7. Their directions

carry distinct Lyapunov exponents by Claim 2.8, hence they must make a.e. a
non-zero angle. If x ∈ ∂P , then x would be the end point of at least one of these
line segments, a contradiction. Hence µ(∂P ) = 0. �
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That µ(∂P ) = 0 for all ergodic invariant probability measures with nonzero
entropy has the following immediate but important consequence:

Corollary 2.10. The partially defined map π : Σ′ →M with

{π(x)} :=
⋂

n≥0

T k[A−k . . . Ak]

with Σ′ the subset of Σ where the above intersection is indeed reduced to a single
point, defines an entropy-preserving bijection between the sets of ergodic, invariant
probability measures of T and of Σ with nonzero entropy.

2.3. Semi-Uniform Estimates. We obtain now more quantitative estimates, which
we call semi-uniform in the sense that they are uniform on a set of uniformly
lower-bounded mass for all large entropy measures. To state these results, we need
the following “distortion” bound. By compactness of M and invertibility of T ,

d(T ) := sup

{
log
‖T ′(x).u‖
‖T ′(x).v‖ : x ∈M, u, v ∈ R2 \ {0}, ‖u‖ = ‖v‖

}
<∞.

Proposition 2.11. For any µ0 <
htop(T )

d(T ) , there exist h0 < htop(T ), θ0 > 0 and

ℓ0 > 0 such that for any µ ∈ Perg
h0(T ), the following properties occur jointly on a

set of measure at least µ0:

ρ(x) := min
σ=s,u

d(x, ∂W σ(x)) ≥ ℓ0(2.1)

α(x) := ∠(W s(x), Wu(x)) > θ0(2.2)

Here ∠(W s(x), Wu(x)) is the angle between the two lines defined by W s(x) and
Wu(x). We declare α(x) = ρ(x) = 0, if W s(x) or Wu(x) fail to be line segments.

Remark 2.12. We in fact obtain a measure µ0 < 1 arbitrarily close to 1 satisfying
(2.1). However this is not the case wrt (2.2). Indeed, one can easily build a smooth
surface diffeomorphism with nonzero entropy such that for some µ0 > 0 and h0 > 0,
there are invariant probability measures with entropy at least h0 such that the stable
and unstable directions make an arbitrarily small angle on a set of measure at least
µ0. We do not know if these measures can be taken to have entropy arbitrarily close
to the topological entropy or if piecewise affine example exist.

We first prove the lower bound on angles by comparing the distortion with the
entropy.

Claim 2.13. For any 0 < h1 < htop(T ), there exists θ1 > 0 such that the set where
α(x) > θ1 has measure at least h1/d(T ) for all measures µ ∈ Perg

h1 .

Ruelle-Margulis inequality applied to (T, µ) and (T−1, µ) (which is valid as T ′ is
uniformly continuous on each element of P and µ(∂P ) = 0) yields:

(2.3) htop(T ) ≤ λu(µ)− λs(µ)

2
=

1

2

∫

M

log
‖T ′(x)|Eu(x)‖
‖T ′(x)|Es(x)‖ dµ(x).

By continuity there exists θ1 > 0 such that, for all u, v ∈ R2\{0} with ∠(u, v) ≤ θ1,

∀x ∈M \ ∂P log
‖T ′(x).u‖
‖T ′(x).v‖ ≤ h1.

Therefore, setting m := µ({x ∈M : α(x) > θ1}):
2h(T, µ) ≤ m · d(T ) + (1−m) · h1
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so that, assuming h(T, µ) > h1:

m >
2h(T, µ)− h1

d(T )− h1
≥ 2h(T, µ)− h1

d(T )
≥ h1

d(T )
.

This proves Claim 2.13.

Claim 2.14. For any µ3 < 1, there exists ℓ0 > 0 such that

(2.4) ∀µ ∈ Perg
h3(T ) µ ({x ∈M : d(x, ∂Wu(x)) > ℓ0}) > µ3

for h3 = htop(T )(1− (1− µ3)/2).

To prove (2.4) let ǫ = (1 − µ3)htop(T )/2 > 0, Λ be a Lipschitz constant for T ,
n ≥ log 2/ǫ be a large integer and r = r(ǫ, n) > 0 be such that

max
x∈M

#{A ∈ Pn : B(x, r) ∩A 6= ∅} ≤ 1

2
e(hmult(T,P )+ǫ)n and #Pn ≤ e(htop(T )+ǫ)n.

Let µ ∈ Perg
h3(T ), X0 := {x ∈ M : d(x, ∂Wu(x)) ≤ Λ−nr} and denote by µ|X0

the normalized restriction of µ to X0. Using standard facts about entropy (see
Appendix A) we get

nh(T, µ) = Hµ(Pn|P−) ≤ Hµ(Pn ∨ {X0, M \X0}|P−) ≤ Hµ({X0, M \X0})
+ µ(X0)Hµ|X0

(Pn|P−) + (1− µ(X0))Hµ|M\X0
(Pn|P−)

≤ log 2 + µ(X0) sup
x∈X0

log #{A ∈ Pn : A ∩X0 ∩Wu(x) 6= ∅}

+ (1− µ(X0)) log #Pn

≤ log 2 + µ(X0)(hmult(T, P ) + ǫ)n + (1− µ(X0))(htop(T ) + ǫ)n.

Hence

h(T, µ) ≤ (1− µ(X0))htop(T ) + µ(X0)hmult(T, P ) + ǫ +
1

n
log 2 =

htop(T ) + 2ǫ− µ(X0)(htop(T )− hmult(T, P )).

implying that:

µ(X0) ≤
htop(T )− h(T, µ)− ǫ

htop(T )− hmult(T, P )
≤ htop(T )− h(T, µ) + ǫ

htop(T )
< 1− µ3

using hmult(T, P ) = 0 and h(T, µ) > h3. The claim is proved.

Proof of Proposition 2.11: Claim 2.13 gives θ0 > 0 such that (2.2) holds on
a set of measure at least htop(T )/2d(T ) wrt all measures in Perg

htop(T )/2(T ). Claim
2.14 applied to T and T−1 with µ3 = 1− htop(T )/8d(T ), shows that for

h0 = htop(T )

(
1− 1

16

htop(T )

8d(T )

)
≥ htop(T )/2,

(2.2) and (2.1) hold jointly on a set of measure at least htop(T )/4d(T ) w.r.t. all
measures in Perg

h3(T ). �

3. Construction of the Markov Structure

The estimates of the previous section will allow us to build a collection of (non-
uniform) “Markov rectangles” which will “control enough” of the dynamics to an-
alyze all measures of large entropy.
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3.1. Markov Rectangles.

Definition 3.1. A (Markov) rectangle1 is a closed topological disk R contained
in an affine chart and bounded by four line segments, alternatively included in
stable and unstable manifolds, making respectively the unstable boundary, ∂uR =
∂u
1 R ∪ ∂u

2 R, and the stable one, ∂sR = ∂s
1R ∪ ∂s

2R. See Fig. 2.
A Markov array is a finite collection of Markov rectangles with disjoint inte-

riors.

Not every passage of an orbit inside a rectangle is useful. We need the following
properties.

Definition 3.2. A point x is controlled by a rectangle R if x is nice, belongs to R
and if W s(x) and Wu(x) each intersects ∂R in two points. x ∈ R is 10-controlled
if moreover ρ(x) > 10diamR. x ∈ R is s-controlled if x is nice, x ∈ R and W s(x)
intersects ∂R in two points.

The set of controlled, 10-controlled, s-controlled points is denoted by κ(R), κ10(R),
κs(R).

A point is controlled by a Markov array R if it is controlled by one of the rect-
angles of the array. We define κ(R), κ10(R), κs(R) in the obvious way.

Using the previous lower bounds on the lengths and angles of invariant manifolds
we shall first prove:

Lemma 3.3. There exist numbers h0 < htop(T ) and µ0 > 0 and a Markov array
R such that for all µ ∈ Perg

h0(T ),

µ(κ10(R)) > µ0.

Our analysis requires the following slightly stronger statement (i.e., we only
tolerate ”small holes”):

Lemma 3.4. There is µ0 > 0 such that for any ǫ0 > 0, there exist a number
h0 < htop(T ) and a Markov array R such that for any µ ∈ Perg

h0(T ),

• µ(κ10(R)) > µ0;
• µ(R \ κ10(R)) < ǫ0µ0.

This will be obtained by subdividing the rectangles in the Markov array from
Lemma 3.3 into sub-rectangles much smaller than most stable/unstable manifolds.

The final twist is that as we replace the partition P by the convex partition PR

generated by P and the Markov array R (see Fig. 1), some invariant manifolds

may shrink, say Wu
R(x) :=

⋂
n≥1 T nPR(T−nx) ( Wu(x), diminishing the set of

controlled points. Indeed, Wu
R(f(x)) ( Wu(f(x)) when Wu(x) crosses the bound-

ary of a rectangle from R. We shall see however that if these intersections are
sufficiently separated in time, then Wu

R(x) = Wu(x) for most points x ∈ R w.r.t.
large entropy measures. To guarantee that large separation, we use the following:

Definition 3.5. If R is an array of Markov rectangles contained in an element of P
and L is a positive integer, the (R, L)-extension of (M, T, P,R) is (M+, T+, P+,R+),
defined in the following way:

• M+ = M × {0, . . . , L− 1};
1Obviously these are quadrilaterals, but “Markov rectangle” is the usual terminology in the

uniform hyperbolic theory. Our apologies to true geometers.
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Figure 1. The convex partition P̃ refining both P (in black) and
R (in red).

• T+(x, k) = (Tx, k + 1 mod L);
• P+ is the finite partition of M+ which coincides with a copy of P on each

M × {k} for k 6= 0 and coincides on M × {0} with a copy of PR;
• R+ = {R× {0} : R ∈ R}.

