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A sto
hasti
 SIR model with 
onta
t-tra
ing:large population limits and statisti
al inferen
eStéphan Clémençon∗†, Viet Chi Tran♯ and He
tor de Arazoza§
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om No.5141, FRANCE
♯ Equipe Probabilités et Statistiques, Laboratoire Paul Painlevé, Université Lille 1, FRANCE
§ MATCOM, Fa
ultad de Matemati
a y Computa
ion, Universidad de la Habana, CUBA(Re
eived 00 Month 200x; revised 00 Month 200x; in �nal form 00 Month 200x)This paper is devoted to present and study a spe
i�
 sto
hasti
 epidemi
 model a

ounting for the e�e
t of 
onta
t-tra
ing on thespread of an infe
tious disease. Pre
isely, one 
onsiders here the situation in whi
h individuals identi�ed as infe
ted by the publi
 healthdete
tion system may 
ontribute to dete
ting other infe
tious individuals by providing information related to persons with whom theyhave had possibly infe
tious 
onta
ts. The 
ontrol strategy, that 
onsists in examining ea
h individual one has been able to identify onthe basis of the information 
olle
ted within a 
ertain time period, is expe
ted to reinfor
e e�
iently the standard random-s
reeningbased dete
tion and sla
k 
onsiderably the epidemi
. In the novel modelling of the spread of a 
ommuni
able infe
tious disease 
onsideredhere, the population of interest evolves through demographi
, infe
tion and dete
tion pro
esses, in a way that its temporal evolution isdes
ribed by a sto
hasti
 Markov pro
ess, of whi
h the 
omponent a

ounting for the 
onta
t-tra
ing feature is assumed to be valued ina spa
e of point measures. For adequate s
alings of the demographi
, infe
tion and dete
tion rates, it is shown to 
onverge to the weakdeterministi
 solution of a PDE system, as a parameter n, interpreted as the population size roughly speaking, be
omes large. Fromthe perspe
tive of the analysis of infe
tious disease data, this approximation result may serve as a key tool for exploring the asymptoti
properties of standard inferen
e methods su
h as maximum likelihood estimation. We state preliminary statisti
al results in this 
ontext.Eventually, relation of the model to the available data of the HIV epidemi
 in Cuba, in whi
h 
ountry a 
onta
t-tra
ing dete
tion systemhas been set up sin
e 1986, is investigated and numeri
al appli
ations are 
arried out.Keywords: mathemati
al epidemiology, sto
hasti
 SIR model, 
onta
t-tra
ing, measure-valued Markov pro
ess, HIV, large populationapproximation, 
entral limit theorem, maximum likelihood estimation.AMS Subje
t Classi�
ation: 92D30, 62P10, 60F051. Introdu
tionSin
e the seminal 
ontribution of [21℄, the mathemati
al modelling of epidemiologi
al phenomena has re-
eived in
reasing attention in the applied mathemati
s literature. Referen
es devoted to epidemi
 modellingor statisti
al analysis of infe
tious disease data are mu
h too numerous for being listed in this paper (referto [4, 29℄ for re
ent a

ounts of sto
hasti
 epidemi
 modelling, while deterministi
 models for the spreadof infe
tious diseases are 
omprehensively presented and dis
ussed in [3, 9℄). Here, an attempt is made toextend the 'general sto
hasti
 epidemi
 model', usually referred to as the standard SIR model, in order totake appropriate a

ount of the e�e
t of a 
onta
t-tra
ing 
ontrol measure on the spread of the epidemi
at the population level and to a
quire a better understanding of the e�
ien
y of this intervention strategy.In the area of publi
 health pra
ti
e, by 
onta
t-tra
ing one means the a
tive dete
tion me
hanism that
onsists in asking individuals identi�ed as infe
ted to name persons with whom they have had possiblyinfe
tious 
onta
ts and then, on the basis of the information provided, in striving to �nd those persons inorder to propose them a medi
al examination and a 
ure in the event of infe
tion. Though expensive and
ontroversial, '
onta
t-tra
ing' programs are now re
eiving mu
h attention both in the s
ienti�
 literature(see [11, 15, 31℄ or [28℄ for instan
e) and in the publi
 health 
ommunity, within whi
h they are generally
onsidered as e�
ient guidan
e methods for bringing the spread of sexually transmissible diseases (STD's)
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ontrol. For instan
e, a 
onta
t-tra
ing dete
tion system has been set up sin
e 1986 for 
ontrollingthe HIV epidemi
 in Cuba (refer to [10℄ for an overview of the evolution of HIV/AIDS in Cuba), whi
hshall serve as a running illustration for the 
on
epts and methods studied in the present paper. Fromthe perspe
tive of publi
 health guidan
e pra
ti
e, mathemati
al modelling of epidemi
s in presen
e ofa 
onta
t-tra
ing strategy reinfor
ing a s
reening-based dete
tion system is a 
ru
ial stake, insofar as itmay help evaluating the impa
t of this 
ostly 
ontrol measure. In this framework, epidemi
 models mustnaturally a

ount for the fa
t that, on
e dete
ted, an infe
ted person keeps on playing a role in the evolutionof the epidemi
 for a 
ertain time by helping towards identi�
ation of infe
tious individuals.The primary goal of this paper is to generalize the standard SIR model by in
orporating a stru
ture byage in the subpopulation of dete
ted individuals, age being here the time sin
e whi
h a person has beenidenti�ed as infe
ted. At any time, the 'R' 
lass is des
ribed by a point measure, on whi
h the 
onta
t-tra
ing dete
tion rate is supposed to depend. In this manner, the way an 'R' individual 
ontributes to
onta
t-tra
ing dete
tion may be made strongly dependent on the time sin
e her/his dete
tion througha given weight fun
tion ψ, allowing for great �exibility in the modelling. Assuming in parti
ular a largepopulation in whi
h the infe
tious disease is spread, properties of the mathemati
al model are thoroughlyinvestigated and preliminary statisti
al questions are ta
kled. Beyond sto
hasti
 modelling of the 
onta
t-tra
ing feature, the present work establishes large population limit results (law of large numbers and 
entrallimit theorem) for the measure-valued Markov pro
ess des
ribing the epidemi
 (we follow in this respe
tthe approa
h developed in [13,24,34,35℄), as well as in its appli
ation to statisti
al analysis of the epidemi
.The paper is organized as follows. In Se
tion 2, a Markov pro
ess with an age-stru
tured 
omponentis introdu
ed for modelling the temporal evolution of an epidemi
 in presen
e of 
onta
t-tra
ing. A shortqualitative des
ription is provided, aiming at giving an insight into how the dynami
 is driven by a fewkey 
omponents. The pro
ess of interest is the solution of a sto
hasti
 di�erential equation (SDE) forwhi
h existen
e and uniqueness results are stated, together with a short probabilisti
 study. The mainresults of the paper are displayed in Se
tion 3. Considering a sequen
e of epidemi
 models with 
onta
t-tra
ing indexed by a parameter n ∈ N
∗ representing the population size roughly speaking, limit results areestablished when n→ ∞. Appli
ations of the latter to the study of maximum likelihood estimators (basedon 
omplete data) in the 
ontext of statisti
al parametri
 estimation of the epidemi
 model with 
onta
t-tra
ing are then 
onsidered in Se
tion 4. Eventually, in Se
tion 5, these inferen
e te
hniques are appliedfor analyzing data related to the HIV epidemi
 in Cuba and drawing preliminary 
on
lusions about thee�e
tiveness of 
onta
t-tra
ing in this parti
ular 
ase: it 
an be seen that the 
hosen model espe
ially re�e
tsthe growing e�
ien
y of the 
onta
t-tra
ing dete
tion method, the latter be
oming almost as 
ompetitiveas the random s
reening based method ten years after the beginning of the epidemi
. Te
hni
al proofs arepostponed to the Appendix.2. The sto
hasti
 SIR model with 
onta
t-tra
ingEpidemi
 problems really present a great 
hallenge to probabilists and statisti
ians. Models for the spread ofinfe
tions are based on hypotheses about su
h me
hanisms as infe
tion and dete
tion. The huge diversityof possible hypotheses 
ould give rise to an enormous variety of probabilisti
 models with their spe
i�
features. Although 
omprehensive mathemati
al models should in
orporate numerous features to a