Observe that the dependence on L of the above extension is trivial. The conclu-
sion of this section is:

Proposition 3.6. Let (M, T, P ) be a piecewise affine surface homeomorphism with
nonzero entropy. There exist µ0 > 0, h0 < htop(T ) such that for any ǫ0 > 0 and
any L0 <∞, there is a Markov array R and a positive integer L0 with the following
properties. Fix any L+ ≥ L0 and let (M+, T+, P+,R+) be the (R, L+)-extension of
(M, T, P,R).

For each µ ∈ Perg
h0(T ), there exists an ergodic invariant probability measure µ+

of T+ with π(µ+) = µ (where π(x, k) = x) such that, w.r.t. the invariant manifolds
defined by P+ and the Markov array R+:

(i) L+ · µ+(κ10(R+)) > µ0;
(ii) L+ · µ+(R+ \ κ10(R+)) < ǫ0 · µ0

It is enough to prove Theorem 1 for any such extension (it is compact, so all
invariant probability measures lift and it is finite-to-one so it respects entropy).
This is also the case w.r.t. Proposition 1.3.

We now prove Lemmas 3.3-3.4 and Proposition 3.6. We begin by the following:

Lemma 3.7. Given ℓ0 > 0 and 0 < θ0 < 2π, there exists a finite collection of
rectangles R(1), . . . , R(Q) such that:

(1) diam(R(i)) < ℓ0/10;
(2) any x ∈ M with ρ(x) > ℓ0 and ∠(Wu(x), W s(x)) > θ0 belongs to at least

one R(i).

This easily implies Lemma 3.3 using Proposition 2.11 and observing that the
finite collection of rectangles above can be subdivided by boundary lines like those
of Fact 3.9 below so that their interiors become disjoint, defining the required
Markov array R.
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Proof of Lemma 3.7: Let

K∗ := {x ∈M : ρ(x) > ℓ0 and ∠(Wu(x), W s(x)) > θ0}.
Let {Kj}Qj=1 be a finite partition of K∗ whose elements have diameter less than

θ0ℓ0/100 and lie within an affine chart of M . We fix j.
Recall that the collection of closed subsets K of the compact metric space M is

a compact space w.r.t. the Hausdorff metric:

d(A, B) = inf{ǫ > 0 : A ⊂ B(B, ǫ) and B ⊂ B(A, ǫ)}
The easy proofs of the following two facts are left to the reader.

Fact 3.8. Let An ∈ Σ(T, P ) converge to A+. By taking a subsequence, W s(An)
must also converge in the Hausdorff metric, say to H ⊂M . Then H ⊂W s(A+).

Fact 3.9. Assume that Kj is as above. Then there exist two points x1, x2 ∈ Kj,
two non-trivial line segments L1, L2 and two sequences A1, A2 ∈ Σ(T, P ) with the
following properties.

• Li is contained in the boundary of W s(Ai) as a subset of M ;
• in some affine chart, Kj lies between the two lines supporting L1 and L2.

We call L1, L2 a pair of stable boundary lines of Kj.

Consider two one-dimensional stable manifolds W s(A) and W s(B) which inter-
sect in a single point p. p must the endpoint of at least one of them: otherwise,
if An 6= Bn, p ∈ ∂An ∩ ∂Bn and both W s(A) and W s(B) must be parallel to
the same segment of ∂An ∩ ∂Bn, giving a large intersection. Hence, for arbitrary
x, y ∈ Kj , Wu(x) and Wu(y) must have disjoint relative interiors or be parallel.
Thus 1− cos∠(Wu(x), Wu(y)) ≤ (diamKj)

2/2ℓ2
0 so

∠(Wu(x), Wu(y)) ≤ θ0/50.

As ∠(Wu(z), W s(z)) > θ0 for all z ∈ K, we get:

∠(Wu(x), W s(y)) > θ0/2.

Consider a pair of ”stable boundary lines”, resp. ”unstable boundary lines”,
given by Fact 3.9 applied to (T, Kj), resp. applied to (T−1, Kj). Let R(j) be the

rectangle bounded by these four line segments. R(j) is contained in the intersection
of two strips with almost parallel sides of width ≤ diamKj and making an angle at
least θ0/2. Hence

diam(R(j)) < 5diam(Kj)/θ0 < ℓ0/20.

On the other hand, R(j) ⊃ Kj, hence
⋃

j R(j) ⊃ K∗. �

Proof of Lemma 3.4: Apply Lemma 3.3 to get R, µ0 > 0 and h0 < htop(T ). Re-
call that ρ(x) is the distance between x and the endpoints of its invariant manifolds
(or 0 if one of those is not a line segment).

By Claim 2.14 applied with µ+ := 1 − ǫ0µ0/4 to T and T−1, there exist h1 <
htop(T ) and ℓ1 = ℓ1(ǫ0µ0) such that

∀µ ∈ Perg
h1(T ) µ({x ∈M : ρ(x) < ℓ1}) < ǫ0µ0.

Let us cut each big rectangle R from R into sub-rectangles R′ with diameter at
most ℓ1/10, obtaining a new Markov array R′. Using Fact 3.9 again, we can do it
by finitely many stable and unstable manifolds (or line segments bounding those)
going across the rectangles in R. Observe that κ10(R′) ⊃ κ10(R) and that the
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Figure 2. From left to right: a rectangle R, a s-rectangle H and a
u-rectangle V . The (approximately) horizontal, red, resp. vertical,
blue line segments are segments of stable, resp. unstable manifolds.

points in R′ \ κ10(R′) which have line segments as invariant manifolds, are ℓ1-close
to an endpoint of their stable/unstable manifold. Hence

µ(κ10(R′)) ≥ µ0 and µ(R′ \ κ10(R′)) ≤ ǫ0µ0.

for all µ ∈ Perg
h1(T ). �

Proof of Proposition 3.6: We apply Lemma 3.4 with ǫ0/2 obtaining µ0 > 0
(independent of ǫ0), h0 < htop(T ) and a Markov array R. Let PR be the con-
vex partition previously defined. We go to the (R, L+)-extension (M+, T+, P+) of
(M, T, P ) for some large integer L+ to be specified. As we observed, there always
exists an ergodic, T+-invariant measure µ+ extending µ. Maybe after replacing
it by its image under (x, i) 7→ (x, i + j mod L+) for some j, we get an ergodic
extension µ+ such that

L+ · µ+(κ10(R) × {0}) ≥ µ(κ10(R)) ≥ µ0.

As the extension is finite-to-one, µ+ has the same entropy as µ.

Let x ∈M . If the unstable manifold for T+, Wu
+(x, 0) :=

⋂
n≥1 T nP+(T−n

+ (x, 0))

is strictly shorter than Wu(x)×{0}, then it is bounded by (y, 0) with y an intersec-
tion point of Wu(T−kL+x) for some k ≥ 1, with one of the new boundary segments,
I, of ∂PR. Hence P kL+(T−Lx) is determined by the past of T−kL+x and I picked
among finitely many choices, say m (depending only on P and R but not on L+).

A standard counting argument shows that if this happened on a subset of M×{0}
with µ+-measure at least 1

2ǫ0µ0 · L−1
+ , then

h(T, µ) = h(T+, µ+) ≤ (1− 1

2
ǫ0µ0)htop(T ) + ǫ(L+)

where ǫ(L)→ 0 as L→∞. This is strictly less than htop(T ) if L+ is large enough
(which we ensure by taking L0 large). So it is excluded for large entropy measures:
the (R, L)-periodic extension (M+, T+, P+,R+) has the required properties for all
large integers L+. �

3.2. Hyperbolic strips. (M, T, P ) is some piecewise affine surface homeomor-
phism with nonzero entropy and R is some Markov array with R ⊂ P (eventually
(M, T, P,R) will be the previously built periodic extension (M+, T+, P+,R+)). We
shall use the following picture adapted from uniformly hyperbolic dynamics to de-
fine finite itineraries that can be freely concatenated.
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Figure 3. Proof of Lemma 3.12. From left to right: (a) Pn
0 (x) ⊂

Pm
0 (x) ⊂ R; (b) the u-rectangle T m(Pm

0 (x)) crossing the s-
rectangle Pn

m(x) (both inside R′); (c) T nPn
0 (x) ⊂ T mPn

m(x) ⊂ R′′

(R, R′, R′′ ∈ R).

Definition 3.10. A quadrilateral Q u-crosses a rectangle R ∈ R if Q ⊂ R and
its boundary is the union of two subsegments of the stable boundary of R (the
stable boundary of Q) with two line segments joining their endpoints (the unstable
boundary). s-crossing is defined similarly.

A u-rectangle is a quadrilateral whose unstable boundary is made of two seg-
ments of unstable manifolds and which u-crosses some rectangle R ∈ R. A s-
rectangle is defined similarly (see Figure 2).

For n ≥ 1, a hyperbolic n-strip (or just n-strip) is a s-rectangle S such that
intT k(S) is included in some element of P for each k = 0, . . . , n− 1 and T n(S) is
a u-rectangle. A hyperbolic strip is a n-strip for some n ≥ 1.

We write P b
a(x) for

⋂b
k=a T−(k−a)P (T kx) (we assume implicitly that x is nice as

this fails only on an entropy-negligible set – recall Proposition 2.6). The following
is immediate.

Facts 3.11. 1. A hyperbolic n-strip is necessarily of the form Pn
0 (x) for some

x ∈ R.
2. Two hyperbolic strips are either nested or have disjoint interiors.

We now give some tools to build hyperbolic strips.

Lemma 3.12. For 0 < m < n, if Pm
0 (x) and Pn

m(x) are both hyperbolic strips,
then so is Pn

0 (x).

This is easy to show using Fig. 3. Sufficiently long invariant manifolds allow the
construction of hyperbolic strips from scratch:

Lemma 3.13. Let x ∈ κ10(R) and n ≥ 1 such that T nx ∈ κ10(R). Then Pn
0 (x) is

a hyperbolic strip.

Observe that the weaker condition x ∈ κ(R) ∩ T−nκ(R) does not imply that
Pn

0 (x) is a hyperbolic strip.

Proof: See Fig. 4. Let R, R′ be the elements ofR containing x and T nx. Consider
the quadrilateral L generated by W s(x) and T−nWu(T nx). By convexity, it is
contained in Pn

0 (x). As T nx ∈ κ10(x), ∂sR′ intersects the segments bounding T nL
at most at a tenth of their length (counting from their intersection a, b, c, d with
W s(T nx)). Consider (abcd) the quadrilateral defined by these intersections. It
u-crosses R′. T−n(abcd) s-crosses R because the preimages of a, b, c, d are each so
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Figure 4. Construction of the hyperbolic strip in the proof of
Lemma 3.13 (left: time 0 around R, right: time n around R′; ap-
proximately (vertical) horizontal lines are segments of (un)stable
manifolds; dashed ones are (pre)images of regular ones. The col-
ored “diamond” is L. The rectangle inscribed in L is the hyperbolic
strip.

close to the endpoints of W s(x) that they are outside of R. Therefore R ∩ T−nQ
is the desired hyperbolic strip and it must be Pn

0 (x). �

Corollary 3.14. Let n ≥ 1 be such that Pn
0 (x) is a hyperbolic strip and T nx ∈

κ10(R). If m > n satisfies T mx ∈ κ10(R), then Pm
0 (x) is also a hyperbolic strip.

Proof: By Lemma 3.13, Pm
n (x) is a hyperbolic strip. Apply Lemma 3.12 to

conclude. �

We need the following technical fact.

Lemma 3.15. Let µ be an atomless invariant probability measure. For a.e. x ∈
κs(R) and all n ≥ 1, the intersection of W s(x) with ∂uR lies in the interior of
segments of ∂Pn(x). In particular, ∂uR ∩ ∂Pn(x) is the union of two non-trivial
segments.

Proof: We proceed by contradiction assuming that the above fails: on a subset
of κs(Ri) with positive measure at least one of these intersection points coincides
with a vertex z of the polygon ∂Pn(x) (so W s(z) = W s(x)). Reducing this subset,
we assume the vertex z to be a fixed one, say z+.

By Poincaré recurrence, there must exist infinitely many n ≥ 0 such that T nx ∈
W s(z+). Considering two such integers n1 < n2, we get that T n2−n1(W s(z+)) ⊂
W s(z+). This implies that all points of W s(z+) converge to a periodic orbit. Thus,
the ergodic decomposition of µ has an atom, a contradiction. �

We show that if x ∈ κs(R), subsequent visits to κ10(R) either give a hyperbolic
strip or a shadowing property which will lead to an entropy bound.
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Lemma 3.16. Let x ∈ κs(R) and 0 ≤ m < n be such that T mx, T nx ∈ κ10(R).
Excluding a set of zero measure of points x, if Pn

0 (x) is not a hyperbolic strip then
Pm

0 (x) determines Pn
0 (x) up to a choice of multiplicity 4.

Proof: W s(x) crosses R. Hence Lemma 3.15 implies that ∂Pm
0 (x) ∩ ∂uRi is the

union of two unstable, non-trivial segments: [a, b], [c, d]. Let [a′, b′], [c′, d′] be their
images by T m|Pm

0 (x). Let Q′ be the quadrilateral generated by them. By convexity
Q′ ⊂ T m(Pm

0 (x)).
H := Pn

m(x) is a hyperbolic strip by Lemma 3.13. Q′ and H intersect. If
intH ∩ {a′, b′, c′, d′} = ∅, then Q′ would go across H , and Pm

0 (x) would be a
hyperbolic strip, contrary to assumption.

Thus, at least one of the four vertices a, b, c, d determined by Pm
0 (x) is contained

in intH , this point determines H and therefore Pn
0 (x) as claimed. �

3.3. Admissible Strips and Good Returns. In this section, R is some Markov
array with R ⊂ P . Hyperbolic strips defined above have no uniqueness property:
a point x ∈ κs(R) sits into an infinite sequence of nested hyperbolic strips. This
motivates the following notion.

Definition 3.17. For n ≥ 1, the admissible n-strips are defined by induction on
n. A 1-strip is always admissible. For n > 1, an admissible n-strip S is a n-strip
such that for all 1 ≤ m < n such that S is included in an admissible m-strip, T m(S)
meets no hyperbolic strip. An admissible strip is an admissible n-strip for some
n ≥ 1. For x ∈M , an admissible time is such an integer n.

Definition 3.18. For a point x ∈ M , the (good) return time is τ = τ(x), the
minimum integer τ ≥ 1 such that both following conditions hold:

• x belongs to an admissible τ-strip;
• T τ (x) ∈ κs(R) belongs to an admissible strip.

If there is no such τ , then we set τ(x) =∞.

Remark 3.19. Note that, at this point, we break the symmetry between the future
and the past.

We shall use repeatedly the following obvious observation:

Fact 3.20. If n is the smallest integer such that Pn
0 (x) is a hyperbolic strip (equiv-

alently: Pn
0 (x) is a n-strip which is not contained in a k-strip for any k < n;

Pn
0 (x) does not meet a k-strip for any k < n; Pn

0 (x) is a hyperbolic strip which is
maximum w.r.t. inclusion) then Pn

0 (x) is an admissible n-strip.

Remark 3.21. One could consider the following changes in the definition of ad-
missibility:

1) replacing “T m(S) meets no hyperbolic strip” by “T m(S) meets no admissible
strip” would not change the notion. Indeed, suppose that T m(S) meets a hyperbolic
strip H. Let k ≥ 1 be the smallest integer such that H is contained in a k-strip,
say Hk. The minimality of k implies that Hk is admissible and Hk ⊃ H so that
T m(S) meets Hk.

ii) replacing “S is included in an admissible m-strip” by “S is included in a
hyperbolic m-strip” would exclude some admissible strips and so would cause a
problem in the proof of the (key) Claim 4.2 (for the proof that k = ni in the
notations there).
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The following uniqueness property is the motivation for the definition of admis-
sibility. Denote the one-sided symbolic dynamics by: Σ+(T, P ) = {A0A1A2 · · · ∈
P N : A ∈ Σ(T, P )}.
Lemma 3.22. A positive itinerary A ∈ Σ+(T, P ) can be decomposed in at most
one way as an infinite concatenation of admissible strips.

Proof: Consider two distinct decompositions of A into admissible strips, that is,
n0 = 0 < n1 < n2 < . . . and m0 = 0 < m1 < m2 < . . . , such that Ani

. . . Ani+1 and
Ami

. . . Ami+1 are admissible strips for all i ≥ 0. By deleting the identical initial
segments, we can assume that the decompositions differ from the beginning, say
n1 < m1. It follows that the admissible m1-strip H := [A0 . . . Am1 ] is contained

into the n1-admissible strip [A0 . . . An1 ]. Thus T n1(H) meets [An1 . . . An2 ] which is
another admissible strip, contradicting admissibility. �

4. Analysis of Large Return Times

In this section (M, T, P ) is a piecewise affine homeomorphism with positive topo-
logical entropy. In the first two subsections, it is endowed with a Markov array
R ⊂ P . Eventually, (M, T, P,R) will be some periodic extension of the original
map as built in the previous section.

We prove that, if the average return time of some point x is very large then
P τ(x)(x) is already determined by some fraction of itself related to its visits to
κ10(R) and R \ κ10(R). We then deduce from this and the ergodic theorem a
bound on the entropy of the measure.

4.1. Geometric Analysis. We analyze geometrically the implications of a large
return time.

Proposition 4.1. Let x ∈ κs(R) and N ≥ 1 be such that no 0 < k < N is a return
time for x. Let:

• 0 < N0 < N be the smallest integer such that T N0x ∈ κ10(R) and PN0
0 (x)

is a hyperbolic strip (we set N0 := N if there is no such integer);
• 0 ≤ N1 < N be the smallest integer such that T N1x ∈ κ10(R) (we set

N1 := N0 = N if there is no such integer);
• 0 ≤ N2 < N0 be the largest integer such that T N2x ∈ κ10(R) (we set

N2 := N1 = N0 if there is no such integer).
• n1, . . . , nr (r ≥ 0) be the admissible times, that is the successive integers

in:
{0 ≤ k < N : P k

0 (x) is an admissible strip }
with the convention nr+1 = N ;
• mi1, . . . , mis(i) (s(i) ≥ 0) be the hyperbolic times, that is, for each i, the

successive integers:

{ni < m < ni+1 : Pm
0 (x) is a m-strip and T mx ∈ κs(R)}.

with the convention mis(i) := mi1 := ni+1 if s(i) = 0.

Then PN(x) is determined, up to a choice of multiplicity 4 · 2r, by:

(1) the integers N1, N2, r and ni, mi1, mis(i) for 1 ≤ i ≤ r;

(2) P (T kx) for k ∈ [[0, N1]] ∪ [[N2, n1[[;
(3) P (T kx) for k ∈ ⋃r

i=1[[ni, mi1]] ∪ [[mis(i), ni+1]] \ [[0, n1]].
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([[a, b[[ denotes the integer interval with a included and b excluded, etc.).

Proof: We assume that N1 < N , as otherwise there is nothing to show. In
particular, T N1x ∈ κ10(R).

We claim that PN1
0 (x) determines PN2

0 (x) up to a choice of multiplicity 4. If N1 ≥
N2, this assertion is empty so we can assume N1 < N2 ≤ N0. T N1(x), T N2(x) ∈
κ10(R) but PN2

0 (x) is not hyperbolic. Lemma 3.16 therefore implies that PN1
0 (x)

determines PN2
0 (x) up to a choice of multiplicity 4. The Proposition now follows

from the claim below. �

Claim 4.2. Except for an entropy-negligible subset of points x ∈M w.r.t. all large
entropy measures the following holds. Given some 1 ≤ i ≤ r, Q := Pmi1

ni
(x) and the

integers ni, mi1, mis, there are only two possibilities for Pmis
ni

(x) (s denotes s(i)).