ountfor real-life situations (su
h as population strati�ed a

ording to so
io-demographi
 
hara
teristi
s, time-varying infe
tivity, e�e
ts of latent period, 
hange in behavior, et
.), we shall deal with a sto
hasti
 epidemi
model with a reasonably simple stru
ture (a modi�ed version of the standard 'Markovian SIR model withdemography', a
tually), while 
overing some important aspe
ts and keeping thus its pertinen
e from theperspe
tive of pra
ti
al appli
ations. Indeed, in
orporating too many features would naturally make themodel too di�
ult to study analyti
ally. As previously mentioned, we are mainly 
on
erned here witha probabilisti
 modelling of the spread of an infe
tious disease in presen
e of a 
onta
t-tra
ing 
ontrolstrategy in the long-range (i.e. when one 
annot assume that the epidemi
 
eases before some demographi

hanges o

ur, leading up to take into 
onsideration immigration/birth and emigration/death pro
esses).A par
imonious Markovian stru
ture for des
ribing these features is stipulated, the main novelty arisingfrom the measure-valued 
omponent in
orporated into the model in order to a

ount for the e�e
ts of
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onta
t-tra
ing. Beyond its simpli
ity, our modelling hopefully su�
es to shed some light on the problemof investigating the e�
a
y of su
h a 
ontrol measure. In the 
ase of the HIV epidemi
 in Cuba for instan
e(see Se
tion 5), the model obtained a

ounts for the fa
t that 
onta
t-tra
ing has be
ome as e�
ient asrandom s
reening after 6 years. To our knowledge, earlier works have not allowed to 
onstru
t a modelre�e
ting this phenomenon (see [11℄ and the referen
es therein).2.1. The population dynami
sWe start with a qualitative des
ription of the population dynami
s and a list of all possible events throughwhi
h the population of interest may evolve (see Fig. 1). The population is stru
tured into three 
lasses
orresponding to the di�erent possible states with respe
t to the infe
tious disease. We adopt the standardSIR terminology for denoting the 
urrent status of an individual with the only di�eren
es that 'R' standshere for the population of 'removed individuals willing to take part in the 
onta
t-tra
ing program' andthat it is stru
tured a

ording to the age of dete
tion, namely the time sin
e a dete
ted individual hasbeen identi�ed by the publi
 health dete
tion system as infe
ted. Su
h a distin
tion allows for 
onsideringheterogeneity in the way ea
h 'R' individual 
ontributes to the 
onta
t-tra
ing 
ontrol. Hen
e, at any time
t ≥ 0 the 
lass of removed individuals is des
ribed by Rt(da) in MP (R+), the set of point measures on
R+: for all 0 < a1 < a2 < ∞, the quantity Rt([a1, a2]) represents the number of removed individuals whohave been dete
ted between times t− a2 and t − a1. Here and throughout, we use the notation 〈R,ψ〉 =∫
ψ(a)R(da), R being any positive measure on R+ and ψ any R-integrable fun
tion. In a more standardfashion, we shall denote by St and It the sizes of the 
lasses of sus
eptible and infe
tious individuals.

-

λ0 S
?

µ0S

-

λ1(S, I) I
?

µ1I

�
�

�
�

�
�*

H
H

H
H

H
Hj

λ2I

λ3(I, 〈R,ψ〉))

R(da)Figure 1. Flow-diagram of the SIR model with 
onta
t-tra
ing dete
tion.Individuals immigrate one at a time a

ording to a Poisson pro
ess of intensity λ0. On
e in the population,an individual be
omes 'sus
eptible' and may either leave the population without being 
ontaminated (em-igration or death) or independently be infe
ted. Emigrations o

ur in the population at time t ≥ 0 withthe hazard rate µ0St and infe
tions with the rate λ1(St, It). On
e infe
ted, an individual 
an be dis
overedby the dete
tion system either by random s
reening ('spontaneous dete
tion') or by 
onta
t-tra
ing, orelse emigrates/dies. The hazard rates asso
iated with these events are respe
tively λ2It, λ3(It, 〈Rt, ψ〉),where ψ : R+ → R+ is a bounded and measurable weight fun
tion that determines the 
ontribution of aremoved individual to the 
onta
t-tra
ing 
ontrol a

ording to the time a she/he has been dete
ted (seethe examples dis
ussed below) and µ1It. If dete
ted, an individual takes part in the 
onta
t-tra
ing systemby providing useful information related to her/his (possibly) infe
tious 
onta
ts. We do not 
onsider theemigration/death of dete
ted individuals sin
e it is the availability of the information that they have givenrather than their presen
e in the system that plays a role in the 
onta
t-tra
ing pro
ess. In order to avoidpossible misunderstanding due to the notation, we underline that λ1(., .) and λ3(., .) here denote jump ratefun
tions related to the SIR pro
ess and not the individual rates (for instan
e, given the 
lass sizes S and
I, the infe
tion rate of a given sus
eptible is λ1(S, I)/I).The events through whi
h the sizes St, It and the point measure Rt evolve are numbered as follows:
• Event E = 0: re
ruitment of a sus
eptible,
• Event E = 1: death/emigration of a sus
eptible,
• Event E = 2: infe
tion,
• Event E = 3: 'spontaneous' dete
tion of an infe
tive,
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• Event E = 4: dete
tion of an infe
tive by 
onta
t-tra
ing,
• Event E = 5: death/emigration of an infe
tive.Before providing a des
ription of the population pro
ess introdu
ed above via a system of SDE's, a fewremarks and examples are in order.Examples. (On modelling the 
onta
t-tra
ing feature) As previously explained, the removedindividuals 
ontribute to 
onta
t-tra
ing in fun
tion of the time sin
e their dete
tions and through theweight fun
tion ψ.1. In the 
ase where the information provided by a dete
ted person enables to examine individuals at a
onstant rate over a period of time of �xed length τ > 0 immediately after its dete
tion (after this timeperiod the information is 
onsidered as 
onsumed), the weight fun
tion 
ould be 
hosen as