Proof: Let R, R′ ∈ R be the rectangles containing T nix, T mi1x and let ℓ be the
line segment through T nix, directed by W s(T nix) and bounded by ∂R. We first
show that ℓ 6⊂ Q.

By assumption T nix /∈ κs(R), i.e., W s(T nix) does not u-cross it: ℓ 6⊂W s(T nix).
There exists a minimum k > ni such that T k−niℓ is not contained in the closure
of an element of P . If one had k > mi1, then T mi1−niℓ ⊂ W s(T mi1x) (recall that
W s(T mi1x) crosses R′ ∈ P as T mi1x ∈ κ(R′)) so that for all k ≥ mi1, T k−niℓ ⊂
T k−mi1W s(T mi1x) would be inside elements of P , implying ℓ ⊂ W s(T nix), a con-
tradiction. Thus, k ≤ mi1 and ℓ 6⊂ Q as claimed.

We can assume that T nix is in the interior of Q, so W s(T nix) cuts Q into two
connected components Q+, Q−. If both contained stable manifolds crossing R, ℓ
would be in the interior of Q by convexity. Thus, Q determines a gap in κs(R) in
the unstable direction. This gap must be bounded by two stable manifolds W s(B+)
(”above”) and W s(B−) (”below”) going across R (recall Fact 3.8). Also at least
one of W s(B±) (say W s(B+)) is not contained in Q so the interior of Q does not
meet W s(B+). Thus Q determines W s(B+): it is the ”lowermost” stable manifold
”above” Q which crosses R. Q also determines W s(B−): it is the ”uppermost”
stable manifold ”below” W s(B+) which crosses R.

By definition, S := Pmis

0 (x) is hyperbolic. Also mis ∈]]ni, ni+1[[ is not admissible
hence there exists an admissible time 0 < k < mis < ni+1 such that S is included in
an admissible k-strip and T k(S) meets an admissible strip. As Pni

0 (x) is admissible,
k ≥ ni. But ni+1 is the smallest admissible time after ni. Therefore k = ni.

Thus T ni(S) meets an admissible strip which by definition is bounded ”be-
low” and ”above” by pieces of stable manifolds crossing R, hence is either ”above”
W s(B+) or ”below” W s(B−). This implies that intPmis

0 (x) ∩W s(Bǫ) 6= ∅ with
ǫ = + or − and Q determines Pmis

ni
(x), up to a binary choice. �

4.2. Combinatorial Estimates. We extract from Proposition 4.1 the following
complexity bound.

Proposition 4.3. Let ǫ∗ > 0 and let C∗ = C∗(ǫ∗) <∞ be such that

∀n ≥ 0 #(PR)n ≤ C∗e
(htop(T )+ǫ∗)n

Let L, N ≥ 1, M, R, S ≥ 0 be some integers. We consider the set I = I(N, M, R, S)
(we omit the obvious dependence on T, P,R) of cylinders PN (x) for x = (x, 0) ∈
κs(R) such that, in the notations of Proposition 4.1 applied to (M, T, P,R):
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• r = R and #{mij > N0 : 1 ≤ i ≤ r, 1 ≤ j ≤ s(i)} = S;
• N2 −N1 = M .
• min{mi(j+1)−mij : i = 1, . . . , r and j = 0, . . . , s(i)+1}} ≥ L (by convention

mi0 = ni and mis(i)+1 = ni+1).

Let ρ > R/N . Then:

log #I ≤ (htop(T )+ ǫ∗)(N −L(S−R)−M +S)+K∗(ρ, N)N +(ρ+3/N)N log C∗

where K∗ is a universal2 function satisfying K∗(ρ, N) ↓ K∗(ρ) when N → ∞ and
K∗(ρ) ↓ 0 when ρ→ 0.

The proof of the above will use:

Lemma 4.4. In the notation of Proposition 4.3,

(1) n1 is the smallest integer such that Pn1
0 x is hyperbolic and n1 ≤ N0;

(2) {ni : 1 ≤ i ≤ r} ⊂ {0 ≤ k < N : T kx ∈ R \ κ(R)};
(3) {N0 ≤ k < N : T kx ∈ κ10(R)} ⊂ {mij : 1 ≤ i ≤ r and 1 ≤ j ≤ s(i)}.

Proof: By definition n1 is the smallest integer such that Pn1
0 (x) is an admissible

strip so (1) is just Fact 3.20.
Pni

0 (x) being an admissible strip, T nix ∈ R. ni < N so T nix /∈ κ(R), proving
(2).

The mij are the times m ∈]]n1, N [[ (or, equivalently, m ∈ [[0, N [[ by property
(1)) such that T mx ∈ κ(R) and Pm

0 (x) is a hyperbolic, but not admissible strip.

As PN0
0 (x) is a hyperbolic strip and T N0x ∈ κ10(R), Corollary 3.14 gives that

N0 ≤ k < N and T kx ∈ κ10(R) implies that P k
0 (x) is a hyperbolic strip. This

strip cannot be admissible as T kx ∈ κs(R) and k < N , hence such k is some mij ,
proving (3). �

Proof of Proposition 4.3: According to Proposition 4.1, given N , M , R and
S, to determine an element of I(N, M, R, S) we need to specify:

(1) the integers N1, N2, n1, . . . , nR and mi1, mis(i) for i = 1, . . . , R;

(2) the itineraries PN1(x), Pn1−1
N2

(x) (if n1 > N2) and PN−1
nr+1(x);

(3) Pmi1
ni

(x), P
ni+1
mis(i)

(x) for each i = 1, . . . , r;

(4) a choice among 4 · 2R.

Observe that N1 ≤ N2 ≤ N0.
Using property (3) of Lemma 4.4 and the fact that mij > n1 ≥ N0, it follows

that:

#

(
r⋃

i=1

]]mi1, mis(i)[[ \ ]]N1, N2[[

)
≥ #

(
r⋃

i=1

]]mi1, mis(i)[[ \ ]]0, N0[[

)

≥ #
⋃

i = 1, . . . , r

1 ≤ j < s(i)
mij > N0

]]mij , mij + L[[ ≥ (S −R)(L− 1) ≥ (S −R)L− S

recalling the definitions of L and S. Hence, the number of choices for each of those
items is bounded by:

(1)
(
N
2

)(
N
R

)3
where

(
b
a

)
= a!/b!(a− b)! is the binomial coefficient;

2K∗ does not depend on any of the data T : M → M, N, M, R, S, L, C∗, ǫ∗.
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(2-3) CR+2
∗ exp ((htop(T ) + ǫ∗)(N − (S −R)L−M + S))) as we have to specify

the itineraries for R+2 time intervals, all disjoint from [[N1, N2[[∪
⋃r

i=1]]mi1, mis(i)[[;

(4) 4 · 2R.

Recalling that3
(

n
αn

)
∼ 1√

2πα(1−α)
n−1/2eH(α)n as n→∞, i.e., log

(
n

αn

)
≤ H(α)n +

C(α) and that k ∈ [[0, (n−1)/2]] 7→
(
n
k

)
is increasing, the stated bound follows with:

K∗(ρ, N) = 3H(ρ) + ρ log 2 + 3N−1 log N + N−1 log 4C(ρ).

�

4.3. Large Average Return Times and Entropy. We are going to apply the
previous estimates linking long return times either to visits to the holes (R\ κ(R))
or to low entropy. We will show that for a suitable choice of the parameters of our
constructions, large entropy measure have finite average return time.

Recall the good return time τ : κs(R) → N̄ (possibly infinite) of Definition
3.18. We define τn(x) inductively by τ1(x) = τ(x) and τn+1(x) = τ(T τn(x)(x))
(τn+1(x) =∞ if τn(x)).

We denote the essential supremum of a function f over a subset X with respect
to a measure µ by:

µ−sup
x∈X

f(x) := inf
X′=X[µ]

sup
x∈X′

f(x)

where X ′ ranges over the measurable subsets of X such that µ(X \X ′) = 0 (X and
f are assumed to be measurable here). Our key estimate is the following:

Proposition 4.5. There exist h2 < htop(T ) and L2 < ∞ with the following prop-
erty. Consider the Markov array R defined by Proposition 3.6. For any integer
L+ ≥ L0 (M+, T+, P+,R+) be the L+-periodic extension of Definition 3.5. Then,
for each µ ∈ Perg

h2(T+),

τ∗(µ) = µ−sup
x∈R+

τ∗(x) <∞ where τ∗(x) := lim sup
n→∞

1

n
τn(x).

Remark 4.6. The simple consequence that τ∗(x) < ∞ for a.e. x ∈ κ(R) implies
that almost every point in κ(R) has a good return.

One can make the following choice of L2

(4.1) L2 > 2
log 2

htop(T )
µ−1

0 .

where µ0 has been defined in the proof of Proposition 3.3.
The proof below does not provide a semi-uniform bound on τ∗ as our estimates

below depend on the speed of convergence of some ergodic averages (see Remark 4.7
below).

Proof of Proposition 4.5: The first step of the proof fixes a Markov array R
and a periodic extension of T and finds a candidate upper bound for τ∗(µ). The
second step defines a language (a collection of words of increasing lengths) with
small entropy. The final step shows that large average return times imply that this
language is enough to describe the measure. A large average can therefore happen
only for low entropy measures.

Step 1: The Markov Array

3f(t) ∼ g(t) iff limt→∞ f(t)/g(t) = 1 and H(t) = −t log t − (1 − t) log(1 − t).
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Recall that µ0 is defined by Lemma 3.3 which also gives a Markov array R0. We
restrict ourselves to ergodic, T -invariant probability measures µ such that

µ(κ10(R0)) > µ0.

Let ǫ0 > 0 be small enough so that, K∗ being the function defined in Proposition
4.3:

(4.2) K∗(ǫ0µ0) <
µ0

100
htop(T ).

Let L2 be so large that:

(4.3) K∗(ǫ0µ0, L2) <
µ0

100
htop(T ).

Using Proposition 3.6, one finds a refinement of the first Markov array R0 into
the Markov array R = R(T, µ0, ǫ0) and an integer L0 = L0(T, µ0, ǫ0) (which we
can assume to be larger than L2) such that the following holds. For each (R, L+)-
extension (M+, T+, P+,R+) with L+ ≥ L0, there exists an ergodic lift µ+ of µ such
that

L+µ+(κ10(R+)) > µ0 and L+µ+(R+ \ κ(R+)) < ǫ0µ0.

Let C0 = C0(T, ǫ0, µ0) < ∞ be such that, PR denoting the convex partition of
M generated by P and R:

∀n ≥ 1 #{[A1 . . . An] : Ai ∈ PR} ≤ C0 exp (htop(T )(1 + µ0/100)n) .

This is possible by Proposition 1.1 applied to T with partition PR. Possibly after
increasing L+, we may assume that

log C0/L+ < (µ0/100)htop(T ).

We omit the sharp subscript in the sequel so that M, T, P, µ, µ0 will denote in
fact M+, T+, P+, µ+, µ0+. To refer to the original µ or µ0, we shall write µ♭ or µ0♭.

It will be a convenient exception to continue to write PR for PR♭

♭ .

Let K1 ⊂M and L1 <∞ be such that

(4.4) µ(M \K1) < ǫ0µ
2
0/(106 log #PR)

and, for all x ∈ K1:
(4.5)

∀n ≥ L0 :=
ǫ0µ0

1000
L1

∣∣∣∣
1

n
#{0 ≤ k < n : T kx ∈ κ10(R)} − µ(κ10(R))

∣∣∣∣ <
( µ0

1000

)2

.

∀n ≥ L1
1

n
#{0 ≤ k < n : T kx ∈ R \ κ(R)} < ǫ0µ0.

Remark 4.7. The above L1 is the only estimate in the proof of this proposition
which does not seem semi-uniform.

We take:

(4.6) τmax :=
106 log #PR

µ2
0

L1.

To prove that τ∗(µ) ≤ τmax, we assume by contradiction that

(4.7) M1 := {x ∈ κ(R) : lim sup
n→∞

1

n
τn(x) > τmax} has positive µ-measure.

Step 2: Low entropy language



PIECEWISE AFFINE SURFACE HOMEOMORPHISMS 23

For each integer ℓ ≥ 1 we define a set C(ℓ) of PR-words of length ℓ as

C(ℓ) :=
⋃

ℓ1 + · · · + ℓk = ℓ
k ≤ ℓ/τM

C(ℓ1, . . . , ℓk)

Here C(ℓ1, . . . , ℓk) is the set of all concatenations γ1 . . . γk where each γm (1 ≤ m ≤
k) is a word (i.e., a finite sequence) of length |γm| = ℓm satisfying:

• type 1 requirement: γm is an itinerary from I(ℓm, M, R, S) (in the notation
of Proposition 4.3) with ℓm ≥ 1000

µ0
L1 (see below) and M, R, S integers

satisfying:

(4.8) L+(S −R) + M − S ≥ 98

100
µ0ℓm and R ≤ 1

100
µ0ℓm;

• type 2 requirement: the sum of the lengths of these segments is less than
µ0

1000 log #P ℓ.

Observe that

#C(ℓ) ≤ ℓ

(
ℓ

[ℓ/τM ]

)
max

ℓ1 + · · · + ℓk = ℓ
k ≤ ℓ/τM

#C(ℓ1, . . . , ℓk)

By Proposition 4.3, the logarithm of #I(ℓm, M, R, S), is bounded by

(4.9)

htop(T )

(
1 +

L+µ0

100

)
(ℓk − (L+(S −R) + M − S))+K(ǫ0µ0, ℓk)ℓk+(2R+3) logC0

≤ htop(T )

(
1 +

L+µ0

100

)(
1− 98

100
L+µ0

)
ℓk +

2µ0

100
htop(T )ℓk + 3 log C0

≤ htop(T )

(
1− L+µ0

100
(98− 1.1− 0.1)

)
+ 3 logC0

≤ htop(T ) (1− 0.95L+µ0) + 3 log C0

using the assumptions on C(ℓ), eq. (4.3) and that S << htop(T )µ0 for L+ large
enough. Hence,

(4.10) #C(ℓ) ≤ consteh2ℓ

with h2 := htop(T ) (1− 0.90L+µ0).

Step 3: Consequence of Large Return Times

We are going to show that, for all x ∈ κ(R),

(4.11) τn(x) > τmax · n =⇒ P τn(x)(x) ∈ C(τn(x)).

Observe that this will imply that

h(T, µ) ≤ h2

using Proposition A.2 with (4.10) and:

• M0 := {x ∈M : {n ≥ 0 : T−nx ∈M1} is infinite} (recall eq. (4.7));
• ai(x) := min{j ≥ i : T−jx ∈M1} for all i ≥ 1;
• bi(x) := τn(T−ai(x)x) with n a positive integer such that τni

(x) ≥ max(ai(x), τmax·
ni),

concluding the proof of Proposition 4.5.
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Let x ∈ κ(R). For all large enough integers n ≥ 1 (4.4) and the ergodic theorem
give:

1

τn(x)
#{0 ≤ k < τn(x) : T kx /∈ K1} < ǫ0µ

2
0/(106 · log #PR).

Let N := τn(x), and for k = 0, . . . , n−1, let Ik be the integer interval [[τk(x), τk+1(x)[[
and ℓk := #Ik.

Let B1 ⊂ [[0, n[[ be the set of those integers 0 ≤ k < n such that

#{m ∈ Ik : T mx /∈ K1} ≥
ǫ0µ0

1000
ℓk.

The union of those segments Ik occupies only a small proportion of [[0, N [[:

∑

k∈B1

ℓk ≤
1000

ǫ0µ0
× ǫ0µ

2
0

106 log #PR
N ≤ µ0

1000 log#PR
·N.

Let B2 ⊂ [[0, n[[ be the set of k’s such that ℓk ≤ 1000µ−1
0 L1. They also occupy a

small proportion:

∑

k∈B2

ℓk ≤ 1000µ−1
0 L1n ≤

1000L1

µ0

N

τmax
≤ µ0

1000 log#PR
·N,

by the choice of τmax.
Therefore the segments Ik for k ∈ B1 ∪B2 satisfy the type 2 requirement in the

definition of C(ℓ). It is enough to prove that the Ik’s for k ∈ B+ := [[0, n[[\(B1∪B2)
satisfy the type 1 requirement.

For such segments Ik, p1 := min{p ≥ 0 : T p+τk(x)x ∈ K1} satisfies: p1 ≤ ǫ0µ0

1000 ℓk

by the definition of B1. By the definition of B2, ℓk >> L1 = 1000
ǫ0µ0

L0, hence (cf. N1

from Proposition 4.3):

(4.12) N1 := min{j ≥ 0 : T τk(x)+jx ∈ κ10(R)} ≤ p1 + L0 ≤
ǫ0µ0

500
ℓk.

Also, by the choice of K1 and using ℓk − p1 > L1:

#{j ∈ [[τk(x) + p1, τk+1(x)[[: T jx ∈ R \ κ(R)} < ǫ0µ0(ℓk − p1).

Hence, using point (2) of Lemma 4.4:

(4.13) R ≤ r′ := #{j ∈ Ik : T jx ∈ R \ κ(R)} < 2ǫ0µ0ℓk.

Note that this implies R ≤ µ0ℓk/100, one half of the type 1 requirement.
Similarly to (4.13):

∣∣#{j ∈ Ik : T jx ∈ κ10(R)} − µ(κ10(R))ℓk

∣∣ < µ0

500
ℓk.

If, as in Proposition 4.3:

N0 := min{j ≥ 0 : T τk(x)+j(x) ∈ κ10(R) and P j(T τk(x)x) is hyperbolic}
(observe that N0 might be large) and S := #{mij > N0 : i, j} then, using point
(3) of Lemma 4.4,

S ≥ s′ := #{j ∈]]τk(x) + N0, τk+1(x)[[: T jx ∈ κ10(R)}.
Also, by the definition of M in Proposition 4.3, M = [N0]κ −N1 where:

[t]κ := max{n ∈ [[0, t[[: T nx ∈ κ10(R)}
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(we define [t]κ := t if there is no such integer). Hence,

(4.14) L+S + M = L+S + [N0]κ −N1 ≥ L+s′ + [N0]κ −
µ0

1000
ℓk

where, as

— First case: N0 < p1 + L1. We use the trivial bound M ≥ 0 and (4.5) to get:

s′ ≥ #{j ∈ [[τk(x)+p1+L1, τk+1(x)[[: T jx ∈ κ10(R)} ≥ 499

500
µ0(ℓk−p1−L1) ≥

498

500
µ0ℓk

Hence,

(4.15) L+S + M ≥ 498

500
µ0♭ℓk ≥

99

100
µ0♭ℓk.

— Second case: N0 ≥ p1 + L1. By the definition of p1 ≤ (ǫ0µ0/1000)ℓk and L1:

s′ ≥ µ(κ10(R))
(
(1 − 10−3)(ℓk − p1)− (1 + 10−3)(N0 − p1)

)

≥ 999

1000
µ(κ10(R))ℓk − (1 + 10−3)µ(κ10R)N0

Hence, using 2µ♭(κ10(R) < 1:

L+S + M ≥ 999

1000
µ♭(κ10(R))ℓk − (1 + 10−3)µ♭(κ10R)N0 + [N0]k −N1

≥ 999

1000
µ♭(κ10(R))ℓk − (N0 − [N0]k)−N1.