ψ(a) = 1{a∈[0,τ ]}, for all a ≥ 0.Here we have denoted by 1E the indi
ator fun
tion of E. The se
ond argument of the 
onta
t-tra
ing dete
tionrate, 〈Rt, ψ〉, is then the number of individuals dete
ted between times t− τ and t.2. The following 
hoi
e:
ψ(a) = e−c·a, for all a ≥ 0, (1)with c > 0, is of parti
ular interest when assuming that e�
ien
y of the information provided by a dete
tedindividual (geometri
ally) de
reases as the time a sin
e its dete
tion in
reases.3. To take into a

ount the di�
ulties one may en
ounter at the early stages of the sear
h for 
onta
ts, we
an 
onsider fun
tions ψ that are in
reasing from zero before de
aying. From this viewpoint, a suitable betaor gamma density fun
tion would be possibly a reasonable 
hoi
e of parametri
 weight fun
tion ψ.Remark 1 (Expli
it forms for jump rate fun
tions) Until now, no expli
it form for the infe
tion rateand the dete
tion by 
onta
t-tra
ing rate has been spe
i�ed for generality's sake (it shall be neverthelessassumed that λ1 and λ3 both ful�ll the 
olle
tion of assumptions H1 listed below). In pra
ti
e typi
al
hoi
es for the infe
tion rate fun
tion are λ1SI, λ1SI/(I + S) or λ1I with λ1 > 0 (in order to lightennotation, abusively, we shall still denote by λ1 and λ3 the parameters 
hara
terizing the parametri
 formsof the rate fun
tions λ1(., .) and λ3(., ., .)). In the �rst example, a sus
eptible be
omes infe
ted with anindividual rate λ1I proportional to the number of infe
ted individuals. This rate is generally referred to asthe mass a
tion prin
iple based model. In 
ontradistin
tion, the two last examples 
orrespond to a situationwhere the rate at whi
h a given infe
tive makes infe
tious 
onta
t does not in
rease with the size S of thepopulation of sus
eptibles. Equivalently, the individual rate at whi
h a sus
eptible be
omes infe
ted, λ1I/Sor λ1I/(I+S), de
reases when S in
reases. Su
h rates are usually termed frequen
y dependent. In a similarfashion, the rate of dete
tion by 
onta
t-tra
ing may be 
hosen as λ3I〈R,ψ〉, λ3I〈R,ψ〉/(I + 〈R,ψ〉) or

λ3〈R,ψ〉, with λ3 > 0.Remark 2 (A more general framework) One may 
onsider generalizations of the setup des
ribedabove, stipulating for instan
e that the 'S' and 'I' 
lasses are strati�ed a

ording to so
io-demographi
features (or sexual behavior 
hara
teristi
s in the 
ontext of STD's) in order to a

ount for heterogeneities
aused by the so
ial stru
ture of the population, even if it entails introdu
ing more duration variables in themodel. One may also introdu
e the 'age of infe
tion'. This would enable us to model dire
tly time-varyinginfe
tivity, o�ering this way an alternative to so-
alled 'stage modelling' approa
hes (see [18℄ for instan
e).The theoreti
al results of this paper may be extended in a straightforward manner to su
h more generalframeworks. In order to lighten the notation and make proofs simpler, we restri
t the study to the modeldes
ribed above.Assumptions H1: In the remainder of the paper, the rate fun
tions λ1 and λ3 are assumed to belongto C1(R2
+), the set of real fun
tions of 
lass C1 on R

2
+. We denote by by ∂Sλ1, ∂Iλ1, ∂Iλ3 and ∂Rλ3 theirpartial derivatives. We also suppose that all these fun
tions are lo
ally Lips
hitz 
ontinuous and dominated
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ing_revised2 5by the mapping (x, x′) ∈ R
2
+ 7→ xx′: for k ∈ {1, 3}, we assume that ∀N > 0, ∃Lk(N) > 0 su
h that

∀(x, x′), (y, y′) ∈ [0, N ]2, |λk(x, x′) − λk(y, y
′)| ≤ Lk(N)(|x− y| + |x′ − y′|),and that ∃λ̄k > 0, ∀(x, x′) ∈ R

2
+, λk(x, x

′) ≤ λ̄kxx
′ (and similarly for the partial derivatives). Finally, theweight fun
tion ψ is assumed measurable and bounded. Furthermore, for the 
entral limit theorem, we willsuppose it is of 
lass C2.2.2. On des
ribing the epidemi
 by sto
hasti
 di�erential equationsTreading in the steps of [13℄ who fully developed a mi
ros
opi
 approa
h for e
ologi
al systems (see also[34,35℄ where age-stru
ture is taken into a

ount), we now des
ribe the temporal evolution of the epidemi
by a measure-valued SDE system driven by Poisson point measures.The pro
ess {(St, It, Rt(da))}t≥0 de�ned through the SDE system below takes its values in N × N ×

MP (R+) and may be seen as a generalization of the 
lassi
al ve
tor-valued Markov pro
esses arising insto
hasti
 SIR models.Definition 2.1 Consider a probability spa
e (Ω,F ,P), on whi
h are de�ned:(i) a random ve
tor (S0, I0) with values in (N∗)2 su
h that E[S0 + I0] < +∞ (at t = 0, we assume that noone has been dete
ted yet),(ii) two independent Poisson point measures on R
2
+, QS(dv, du) and QI(dv, du), with intensity dv⊗du, theLebesgue measure on R

2
+, and independent from the initial 
onditions (S0, I0).De�ne {(St, It, Rt(da))}t≥0 as the Markov pro
ess solution of the following system of SDEs:





St = S0 +
∫ t
v=0

∫∞
u=0

(
10≤u≤λ0

− 1λ0<u≤λ0+µ0Sv−+λ1(Sv−,Iv−)

)
QS(dv, du)

It = I0 +
∫ t
v=0

∫∞
u=0 1λ0<u≤λ0+λ1(Iv−,Sv−)Q

S(dv, du)

−
∫ t
v=0

∫∞
u=0 10≤u≤(µ1+λ2)Iv−+λ3(Iv−,〈Rv−,ψ〉)Q

I(dv, du)

〈Rt, f〉 =
∫ t
v=0

∫∞
u=0 f(0)10≤u≤λ2Iv−+λ3(Iv−,〈Rv−,ψ〉)Q

I(dv, du) +
∫ t
v=0

∫∞
a=0 ∂af(a)Rv(da)dv,

(2)for all f ∈ C1
b (R+) the set of real bounded fun
tions of 
lass C1 with bounded derivatives. We have denotedby ∂af the gradient of f and by g(t−) the left limit in t ∈ R of any 
àdlàg fun
tion g : R → R.Under H1 and (i) of De�nition 2.1, it may be seen that there exists a unique strong (non explosive)solution to SDE (2). The proof is a slight modi�
ation of the proofs of Se
tion 2.2 in [34℄.
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Figure 2. Simulations for the Cuban epidemi
: simulated evolution of the size of the I 
lass (blue) and of the 
umulated size of the R
lass (green). The bold red line stands for the observed 
umulated size of the R 
lass, 
omputed from data related to the Cuban HIVepidemi
 over the period 1986-2006. We have 
hosen ψ = 1[0,4]. In order to mimi
 the 
hange in trend that 
an be observed between1995 and 2000, two periods have been separately 
onsidered. During the �rst period (i.e. the �rst �fteen years) the parameters of thesimulation have been pi
ked as follows: S0 = 5106, I0 = 230, λ0 = 10−2, µ0 = 10−8, µ1 = 6.6 10−2, λ1 = 1.14 10−7, λ2 = 3.7510−1and λ3 = 6.55 10−5. In the se
ond period, we have used: λ1 = 1.16 10−7, λ2 = 4.45 10−1 and λ3 = 2.50 10−4.
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ti
al perspe
tive, we also emphasize that this approa
h paves the way for simulating traje
-tories of the epidemi
 pro
ess (see Fig. 2). An attra
tive advantage of sto
hasti
 models in mathemati
alepidemiology indeed lies in their ability to reprodu
e 
ertain variability features of the observed data. Asan illustration, a simulated traje
tory of {(It, 〈Rt, 1〉)}t≥0 generated from Eq. (2) with jump rates λ1SIand λ3I〈R,ψ〉 is displayed in Fig. 2. For 
omparison purpose, the observed 
umulative number of dete
tedHIV+ individuals in Cuba (1986-2006) has been juxtaposed (see Se
tion 5 for further details). It 
an beseen that over the �rst 20 years of the epidemi
, the simulated and observed 
urves for the 
umulatednumber of dete
tions are fairly 
losed to ea
h other, although, between years 7 and 15, the observed 
urveis slightly below the simulated one (it should be noti
ed that, during these years, less funds were availablefor the management of the 
onta
t-tra
ing dete
tion system be
ause of the e
onomi
 