In light of (4.12), to prove that eq. (4.15) also holds in this second case it is enough
to show:

Claim 4.8. For any 0 ≤ t ≤ ℓk, t− [t]κ ≤ µ0

250ℓk.

Proof of claim 4.8: We distinguish two cases. First assume that [t]κ < p1 + L0.
Then t, the first visit to κ10(R) after [t]κ, is bounded by the first visit after p1 +L0,
i.e.,

t− [t]κ ≤ t ≤ p1 + L0 ≤
µ0

500
ℓk

proving the claim in this case. Second we assume that [t]κ > p1 + L0. Then:

(4.16) (1− µ0/1000)µ(κ10(R))(t − p1)

≤ #{j ∈ [[τk(x) + p1, τk(x) + t[[: T jx ∈ κ10(R)}
= #{j ∈ [[τk(x) + p1, τk(x) + [t]κ]] : T jx ∈ κ10(R)}

≤ (1 + µ0/1000)µ(κ10(R))([t]κ + 1− p1)

So that t− p1 ≤ (1 + 3µ0/1000)([t]κ + 1− p1). Hence,

t− [t]κ ≤
3

1000
µ0[t]κ + 2− 3µ0

1000
p1 ≤

4

1000
ℓk,

proving the claim. �

Eq. (4.15) together with (4.13) implies:

(4.17) L+(S −R) + M − S = L+S + M − L+R− S ≥ 98

100
µ0L+ℓk
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This gives the other half of the type 1 requirement on P
τk+1(x)
τk(x) (x) for all k ∈

[[0, n[[\(B1 ∪ Bk). Hence P τn(x)(x) belongs to C(τn(x)). This concludes the proof
of eq. (4.11) and of Proposition 4.5. �

It also follows from the above proof that:

Corollary 4.9. τ has eventually bounded gaps in the sense of Appendix B w.r.t.
any large entropy measure.

Proof: Let µ be a large entropy measure. We fix τmax as in (4.6) and we proceed
by contradiction assuming that for any large enough t < ∞ (larger than τmax),
there is a set of positive µ-measure such that, for all of whose points x, there exist
sequences of integers nk ∈ Z and mk ∈ N∗ such that:

τmk
(T n

k x) > t ·mk and sup
k

d(0, [[nk, nk + τmk
(T n

k x)) <∞.

(the case with improper orbits is easy and left to the reader). It is now enough to
apply eq. (4.10-4.11) and Proposition A.2 as in the above proposition to get the
contradiction. �

5. Proof of the Main Results

We finally prove the main theorem by building a Markov system from the ar-
bitrary concatenations of admissible strips and relating it to the dynamics of the
piecewise affine homeomorphism.

5.1. Maximum Entropy Measures. We prove Theorem 1 about the finite num-
ber of maximum measures.

Step 1: Tower

Fix a Markov arrayR as in Proposition 3.6, defining a (R, L+)-periodic extension
(M+, T+, P+,R+) of (M, T, P,R).

Observe that it is enough to prove the results for the symbolic dynamics Σ :=
Σ(T+, P+) of that periodic extension, using that the periodic extension is a finite

extension and Corollary 2.10. We now build an invertible tower Σ̂ over Σ by defining
a return time τ : Σκ → N∗ for some Σκ ⊂ Σ as follows.

Definition 5.1. An extended admissible P+-word is a word w0 . . . wn over P+ such
that [w0 . . . wn] is an admissible strip. w0 . . . wn−1 is the associated admissible P+-
word.

For A ∈ Σ, define

t1(A) = sup{n ≥ 1 : A0 . . . An is an extended admissible word} ∈ N∗ ∪ {−∞,∞}

and tn+1(A) = t1(σ
tn(A)(A)) (or ∞ if tn(A) is not an integer). Let

Στ := {A ∈ Σ : ∀n ≥ 1 tn(A) ∈ N∗}.

Claim 5.2. Στ coincides with the set of P+-itineraries of the points x ∈ κs(R+)
up to a set negligible w.r.t. any large entropy measure.
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Proof of Claim: We tacitly exclude entropy-negligible subsets of points x ∈M+

(or Σ using Lemma 2.10). We prove first that for any x ∈ κs(R+), the itinerary A
of x belongs to Στ (R+).

x has a finite good return time m := τ(x) by Proposition 4.5. In particular,

A0 . . . Am is admissible and T
τ(x)
+ x ∈ κs(R+). By induction, A splits into a con-

catenation of admissible words S0S1S2 . . . (with identification of the first and last
symbols of successive Sks). The concatenations S0S1 . . . Sk are hyperbolic strips
for all k ≥ 0.

Now, if H := Pn
+0(x) is hyperbolic with n > m, then H is contained in S0 (an

m-admissible strip) and T mH meets the hyperbolic strip S1. Hence H cannot be
admissible, proving that τ(x) = t1(A) <∞. tn(A) < ∞ for all n ≥ 1 follows from
invariance. Hence, A ∈ Στ , proving the first inclusion.

Conversely, let A ∈ Στ and denote by x the point with itinerary A. [A0 . . . Am]
is an admissible strip for m = t1(A) so x ∈ A0 with A0 ∈ R. If k = tn(A), then
[A0 . . . Ak] is a concatenation of admissible strips, hence a k-strip. k being arbi-
trarily large, it follows that W s(x), which contains the intersection of the previous
strips, must cross A0, proving x ∈ κs(R). �

Observe that for all A ∈ Σκ such that t1(A) < ∞, σt1(A)(A) ∈ Σκ. Hence t1
is a return time and defines an invertible tower Σ̂ in the sense of Appendix B.
Moreover, Corollary 4.9 shows that any large entropy measure µ on Σ(T+, P+) has
eventually bounded gaps in the sense of Definition B.2. By Proposition B.3, any
such measure can be lifted to Σ̂ and the lift is a finite extension (in particular it
has the same entropy as µ).

It follows also that h(Σ̂) := supµ h(σ|hS, µ) = htop(Σ) so that maximum mea-

sures of Σ lift to maximum measures of Σ̂. Indeed, the above shows that h(Σ̂) ≥
htop(Σ). But point (3) of Proposition B.3 implies the converse inequality.

To prove the theorem it is therefore enough to show that Σ̂ has finitely many
ergodic measures of maximum entropy.

Step 2: Markov Structure

The Main Theorem will follow from Σ̂ being a Markov shift with a finiteness
property. Recall the following definition (see [12] for background):

Definition 5.3. A Markov shift is the left shift σ acting on:

Σ(G) := {x ∈ V Z : ∀n ∈ Z xn → xn+1 in G}
where G is an oriented graph with a countable set of vertices V . Such a graph is
(strongly) irreducible if for every (A, B) ∈ V 2, there is a path from A to B
on G. An (strongly) irreducible component is a subgraph with this property
maximum w.r.t. inclusion.

To define the relevant Markov structure, we say that, given two admissible words
w, w′, w′ is a follower of w if, s being the first symbol of w′, the concatenation ws
is an extended admissible word.

Claim 5.4. Σ̂ is topologically conjugate to the Markov shift defined by the oriented
graph G with vertices (w, i) where w is any admissible word and 0 ≤ i < |w| (| · | is
the length of the word) and arrows:

(w, i)→ (w, i + 1) if i + 1 < |w|, (w, |w| − 1)→ (w′, 0) if w′ is a follower of w.
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Proof of Claim: Define p : Σ(G) → Σ̂ by p(α) = (A, ω) such that for each
n ∈ Z, letting (w0 . . . wℓ−1, k) := αn, An = wk and ωn = 1 if and only if k = 0.
Observe that the sequence A thus obtained is a concatenation of admissible words
so A ∈ Σ. Also, whenever m and n are two successive integers with ωm = ωn = 1,
AnAn+1 . . . Am is an admissible word. Finally ωm = 1 for infinitely many positive

and negative integers m. σmA ∈ Σκ for all such m, so that (A, ω) ∈ Σ̂. Thus p is
well-defined and is clearly a topological conjugacy. �

Step 3: Conclusion

Proof of Theorem 1: To conclude, observe that G has finitely many irreducible
components, corresponding to the finitely many vertices of the type (w0, 0): at
most one for each rectangle in the Markov array R. Hence, by a classical result
of Gurevič [11], Σ(G) with h(Σ(G)) < ∞ has finitely many maximum measures,
proving the Main Theorem. �

5.2. Number of Periodic Points. We prove Proposition 1.3 about the number
of periodic points. We use the construction of the proof of Theorem 1. To prove
the lower bound (1.3). It is enough to prove it for T+, as T+ is an extension of T .
We assume by contradiction that the number of points fixed under T n

+ is such that
for any integer p ≥ 1, there is a sequence nk →∞ of multiples of p such that

(5.1) lim
nk→∞

NT+(nk)

enkhtop(T )
= 0

We replace Σ̂ by one of its irreducible component with maximum entropy. In the
following we denote (M+, T+, P+,R+) by (M, T, P,R)

The starting point is the following estimate for Σ̂. By Gurevič [11], the existence

of a maximum measure for T and hence for Σ̂ implies that G is positive recurrent
with parameter ehtop(T ). By Vere-Jones [25], this implies that the number NG(n)
of loops of length n based at a given vertex satisfies, for some positive integer p:

(5.2) lim
n→∞, p|n

NG(n)e−htop(T )n = p

(these computations go back to Vere-Jones [25]). We choose that p for the selection
of the nks in eq. (5.1).

Each n-periodic sequence A in the symbolic dynamics Σ is associated to an
n-periodic set

π̄(A) :=
⋂

n≥0

T n
+[A−n . . . An]

π̄(A) contains at least one point fixed by T n
+ which we denote by π(A). It remains

to show that π does not identify too much points.

Consider π from the set Σ(n) of n-periodic sequences to the set M+(n) of n-
periodic T+-orbits. Our assumption (5.1) implies that, for some sequence mn →∞
(for n = nk) this map is at least mn-to-1 on a subset Σ′(n) of Σ(n) with cardinality
at least enhtop(T )/3. We use the following observation:

Lemma 5.5. Let A1, . . . , Am ∈ Σ be such that π(A1) = · · · = π(Am) =: x. If the
finite words Ai

0 . . . Ai
n−1, i = 1, . . . , m, are pairwise distinct, then:

(1) either T kx is a vertex of P+ for some 0 ≤ k < n;
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(2) or there exist r ≥ (m − 1)/2 distinct integers 0 ≤ n1 < · · · < nr < n such
that for all 1 ≤ k < ℓ < n, if vk is the direction of the open edge containing
T nkx, then the image by T nℓ−nk of vk is transverse to vℓ.

Proof: Let the finite words Ai
0 . . . Ai

n−1, i = 1, . . . , m be like in the above state-
ment. We show that the failure of (1) implies (2).

Each word Ai
0 . . . Ai

n−1 defines an element of Pn
+ containing x in its closure so

mult(x, Pn
+) ≥ m. Observe that

(1) mult(x, P k+1
+ ) = mult(x, P k

+) if T kx is in the interior of an element of P+

or if for all A ∈ P k
+,

P k
+T k(A ∩B(x, ǫ)) ⊂ B for some B ∈ P+ and ǫ > 0.

(2) mult(x, P k+1
+ ) ≤ mult(x, P k

+) + 2 if T kx is not a vertex of P+.

(2) uses that T+ is a piecewise affine surface homeomorphism so the preimage of
an edge may locally divide in at most two subsets at most two of elements of P k

+

touching x.
This implies that mult(x, Pn

+) ≤ 1 + 2#{0 ≤ k < n : T kx is on an edge of P+}.
The Lemma follows. �

Proof of Proposition 1.3: Only const · n points of T+ can satisfy assertion
(1) in the above Lemma. As hmult(T+, P+) = 0, their preimages in Σ′(n) are in
subexponential number. The remainder of Σ′(n) corresponds to points x whose
orbit stays off the vertices of P+ and which admit distinct sequences Ai ∈ Σ′(n),
i = 1, . . . , mn with π(Ai) = x.

Given such an x, fix 0 < n1 < · · · < nr as in the Lemma. Pick j such that
0 ≤ nj+1−nj ≤ n/(mn/2−1). Thus T nj x is a vertex of Pnj+1−nj+1. The number of

such vertices, for given nj , is bounded by const ·#P
n/(mn/2−1)+1
+ . Even taking into

account the freedom in nj , the number of such xs is bounded by: e(2/mn)(htop(T )+ǫ)n

for all large n. Thus, for these large n = nk,

#Σ(n) ≤ 3#Σ′(n) ≤ 3e(2/mn)(htop(T )+ǫ)n + 3eǫn.

As mn → ∞, this contradicts the previous Vere-Jones estimate (5.2), proving the
lower bound (1.3) and Proposition 1.3. �

Appendix A. Bounds on Metric Entropy

It is a standard fact that the entropy of a measure can be computed as the average of
the entropies given the past. More precisely, we have the following statement:

Lemma A.1. Let µ be an invariant probability measure for some bimeasurable bijection
T : X → X. Let P be a finite, measurable partition. Then:

(A.1) h(T, µ, P ) =

∫

X

Hµ(P |P−)(x)µ(dx)

where Hµ(P |P−)(x) = −
∑

A∈P µx(A) log µx(A) with µx(A) := E(χA|P
−)(x) and P− is

the past partition generated by T nP , n ≥ 1.
In particular, if N(n, x, P ) = #{P n−1

0 (y) : y ∈ X and P−1
−∞(y) = P−1

−∞(x)} where

P b
a(x) := (An)a≤n≤b,n∈Z with T nx ∈ An, then:

(A.2) h(T, µ, P ) ≤

∫

X

1

n
log N(n, x, P )µ(dx)
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Proof: For eq. (A.1), see, e.g., [21, Ex. 4(b) p.243] for entropy as an average of con-
ditional information and [21, Rem. 2.2 p. 236] for the reduction to the above, weaker
statement about conditional entropy.

Eq. (A.2) now follows from the standard bound: for every x ∈ X, Hµ(A|B)(x) ≤
log #{a ∈ A : a ∩ b 6= ∅} where b is the element of B containing x. �

In combination with Rudolph’s backward Vitali Lemma [22, Theorem 3.9 p.33], it
yields:

Proposition A.2. Let µ be an ergodic, σ-invariant probability measure on AZ with finite
alphabet A. Assume that there exist a measurable family of subsets W (A−, ℓ) ⊂ P ℓ (for
A− ∈ AZ− , ℓ ≥ 1) with cardinality bounded by CeHℓ and a subset Σ0 ⊂ AZ of positive
measure such that, for all A ∈ Σ0, there are sequences of integers ai = ai(A), bi = bi(A),
i ≥ 1, (depending measurably on A) satisfying:

(1) limi→∞ bi − ai = ∞ ;
(2) supi d(0, [[ai, bi]]) < ∞;
(3) AaiAai+1 . . . Abi−1 ∈ W (. . . Aai−2Aai−1, bi − ai)

Then

h(σ, µ) ≤ H.

Proof: To apply Rudolph’s Backward Vitali Lemma, we need

(A.3) ai(A) ≤ 0 ≤ bi(A)

for all large enough i, for all A ∈ Σ0. By passing to subsequences, depending on A, we
can assume the existence of the (possibly infinite) limits limi→∞ ai(A), limi→∞ bi(A) for
all A ∈ Σ0. Assume for instance that limi ai(A) = −∞ and limi→∞ bi(A) < 0 for a.e.
A ∈ Σ0, the other cases being similar or trivial. By assumption, infi bi(A) > −∞ for all
A ∈ Σ0. Restricting Σ0 we can assume that this infimum is some fixed number b ∈ Z.
Replacing Σ0 by σmin(b,0)Σ0 ensures eq. (A.3).

Rudolph Lemma implies that for any ǫ > 0, for µ-a.e. A, for all large enough integers
n, one can find a disjoint cover of a fraction at least 1− ǫ of [[0, n[[ by at most ǫn intervals
[[ai, bi]] such that: Aai . . . Abi

∈ W (. . . Aai−2Aai−1, bi − ai) Applying eq. (A.2) with:

N(A, n) ≤

(
n

2ǫn

)

eHn × #Aǫn.

gives that h(σ, µ) ≤ H + 3ǫ log ǫ + ǫ log #A. We conclude by letting ǫ → 0+. �

Appendix B. Tower Lifts

We study towers from a point of view closely related to that of Zweimuller [27]. Let
T be an ergodic invertible transformation of a probability space (X, µ) and let B be a
measurable subset of X. A return time is a function τ : B → N̄∗ := {1, 2, . . . ,∞} which

is measurable and such that T τ(x)(x) ∈ B for all x ∈ B with τ (x) < ∞ (but τ is not
necessarily the first return time).

We are interested in lifting T -invariant measures to the following invertible tower:

(B.1) X̂ := {(x, ω) ∈ X × {0, 1}Z : ωn = 1 =⇒ T nx ∈ B and

τ (T nx) = min{k ≥ 1 : ωn+k = 1} } \ X̂∗

with T̂ (x,ω) = (Tx, σ(x)) and X̂∗ is the set of (x,ω) with only finitely many 1s either

in the future or in the past of ω. (X̂, T̂ ) is an extension of a subset of (X, T ) through

π̂ : X̂ → X defined by π̂(x,ω) = x.
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Remark B.1. The jump transformation T τ : {x ∈ B : τ (x) < ∞} → B is defined by

T τ (x) := T τ(x)(x). It is closely related to T̂ . Indeed, T τ is the first return map of T̂ on

[1] := {(x, ω) ∈ X̂ : ω0 = 1} so any T̂ -invariant probability measure gives by restriction
and normalization a T τ -invariant measure (see [27]).

Such lifting requires that τ be ”not too large” (see [27] where the classical integrability
condition is studied). Our condition is in terms of the following ’iterates’ of τ : the
functions τm : B → N̄∗, m ≥ 1, are defined, as before, by: τ1 := τ and τm+1(x) :=

τ (T τm(x)(x)) if τm(x) < ∞, τm+1(x) := ∞ otherwise.

Definition B.2. x ∈ X has an improper orbit if

(B.2) n(x) := {n ∈ N : T−nx ∈ B and ∀m ≥ 1τm(T−nx) < ∞} is finite.

x ∈ X has t-gaps for some 0 < t < ∞ if x has an improper orbit or if there exist two
integer sequences nk ∈ Z and mk ∈ N∗ such that:

τmk
(T nkx) ≥ max(t · mk, k) and max

k≥1
d(0, [nk, nk + τmk

(T nkx)]) < ∞.

A measure has eventually bounded gaps, if for some t < ∞, the set of points in X
with t-gaps has zero measure.

Note that τ (T nx) = ∞, for a single n, implies that x has t-gaps for any t < ∞.

Proposition B.3. Let T : X → X be a self-map with a return time τ : B → N∗ as above.
Then:

• every T -invariant ergodic probability measure µ with eventually bounded gaps can
be lifted to a T̂ -invariant ergodic probability measure on X̂;

• any T̂ -invariant, ergodic probability measure µ̂ is a finite extension of the T -
invariant measure π̂(µ̂).

Proof of Proposition B.3: We first prove the existence of a lift for µ like above. We
follow the strategy of [27] and [17] (which was inspired by constructions of Hofbauer) and
define the following non-invertible tower to get the right topology:

X̃ := {(x, k, τ ) ∈ X × N × N : ∃y ∈ B τ (y) = τ, k < τ and x = T ky}

T̃ (x, k, τ ) := (T (x), k + 1, τ ) if k + 1 < ℓ, (T (x),0, τ (T (x))) otherwise.