risis that followedthe 
ollapse of the Soviet Union).2.3. Limiting behavior in long time asymptoti
sWe now state a limit result for the epidemi
 pro
ess introdu
ed above, as time goes to in�nity. Refer toA1 in the Appendix for a proof based on 
oupling analysis.Proposition 2.2 Assume that f(a) → 0 as a→ ∞. Considering the Markov pro
ess {(St, It, Rt(da))}t≥0introdu
ed in De�nition 2.1, we have, whatever the initial 
onditions (S0, I0) ∈ (N∗)2, that
(St, It, 〈Rt(da), f〉) → (S∞, 0, 0) in distribution as t → ∞, denoting by S∞ a Poisson random variableof parameter λ0/µ0.The law of S∞ is the stationary distribution of the N-valued immigration and death pro
ess whi
h jumpsfrom k to k + 1 with rate λ0 and from k to k − 1 with rate µ0k, and is obtained in Appendix A1. Thisergodi
ity result shows that the time of extin
tion of the epidemi
 is almost surely �nite, though it maybe very long in pra
ti
e. It is worth mentioning that in the situation of long-lasting epidemi
s, as in theHIV 
ase, the long term behavior of the epidemi
 
onditioned upon its non extin
tion may be re�ned bystudying quasi-stationary measures (see [38℄ for instan
e). We leave this question (far from trivial whenthe state spa
e is not �nite) for further resear
h.3. Large population limitsThe overall purpose of this se
tion is to provide a thorough analysis of the measure-valued SIR pro
essintrodu
ed above from the 'large population approximation' perspe
tive (one may refer to [12℄ for ana

ount of approximation theorems for Markov pro
esses and to Chapt. 5 in [4℄ for appli
ations of these
on
epts in approximating ve
tor-valued SIR models), based on the re
ent te
hniques developed in [13℄and [34, 35℄ for e
ologi
al systems.3.1. RenormalizationWe 
onsider a sequen
e, ({(S(n)

t , I
(n)
t , R

(n)
t (da))}t≥0, n ∈ N

∗), of SIR pro
esses with 
onta
t-tra
ing. For
n ≥ 1, {(S(n)

t , I
(n)
t , R

(n)
t (da))}t≥0 
orresponds to the sto
hasti
 pro
ess des
ribed in De�nition 2.1, startingfrom (S

(n)
0 , I

(n)
0 ) of size proportional to n and with the following rate modi�
ations: the immigrationrate is nλ0, the infe
tion jump rate fun
tion is nλ1(S

(n)/n, I(n)/n), while the 
onta
t-tra
ing jump ratefun
tion is nλ3(I
(n)/n, 〈R(n), ψ〉/n). We denote by (s

(n)
t , i

(n)
t , r

(n)
t (da)) = (S

(n)
t /n, I

(n)
t /n,R

(n)
t (da)/n)the renormalized pro
ess obtained by re-weighting all individuals of the population by 1/n. We assumefurthermore that (s

(n)
0 , i

(n)
0 ) 
onverges in probability to a deterministi
 
ouple (s0, i0) ∈ R

∗2
+ as n → ∞.The moment 
ondition below shall also be required in the sequel. Let p > 2.Moment assumption Mp: supn∈N∗ E[(s

(n)
0 )p + (i

(n)
0 )p] < +∞.
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ing_revised2 7This moment assumption 
ombined with Assumptions H1 implies that the moments of order p propagateon 
ompa
t time intervals [0, T ] with T > 0 (see [13,34℄ Se
tion 3.1.2). Before writing down the martingaleproblem asso
iated with {(s(n)
t , i

(n)
t , r

(n)
t (da))}t≥0 for a given n ∈ N

∗, let us give an insight into the waythe renormalizations above may be interpreted in some important examples:Remark 1 (On the meaning of renormalization in basi
 examples) In the 
ase of homogeneousrate fun
tions, the eventual impa
t of the renormalization on the jump rates may be des
ribed as follows.
• With λ(n)

0 = nλ0, the immigration/birth rate is assumed proportional to the initial population size,
• If the form 
hosen for λ1(S, I) is either λ1I or λ1SI/(I + S), the renormalized infe
tion rate fun
tion,
λ1I

(n) or λ1S
(n)I(n)/(I(n) + S(n)), is not a�e
ted by the s
aling, while if one takes λ1(S, I) = λ1SI, therenormalized rate fun
tion λ1S

(n)I(n)/n de
reases proportionately to 1/n. This re�e
ts the fa
t that forlarge s
alings (
orresponding to large "typi
al" population sizes) the risk of being 
ontaminated by agiven infe
tious individual is smaller that for small s
alings.
• The same remark holds for the 
onta
t-tra
ing rate fun
tion λ3(I, 〈R,ψ〉).The next proposition gives a semi-martingale de
omposition for {(s(n)

t , i
(n)
t , r

(n)
t (da))}t≥0, whi
h shallplay a 
ru
ial role in our analysis.Proposition 3.1 Let n ∈ N

∗, t ≥ 0 and f : (a, u) 7→ fu(a) a fun
tion in C1
b (R

2
+). Under H1 and themoment 
ondition Mp with p > 2,



M

s,(n)
t

M
i,(n)
t

M
r,(n)
t (f)


 =



s
(n)
t − s

(n)
0 − λ0t+

∫ t
u=0{µ0s

(n)
u + λ1(s

(n)
u , i

(n)
u )} du

i
(n)
t − i

(n)
0 −

∫ t
u=0{λ1(s

(n)
u , i

(n)
u ) − (µ1 + λ2)i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du
〈r(n)
t , ft〉 −

∫ t
u=0{〈r

(n)
u , ∂afu + ∂ufu〉 + fu(0)(λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉))}du


 (3)is a 
àdlàg L2-martingale, with predi
table quadrati
 variation given by:





〈M s,(n)〉t = 1
n

∫ t
u=0 λ0 + {µ0s

(n)
u + λ1(s

(n)
u , i

(n)
u )} du

〈M i,(n)〉t = 1
n

∫ t
u=0{λ1(s

(n)
u , i

(n)
u ) + (µ1 + λ2)i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du
〈M r,(n)(f)〉t = 1

n

∫ t
u=0 f

2
u(0){λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du
〈M s,(n),M i,(n)〉t = − 1

n

∫ t
u=0 λ1(s

(n)
u , I

(n)
u ) du, 〈M s,(n),M r,(n)(f)〉t = 0

〈M i,(n),M r,(n)(f)〉t = − 1
n

∫ t
u=0 fu(0){λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du.This result follows from the representation given in De�nition 2.1, in whi
h the Poisson measures QSand QI are introdu
ed. It may be established by following line by line the proof of Theorem 5.2 of [13℄ andTheorem 3.1.8 of [34℄, te
hni
al details are thus omitted.3.2. Main results for the large population limit3.2.1. Law of large numbers. Before stating our �rst limit result for the sequen
e of renormalized SIRpro
esses introdu
ed above, we make 
lear the topology we 
onsider. We denote by MF (R+) the spa
e of�nite measures on R+, endowed with the metrizable weak 
onvergen
e topology (see [30℄). For all n ∈ N
∗,the sample paths {(s(n)

t , i
(n)
t , r

(n)
t )}t≥0 belong to the Skorohod spa
e D(R+,R

2
+ ×MF (R+)) equipped withthe metrizable J1 topology (see § 2.1 in [20℄ for further details).Heuristi
ally, sin
e the quadrati
 variation of the martingale pro
ess displayed above is of order 1/n,one obtains a deterministi
 limit by letting n tend to in�nity. As a matter of fa
t, 
onsider the system of
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 evolution equations, obtained by equating to zero the martingale pro
ess in Proposition 3.1:




st = s0 +
∫ t
u=0 (λ0 − µ0su − λ1(su, iu)) du

it = i0 +
∫ t
u=0 (λ1(su, iu) − (µ1 + λ2)iu + λ3(iu, 〈ru, ψ〉)) du

〈rt, ft〉 =
∫ t
u=0

{∫∞
a=0 (∂uf(a, u) + ∂af(a, u)) ru(da) + f(0, u) (λ2iu + λ3(iu, 〈ru, ψ〉))

}
du

(4)for all f ∈ C1
b (R

2
+). The result below states that there exists a unique (smooth) solution to this deterministi
system, to whi
h the sequen
e {(s(n), i(n), r(n)(da))}n≥1 
onverges in probability. This may be viewed asan extension to our measure-valued setup of the Law of Large Numbers stated in Theorem 5.2 of [4℄ forve
tor-valued SIR pro
esses in large population asymptoti
s (see the referen
es therein). A sket
h of proofstands in Appendix A2.Theorem 3.2 (Law of Large Numbers) Under H1 and the moment 
ondition Mp with p > 2, asthe size parameter n tends to in�nity, the sequen
e of pro
esses {(s(n), i(n), r(n)(da))}n∈N∗ 
onverges inprobability in D(R+,R

2
+ ×MF (R+)) to the unique solution {(st, it, rt(da))}t≥0 of (4).(i) for all t > 0, the measure rt(da) is absolutely 
ontinuous with respe
t to the Lebesgue measure. Denotingby ρt(a) its density, the map (a, t) 7→ ρt(a) is di�erentiable on the set {a ≤ t} 
ontaining its support,(ii) the map t 7→ (st, it) is of 
lass C1.By virtue of the regularity properties mentioned above, (st, it, ρt)t≥0 also solves the following PDE systemwith initial 
onditions (s0, i0,0), 0 denoting the 
onstant fun
tion equal to zero:




dst

dt = λ0 − µ0st + λ1(st, it)
dit
dt = λ1(st, it) − (µ1 + λ2)it − λ3

(
it,
∫

R+
ψ(a)ρt(a)da

)

∂ρt

∂t (a) = −∂aρt(a)
ρt(0) = λ2it + λ3

(
it,
∫

R+
ψ(a)ρt(a)da

)
.

(5)This PDE system may be seen as a generalization of deterministi
 epidemi
 models introdu
ed in [11℄(see also the referen
es therein), taking into a

ount the e�e
ts of the 
onta
t-tra
ing strategy and de�nedthrough a 
lassi
al di�erential system. Besides, we point out that the in
rease of the time sin
e dete
tion('dete
tion aging') is translated into a transport equation (the third equation in (5)), with a boundary
ondition for a = 0 (fourth equation in (5)). This is a well-known fa
t in age-stru
tured population models(see [39℄ for instan
e). It is easy to prove that the solution is of the form ρt(a) = ρt−a(0). One then re
oversa delay-di�erential equation system (DDE), similar as those re
ently 
onsidered in epidemi
 modelling(see [7, 8, 22, 36, 37℄ and the referen
es therein for instan
e). In this respe
t, it should be noti
ed that theDDE system (5) may be 
lassi
ally simpli�ed when the weight fun
tion ψ is exponential as in Example 2.In this 
ase, it 
an be repla
ed by a system of PDEs with �nite dimensional variables only.3.2.2. Central limit theorem. In order to re�ne the limit result stated in Theorem 3.2, we establish a
entral limit theorem (CLT ), des
ribing how the renormalized epidemi
 pro
ess (s(n), i(n), r(n)(da)) �u
-tuates around the solution of (5). This is an adaptation of the results obtained in Chapter 4 of [34℄ forage-stru
tured birth and death pro
esses. Let T > 0 and 
onsider the sequen
e of �u
tuation pro
esses:
η

(n)
t =




η
s,(n)
t

η
i,(n)
t

η
r,(n)
t (da)


 =

√
n




s
(n)
t − st

i
(n)
t − it

r
(n)
t (da) − rt(da)


 , (6)

t ∈ [0, T ], n ∈ N
∗, with values in R × R ×MS(R), where MS(R) denotes the spa
e of signed measures on

R equipped with its Borel σ-�eld.
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tional preliminaries. Sin
eMS(R) embedded with the weak 
onvergen
e topology is not metrizable,we will in fa
t 
onsider the sequen
e (ηr,(n)(da))n∈N∗ as a sequen
e of pro
esses with values in a well-
hosendistribution spa
e. In order to prove its tightness, we link this distribution spa
e to 
ertain Hilbert spa
es.We are inspired by the works of Métivier [26℄, Méléard [24℄, and 
onsider the following spa
es:Definition 3.3 For β ∈ N, γ ∈ R+, Cβ,γ is the spa
e of fun
tions f of 
lass Cβ su
h that ∀k ≤ β,
|f (k)(a)|/(1 + |a|γ) vanishes as |a| → +∞, equipped with the norm:

‖f‖Cβ,γ :=
∑

k≤β

sup
a∈R

|f (k)(a)|
1 + |a|γ . (7)The spa
es Cβ,γ are Bana
h spa
es and we denote by C−β,γ their dual spa
es.

W β,γ
0 is the 
losure of the spa
e C∞

K (R) of in�nitely di�erentiable fun
tions f with 
ompa
t support in
R for the norm ‖.‖W β,γ

0
de�ned by:

‖f‖2
W β,γ

0

:=

∫

R

∑

k≤β

|f (k)(a)|2
1 + |a|2γ da. (8)The spa
es W β,γ

0 are Hilbert spa
es and we denote by W−β,γ
0 their dual spa
es.In the following, we will be interested in the following spa
es (see [1, 24℄ for the 
ontinuous inje
tions).