We write X̃K := {(x, k, τ ) ∈ X̃ : k = K}, X̃>K :=
⋃

k>K X̃k and define π̃(x, k, τ ) = x.

Observe that π̃ ◦ T̃ = T ◦ π̃ and that (X̂, T̂ ) is a natural extension of (X̃, T̃ ) through
(x,ω) 7→ (x, k, ℓ) with k ≥ 0 minimum such that ω−k = 1 and ℓ = τ (T−kx). Hence it is

enough to lift µ to X̃ .
Fix t < ∞ such that the set of points with t-gaps has zero µ-measure. Let µ̃0 be the

probability measure defined by

µ̃0({(x, 0, τ (x)) : x ∈ A}) = µ(A) for all Borel A

(sets disjoint from the above ones have zero µ̃0-measure). We have π̃(µ̃0) = µ but, except

in trivial cases, T̃ µ̃0 6= µ̃0 so we consider:

µ̃n :=
1

n

n−1∑

k=0

T̃ kµ̃0

and wish to take some accumulation point µ̃. We identify µ̃n with its density with respect
to µ̃∞ the σ-finite measure defined by

µ̃∞({(x, k, τ (T−kx)) : x ∈ A}) = µ(A ∩ {τ > k})

for all Borel A ⊂ B. As π̃(µ̃n) = µ, we must have:

dµ̃n

dµ̃∞

≤ 1.
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Figure 5. Geometry of (left) a continuous piecewise affine map with
hmult(T, P ) > htop(T ) = 0; (right) a discontinuous piecewise affine map
with no maximum measure.

Using the Banach-Alaoglu theorem, i.e., the weak star compactness of the unit ball of
L∞(µ̃∞) as the dual of L1(µ̃∞), we get a measure µ̃ on X̃ with dµ̃/dµ̃∞ ≤ 1 such that,
for some subsequence nk → ∞,

(B.3) ∀f ∈ L1(µ̃∞) lim
k→∞

∫
f dµ̃nk

=

∫
f dµ̃.

Observe that µ̃ is T̃ -invariant: indeed, eq. (B.3) together with the T -invariance of µ

implies that dµ̃◦ T̃−1/dµ̃ ≤ 1 whereas µ̃◦ T̃−1(X̃) = µ̃(X̃) so the previous inequality must
be an equality µ̃-almost everywhere.

Using this invariance and the ergodicity of µ it is easily seen that π̃µ̃ = αµ for some
0 ≤ α ≤ 1. It remains to prove that µ̃ 6= 0 so that it can be renormalized into the
announced lift of µ. Assume by contradiction that µ̃ = 0. Hence, for any L < ∞:

∫
1X̃≤L

dµ̃nk
=

∫
1

nk

#{0 ≤ k < nk : T̃ k(x, 0, τ (x)) ∈ X̃≤L} dµ → 0

So, possibly for a further subsequence:

(B.4)
1

nk

#{0 ≤ k < nk : T̃ k(x, 0, τ (x)) ∈ X̃≤L} → 0 µ-a.e.

Now,

#{0 ≤ k < t : T̃ k(x, 0, τ (x)) ∈ X̃0} < n =⇒ t ≤ τn(x)

Hence eq. (B.4 implies that x (in fact any of its preimages in the natural extension) has
t-gaps for all t > 0, contradicting the assumption on µ.

We show now that any T̂ -invariant, ergodic probability measure µ̂ is a finite extension

of µ := π̂(µ̂). By definition of X̂, µ̂([1]) > 0 where [1] = {(x, ω) ∈ X̂ : ω0 = 1}. Let
K be an integer such that for all x in a set of positive measure, one can find K distinct
sequences ω1, . . . , ωK ∈ ω(x), each (x, ωi) belonging to the full measure set of µ̂-generic
points. Hence,

lim
n→∞

1

n
#{0 ≤ k < n : ωj

−k = 1} = µ̂([1]).

If K · µ̂([1]) > 1, there exist j 6= j′ and arbitrarily large integers nk → ∞ such that

ωj
−nk

= ωj′

−nk
. But this implies ωj = ωj′ by Lemma 3.22. The contradiction proves

K ≤ µ̂([1])−1 < ∞: µ̂ is a finite extension of µ. �

Appendix C. Examples

Positive Multiplicity Entropy

Example 1 (see [5]). There exists a continuous, piecewise affine surface map (M, T, P )
with hmult(T, P ) > 0 and htop(T ) = 0.

Consider some triangle ABO in R2 with non-empty interior and let M, A′, B′ be the
middle points of [AB], [AO], [BO] (see Fig. 5, left). Let T be affine in each of the triangles
τ0 := AMO and τ1 := BMO with T (O) = O, T (A) = T (B) = A′, T (M) = B′ so
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that T : ABO → ABO is conjugate to (θ, r) 7→ (1 − 2|θ|, r/2) on (−1, 1) × (0, 1). Take
P = {τ0, τ1} as the admissible partition.

hmult(T, P ) = log 2 (because all words on {τ0, τ1} appear in the symbolic dynamics).
On the other hand, the only invariant probability measure is the Dirac supported by O
hence htop(T ) = 0 as claimed.

Example 2 (see Kruglikov and Rypdal [18]). There exists a piecewise affine homeo-
morphism (M, T, P ) with dim M = 3 and hmult(T, P ) = htop(T ) > 0.

Let ([0, 1]2, T2, P2) be a piecewise affine homeomorphism with nonzero topological en-

tropy. Consider the pyramid M := [̂0, 1]2 where Â denotes the convex set generated by
(0, 0, 0) and A × {1}. Define T : M → M as the piecewise affine map with partition

P := {Â : A ∈ P2} such that: T (0, 0, 0) = (0, 0, 0), T (x, y, 1) = (T2(x, y), 1) for each
vertex (x, y) of P2. Observe that htop(T ) = htop(T2) and that T has an obvious measure
of maximum entropy carried by the invariant set [0, 1]2 × {1}. Finally, considering T n

around (0, 0, 0) it is easy to see that hmult(T, P ) = htop(T2) = htop(T ).

Example 3. There exists a piecewise affine homeomorphism (M, S, P ) with dim M = 3,
hmult(S, P ) > 0 and htop(S) = 0.

Define S from the previous example T by S(x, y, z) := T (x, y, z)/2 on the pyramid M
so that 0 is a sink. To make S onto, add a symmetric pyramid M− whose summit is a
source.

No Maximal Measure

Example 4. There exists a piecewise affine surface (M, T, P ) discontinuous map T such
that (i) the set of invariant probability measures is non-empty and compact in the usual
weak star topology; (ii) there is no maximum measure.

Remark. (i) excludes trivial examples like T : [0, 1] → [0, 1] with T (x) = 1/4 + x/2 for
x > 1/2 and T (x) = x + 1/2 for x ≤ 1/2 which has no invariant probability measure.

Let T be a piecewise affine map defined on the triangle M := XY O with O = (0, 0),
X = (−2, 2) and Y = (2, 2). Let A = (−1, 1), B = (1, 1) and M = (0, 1), and A′ = A/2,
B′ = B/2 and M ′ = M/2 (see Fig. 5, right). We require:

(1) T |XY BA is the identity;
(2) T : AMO → A′B′O is affine with A 7→ A′, M 7→ B′, O 7→ O;
(3) T : MBO → Y XO is affine with M 7→ Y , B 7→ X, O 7→ O;
(4) T (O) = O.

It is easy to see that supµ h(T, µ) = log 2: for any h < log 2, one can find an invariant

measure on {0, 1}N such that µ([1K ]) = 0 for some K < ∞ with entropy at least h. It
is then easy to construct an isomorphic T -invariant measure (with support included in
y < 1), proving that supµ h(T, µ) ≥ log 2. The equality follows from htop(T ) = log 2.

On the other hand, assume that µ is an invariant and ergodic probability measure
with h(T, µ) = 2. µ must be supported on y < 1. Hence the map π that sends a
point of R2 to the ray from the origin that contains it, maps (T, µ) to (f, π+µ) where
f : θ 7→ 1 − 2|θ| on [0, 1]. The fibers of π are contained in intervals on which T has no
distortion, hence they have zero entropy and π is entropy-preserving. This implies that
π+µ is the (1/2, 1/2)-Bernoulli measure. Using, say the Central Limit Theorem, we get
that, for µ-a.e. (x, y) ∈ ABO, there exists a positive integer n such that

#{0 ≤ k < n : fk(π(x, y)) < 1/2} ≥
| log y|

2 log 2
−

n

2

so that T m(x) ∈ XY BA for some m ≤ n. This shows that there is no maximum measure.
Let us show that the set of invariant probability measure P(T ) is compact. Let µn

be some sequence of T -invariant probability measures converging to some probability
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measure µ0 on the compact set M . µ0 can fail to be T -invariant only if there is some
ǫ0 > 0 such that, for any neighborhood U of [AB] ∪ [OM ], U ′ := U \ (XY BA ∪ {O})
satisfies: µn(U ′) > ǫ0 for all large n. But one can find U such that T k(U ′) ∩ U ′ = ∅ for
all 0 < k < 2/ǫ0, a contradiction.

Example 5. There exists a continuous, piecewise quadratic surface map T such that for
any invariant probability measure µ:

h(T, µ) < sup
ν

h(T, ν).

On the rectangle [1, 2] × [−1, 1], consider T (x, y) := (x, Tx(y)) with:

Tx(y) =

{
x(2−x)

2
− x|y| if |y| < 2 − x

−x(2−x)
2

otherwise

For each 1 ≤ x < 2, [−1, 1] is mapped into the Tx-forward invariant segment [−x(2−x)
2

, x(2−x)
2

]
on which Tx has constant slope x. Hence htop(Tx) = log x for x 6= 2. Clearly, T (2, y) =
(2, 0) so htop(T2) = 0.
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