W 3,0
0 →֒ C2,0 →֒ C1,0 →֒W 1,1

0 →֒ C0,1, and C−0,1 →֒ W−1,1
0 →֒ C−1,0 →֒ C−2,0 →֒W−3,0

0 . (9)The �u
tuation pro
esses are now viewed as taking their values in the dual spa
e C−2,0 for te
hni
alreasons. The spa
e C−2,0 is 
ontinuously in
luded in W−3,0
0 , and it is in this spa
e that the 
onvergen
e indistribution stated in the next theorem is proved (see Appendix A3 for a detailed sket
h of the proof).Theorem 3.4 (Central Limit Theorem) Suppose that H1 and the moment assumption Mp with p > 2are ful�lled and that supn∈N∗ E

(
|ηs,(n)

0 |2 + |ηi,(n)
0 |2

)
< +∞. Then, ({η(n)

t }t∈[0,T ])n≥1, as a sequen
e ofrandom variables with values in D([0, T ],R × R ×W−3,0
0 ), 
onverges in law to the solution of the followingequation, that belongs to C([0, T ],R × R × C−2,0) and is unique in this spa
e: ∀t ∈ [0, T ],

ηt = η0 +Wt +

∫ t

u=0
Ψ((su, iu, ru), ηu)du, (10)

where Ψ((su, iu, ru), ηu)

=




µ0η
s
u + ∂Sλ1(su, iu)η

s
u + ∂Iλ1(su, iu)η

i
u

∂Sλ1(su, iu)η
s
u + [∂Iλ1(su, iu) + µ1 + λ2 + ∂Iλ3(iu, 〈ru, ψ〉)]ηiu + ∂Rλ3(Iu, 〈ru, ψ〉)〈ηru, ψ〉
δ0[λ2 + ∂Iλ3(iu, 〈ru, ψ〉)]ηiu + δ0∂Rλ3(iu, 〈ru, ψ〉)〈ηru, ψ〉 + J∗

uη
r
u,


with ∀t ∈ [0, T ], ∀f ∈ W 3,0

0 (→֒ C2,0), 〈J∗
t η

r
t , f〉 =

∫
R+
∂af(a)ηrt (da), and where W = (W s,W i,W r) is a
ontinuous, 
entered, square-integrable Gaussian pro
ess of C([0, T ],R2 × C−2,0). For every t ∈ [0, T ] and
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 variation of (W s
t ,W

i
t , 〈W r, f〉t

)
t∈[0,T ]

is given by:




〈W s〉t =
∫ t
0 (λ0 + µ0su + λ1(su, iu)) du,

〈W i〉t =
∫ t
0 (λ1(su, iu) + (µ1 + λ2)iu + λ3(iu, 〈ru, ψ〉)) du

〈W r(f)〉t =
∫ t
0 f

2
u(0) (λ2iu + λ3(iu, 〈ru, ψ〉)) du

〈W s,W i〉t = −
∫ t
0 λ1(su, iu)du, 〈W s, 〈W r, f〉〉t = 0〈

W i, 〈W r, f〉
〉
t
= −

∫ t
0 fu(0) (λ2iu + λ3(iu, 〈ru, ψ〉)) du

. (11)
4. Statisti
al inferen
e by maximum likelihood estimationWe now turn to the problem of estimating the jump rates governing the dynami
s of the epidemi
, in aparametri
 setting. Although, generally, not all events related to the epidemi
 are observable in pra
ti
e,in this premier work we deal with the ideal 
ase where one dispose of 
omplete epidemi
 data by meansof maximum likelihood estimation (MLE). Indeed, MLE methods for 
omplete data are of interest from apra
ti
al viewpoint, insofar as in 
ertain situations they may be readily used after implementing adequateaugmentation data pro
edures. They 
onstitute, besides, the maximization step of (Monte Carlo-)EM pro
edures, whi
h are extensively used for analyzing infe
tious disease data (see [5℄ for instan
e).However, we stress that the question of validly implementing EM-pro
edures in a 
ontinuous-time pro
esssetup is not without pitfalls (see [6, 32℄ and refer to [17℄ for an a

ount of sequential variants of theMCEM algorithm, tailored for su
h a framework). Developing inferen
e methods for the present modelbased on in
omplete data (on the in
iden
e pro
ess solely, for instan
e) shall be the s
ope of further resear
h.We start with some de�nitions. Let us �x the renormalization parameter n. We asso
iate to the pro
ess
(s

(n)
t , i

(n)
t , r

(n)
t )t≥0 the sequen
e {E(n)

k , T
(n)
k }k∈N∗ where {T (n)

k }k∈N∗ is the sequen
e of su

essive jump timesof the pro
ess, and where E(n)
k ∈ E = {0, . . . , 5} is the type of event o

urring at time T (n)

k , k ≥ 1 (seeSe
tion 2.1). By 
onvention, the time origin is T (n)
0 = 0. For notational simpli
ity only, the rates µ0, µ1, λ0,

λ1 are supposed to be known and we fo
us on the estimation of the dete
tion rates λ2 and λ3 (extensionsto a more general statisti
al framework are straightforward, in parti
ular when estimating the infe
tionrate is the matter). We suppose that the latter are entirely determined by a parameter θ, taking values ina set Θ ⊂ R
d, d ≥ 1: λ2 = λ2(θ) and λ3(., .) = λ3(., ., θ). We set {Pθ}θ∈Θ the resulting family of probabilitymeasures on the underlying spa
e (Ω,A). We denote by P̃ the probability measure on (Ω,A) 
orrespondingto the 
ase when the (E

(n)
k )'s are i.i.d. and uniformly distributed on E , independent from the durations

∆T
(n)
k = T

(n)
k − T

(n)
k−1, k ∈ N, supposed i.i.d. and exponentially distributed with mean 1/(6n).4.1. The likelihood fun
tionLet T > 0 and n ∈ N

∗. We denote by K(n)
T =

∑
k≥1 1{T (n)

k ≤T} the total number of events o

urring beforetime T and write the likelihood of {(E(n)
k , T

(n)
k )}1≤k≤K(n)

T

. The 
omplete history of the epidemi
 until time
T is des
ribed by the σ-�eld F (n)

t = σ{s(n)
u , i

(n)
u , r

(n)
u , u ≤ t}. With the notation above, the statisti
al model

(Ω,A, {Pθ}θ∈Θ) is dominated along the �ltration (F (n)
t )t≥0 and P̃ is a dominating probability measure. Inparti
ular, for all θ ∈ Θ, we have on F (n)

T that Pθ = L(n)
T (θ) · P̃ with the likelihood:

L(n)
T (θ) = exp

(
nT −

∫ T

u=0
(nλ0 + µ0ns

(n)
u + nλ1(s

(n)
u , i(n)

u ) + (µ1n+ λ2(θ)n)i(n)
u + nλ3(i

(n)
u , 〈r(n)

u , ψ〉, θ))du
)

×
K(n)

T∏

k=1

Lθ(Ek, (s
(n)
Tk
, i

(n)
Tk
, r

(n)
Tk

(da))), (12)
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Lθ(E, (s, i, r(da))) = λ

1{E=0}

0 (µ0s)
1{E=1} λ1(s, i)

1{E=2} (λ2(θ)i)
1{E=3} λ3(i, 〈r, ψ〉, θ)1{E=4}(µ1i)

1{E=5}.If θ∗ ∈ Θ denotes the 'true value' of the parameter, by taking the logarithm, keeping the terms dependingon θ solely and using the representation of De�nition 2.1, one is lead to maximize the log-likelihood :
l
(n)
T (θ) =

∫ T

t=0

∫ ∞

u=0

[
log(λ2(θ)i

(n)
t− )1{0≤u≤λ2(θ∗)ni(n)

t− }

+ log(λ3(i
(n)
t− , 〈r

(n)
t− , ψ〉, θ)1{λ2(θ∗)ni(n)

t− <u≤λ2(θ∗)ni(n)
t− +nλ3(i

(n)
t− ,〈r(n)

t− ,ψ〉,θ∗)}

]
QI(dt, du)

−n
∫ T

t=0
{λ2(θ)i

(n)
t + λ3(i

(n)
t , 〈r(n)

t , ψ〉, θ)}dt. (13)4.2. MLE 
onsisten
yConsider the ML estimator for T > 0 and n ∈ N
∗:

θ̂n = arg max
θ∈Θ

l
(n)
T (θ). (14)The following assumptions shall be required:Identi�ability assumption H2: The map θ ∈ Θ 7→ (λ2(θ), λ3(., ., θ)) is inje
tive.Regularity assumption R1: For all (x, y) ∈ R

∗2
+ , the maps θ ∈ Θ 7→ λ2(θ) and θ ∈ Θ 7→ λ3(x, y, θ), areequi
ontinuous.As shown by the result below, under the basi
 identi�ability and regularity 
onditions stipulated above,ML estimators are 
onsistent.Theorem 4.1 (Consisten
y of ML Estimators) Set Φ(x) = log(x) + 1/x − 1. Under AssumptionsH1, Mp with p > 2, H2 and R1, for all T > 0 and any (θ∗, θ) ∈ Θ2, as n → ∞, we have the following
onvergen
e in Pθ∗-probability,

Kn(θ, θ
∗) =

1

n
{l(n)
T (θ∗) − l

(n)
T (θ)} → K(θ, θ∗), (15)where: K(θ, θ∗) =

∫ T

t=0
λ2(θ

∗)i∗tΦ(
λ2(θ

∗)

λ2(θ)
)dt+

∫ T

t=0
λ3(i

∗
t , 〈r∗t , φ〉, θ∗)Φ(

λ3(i
∗
t , 〈r∗t , φ〉, θ∗)

λ3(i∗t , 〈r∗t , φ〉, θ)
)dt,denoting by (s∗, i∗, r∗(da)) the solution of the PDE system (5) with rate fun
tions asso
iated with θ∗.Under the further assumption that the parameter spa
e Θ is 
ompa
t, the ML estimator (14) is 
onsistent:

lim
n→∞

θ̂n = θ∗, in Pθ∗ − probability. (16)This result mainly relies on the Law of Large Numbers stated in Theorem 3.2 (see A4 in the Appendixfor te
hni
al details).4.3. MLE asymptoti
 normalityIn order to re�ne our study of the asymptoti
 behavior of the ML estimator, we suppose that the strongerregularity assumption below is satis�ed.
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s Conta
tTra
ing_revised212Regularity 
ondition R2: For all (x, y) ∈ R
∗2
+ , the maps θ ∈ Θ 7→ λ2(θ) and θ ∈ Θ 7→ λ3(x, y, θ) aretwi
e 
ontinuously di�erentiable.Let Hθg denote the hessian matrix of any twi
e di�erentiable fun
tion θ ∈ Θ 7→ g(θ). Observe that theFisher information matrix is given by:

Iθ = −
∫ T

u=0

{
Hθλ2(θ)i

∗
u

(
λ2(θ

∗)

λ2(θ)
− 1

)
−∇θλ2(θ) ·t ∇θλ2(θ)

λ2(θ
∗)i∗u

λ2(θ)2

+ Hθλ3(i
∗
u, 〈r∗u, ψ〉, θ)

(
λ3(i

∗
u, 〈r∗u, ψ〉, θ∗)

λ3(i∗u, 〈r∗u, ψ〉, θ)
− 1

)

− ∇θλ3(i
∗
u, 〈r∗u, ψ〉, θ) ·t ∇θλ3(i

∗
u, 〈r∗u, ψ〉, θ)

λ3(i
∗
u, 〈r∗u, ψ〉, θ∗)

λ3(i∗u, 〈r∗u, ψ〉, θ)2
}
du. (17)The next limit result then follows from Theorem 3.4 (see Appendix A5).Theorem 4.2 (Asymptoti
 Normality of ML Estimators) Suppose that the assumptions of Theo-rem 4.1 are ful�lled with the additional 
onditionR2. Then we have the following 
onvergen
e in distributionunder Pθ∗:

√
n∇θl

(n)
T (θ∗) ⇒ N (0,Iθ∗), as n→ ∞, (18)where Iθ∗ is given by (17).Moreover, if Iθ∗ is invertible, then the ML estimator (14) is asymptoti
ally normal: under Pθ∗, we havethe 
onvergen
e in distribution

√
n(θ̂n − θ∗) ⇒ N (0,I−1

θ∗ ), as n→ ∞. (19)4.4. MLE on �rst simple examplesLet us 
onsider the important situation where λ3(i, 〈r, ψ〉) has a multipli
ative form. We will 
onsider thethree following models: ∀i ∈ R+, ∀r ∈ MF (R+),Model (A): λ3(i, 〈r, ψ〉) = λ3〈r, ψ〉, (20)Model (B): λ3(i, 〈r, ψ〉) = λ3
〈r, ψ〉i

〈r, ψ〉 + i
, (21)Model (C): λ3(i, 〈r, ψ〉) = λ3〈r, ψ〉i. (22)Here θ = (λ2, λ3) ∈ Θ ⊂ R

∗2
+ , and the true parameter is denoted θ∗ = (λ∗2, λ

∗
3). In this 
ase, expli
itmaximum likelihood estimators 
an be obtained for λ2 and λ3.We di�erentiate the log-likelihood with respe
t to λ2 and λ3 and obtain s
ore pro
esses that we equateto zero. For Model (A) (see Eq. (20)), we have for n ∈ N

∗ and t ∈ [0, T ],




∂l
(n)
t

∂λ2
(λ2, λ3) =

∫ t
v=0

∫∞
u=0

1
λ2

10≤u≤λ∗
2ni

(n)
v−
QI(dv, du) − n

∫ t
v=0 i

(n)
v dv

∂l(n)
t

∂λ3
(λ2, λ3) =

∫ t
v=0

∫∞
u=0

1
λ3

1λ∗
2ni

(n)
v−<u≤λ

∗
2ni

(n)
v−+nλ∗

3〈r
(n)
v− ,ψ〉

QI(dv, du) − n
∫ t
v=0〈r

(n)
v , ψ〉dv,
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λ̂

(n)
2 =

∫ T
v=0

∫∞
u=0 10≤u≤nλ∗

2i
(n)
v−
QI(dv, du)

n
∫ T
v=0 i

(n)
v dv

, λ̂
(n,A)
3 =

∫ T
v=0

∫∞
u=0 1λ∗

2ni
(n)
v−<u≤λ

∗
2ni

(n)
v−+nλ∗

3〈r
(n)
v− ,ψ〉

QI(dv, du)

n
∫ T
0 〈r(n)

v , ψ〉dv
.Taking the expe
tation, one may immediately 
he
k that Eθ∗[(λ̂

(n)
2 , λ̂

(n,A)
3 )] = (λ∗2, λ

∗
3) (denoting by Eθ∗[.]the Pθ∗-expe
tation) and the ML estimator is unbiased. The Fisher information matrix may be easilyexpli
ited in this 
ase:

Iθ∗ =

(∫ T
0

i∗t
λ∗

2
dt 0

0 σ2
3

) with σ2
3 =

1

λ∗3

∫ T

0
〈r∗t , ψ〉dt.Now in the 
ase where the 
onta
t-tra
ing dete
tion rate is of the form (21) or (22), the MLE estimate

λ̂
(n)
2 and its asymptoti
 varian
e remain both un
hanged, while we get for Model (B):

λ̂
(n,B)
3 =

∫ T
v=0

∫∞
u=0 1λ∗

2ni
(n)
v−<u≤λ

∗
2ni

(n)
v−+nλ∗

3i
(n)
v− 〈r

(n)
v− ,ψ〉/(i

(n)
v−+〈r

(n)
v− ,ψ〉)

QI(dv, du)

n
∫ T
0

i
(n)
v 〈r

(n)
v ,ψ〉

(i
(n)
v +〈r

(n)
v ,ψ〉)

dv

σ2
3 =

1

λ∗3

∫ T

0

i∗t 〈r
(n)
t , ψ〉

(i
(n)
t + 〈r(n)

t , ψ〉)
dt,and for Model (C):

λ̂
(n,C)
3 =

∫ T
v=0

∫∞
u=0 1λ∗

2ni
(n)
v−<u≤λ

∗
2ni

(n)
v−+nλ∗

3i
(n)
v− 〈r(n)

v− ,ψ〉
QI(dv, du)

n
∫ T
0 i

(n)
v 〈r(n)

v , ψ〉dv
, σ2

3 =
1

λ∗3

∫ T

0
i∗t 〈r(n)

t , ψ〉dt.5. Appli
ation to HIV data related to the Cuban epidemi
 (1986-96)This se
tion is devoted to brie�y present and dis
uss preliminary numeri
al results derived from theappli
ation of the statisti
al modelling previously des
ribed to real data. These data are related to theHIV epidemi
 in Cuba over the period 1986-1996. Our aim is to illustrate the pra
ti
al interest of thetheoreti
al notions 
onsidered in this paper. Owing to spa
e limitations, the statisti
al issues of validatingthe parametri
 model stipulated below for su
h data shall be thoroughly investigated in a forth
omingpaper, entirely dedi
ated to model 
he
king, estimation and testing.The Cuban HIV epidemi
. In prospe
t of management and analysis of the epidemi
, informationrelated to the spread of HIV/AIDS in Cuba has started to be 
olle
ted and gathered (in a now massiveand well-do
umented data repository) sin
e 1986, after the �rst HIV 
ases were dete
ted (see the site ofthe World Health Organization [40℄ and refer to [10℄ for a detailed des
ription of the HIV/AIDS epidemi
in Cuba). Ea
h time a person is dete
ted as seropositive (HIV+), the following information is reported:date and way of dete
tion, age, gender, area of residen
e, gender of sexual partners in the last two years.Furthermore, from the beginning of 1986, all dete
ted persons are invited to give names and 
onta
t detailsof their re
ent sexual partners. Theses partners are then tra
ed and a re
ommendation for HIV testingis made over a period of one year after the last sexual 
onta
t with the HIV-infe
ted person (see [14℄for further details on the Cuban management system of the AIDS epidemi
). Based on the informationprovided, through the interview following HIV dete
tion in the one hand and through the 
onta
t-tra
ingsystem in the other hand, a plausible date of infe
tion for ea
h individual is reported in the database bythe Health authorities (here, as a �rst go, we shall use these approximate dates as if they were all exa
t).
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tTra
ing_revised214After being dete
ted, the person re
eives, either in the sanatoria or in the ambulatory system, regular
ounselling on living with HIV in order to prevent the risk of transmitting the retrovirus (defendingin this respe
t the assumption that, on
e dete
ted, a HIV 
arrier does not belong to the I populationany more). Besides, it is essential to noti
e that one may assert that HIV spreads in Cuba by means ofsexual transmission quasi-solely, due to 
ertain distin
tive so
iologi
al features (see [10℄): indeed, sin
e theepidemi
 began, inje
tion drug use and blood transfusion a

ounted for a negligible number of infe
tions,
orresponding to very isolated 
ases.ML estimation. A �rst attempt is now made to �t the three simple parametri
 SIR models with 
onta
t-tra
ing des
ribed in Se
tion 4.4 with the weight fun
tion ψ(a) = exp(−ca) (the age a being given in daysand the 
onstant c being a parameter that we will 
hoose (see (1))). From the available data, the traje
tory
{(s(n)

t , i
(n)
t , r

(n)
t (da))}t∈[0,T ] may be re
onstru
ted over the 2400 �rst days after the �rst dete
tion (morethan 6.5 years). Using the results of Se
tion 4.4, we obtain the numeri
al results of Table 1. We have 
hosen

c = 10−3, c = 10−2 and c = 310−4, whi
h 
orrespond to various lifelengths of the information given by adete
ted patient to tra
e her/his infe
tious non dete
ted partners.model parameter estimated value asymptoti
 std log-likelihood
λ2 9.57 10−4 4.34 10−5

c = 10−2(A) λ3 3.90 10−3 2.30 10−4 -2115(B) λ3 4.50 10−3 2.67 10−4 -2119(C) λ3 1.85 10−5 1.09 10−6 -2117
c = 10−3(A) λ3 6.56 10−4 3.87 10−5 -2138(B) λ3 1.30 10−3 7.72 10−5 -2143(C) λ3 3.11 10−6 1.83 10−7 -2140
c = 310−4(A) λ3 4.37 10−4 2.58 10−5 -2144(B) λ3 1.10 10−3 6.54 10−5 -2146(C) λ3 2.07 10−6 1.22 10−7 -2147Table 1. Estimated parameters and asymptoti
 standard deviations.Figure 3 shows the instantaneous dete
tion rates t 7→ λ̂

(n)
2 i

(n)
t and t 7→ λ̂

(n)
3 (i

(n)
t , 〈r(n)

t , ψ〉) for the threemodels (A), (B) and (C).(a) (b) (
)
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Figure 3. Evolution of the instantaneous dete
tion rates t 7→ λ̂
(n)
2 i

(n)
t (in thi
k blue line) and t 7→ λ̂

(n)
3 (i

(n)
t , 〈r

(n)
t , ψ〉) (in green (resp.red and bla
k) line for Model (A) (resp. (B) and (C))). (a) : c = 10−2, (b) : c = 10−3, (
) : c = 310−4
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all that λ̂2 and its asymptoti
 varian
e remain un
hanged, whatever the model 
onsidered (A), (B)or (C). For the instantaneous rate of 
onta
t-tra
ing dete
tion, we noti
e that the 
urves obtained bythe models (A), (B) and (C) are very similar. This suggests that the model might be relatively robustto the 
hoi
e of ψ (provided it has the exponential parametri
 form stipulated here). The 
urves for
t 7→ λ̂

(n,A)
3 〈r(n)

t , ψ〉 and t 7→ λ̂
(n,C)
3 〈r(n)

t , ψ〉i(n)
t are very 
lose. This is due to the fa
t that on the 
onsideredperiod, the number of infe
tious individuals remains stable. Compared with Models (A) and (C), theestimated instantaneous dete
tion rate in Model (B) is more important in the beginning and less importantin the end. This is due to the nonlinearity introdu
ed by the denominator in (21) and to the fa
t that thenumber of dete
ted individuals in
reases with time. The information given by a dete
ted individual to tra
enew HIV+ ones has a smaller e�e
t when the number of individuals is already high (
ertain "networks"have already been dis
overed then). We also underline that the larger c is and the 
loser the 
urves for the
onta
t-tra
ing dete
tion are.(a) (b)
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Figure 4. (a): 3-months Moving Average for the number of total dete
tions (thin bla
k line) and for the number of dete
tion by
onta
t-tra
ing (thi
k blue line). (b): Per
entage of dete
tions by 
onta
t-tra
ing obtained with the moving averages 
omputed over 1month (dotted magenta), 2 months (dash-dot blue), 3 months (dashed red) and 4 months (solid bla
k).On Fig. 3, it 
an be seen that the rate of dete
tion by 
onta
t-tra
ing in
reases with time in ea
h of thethree models (20)-(22). It seems that, in all 
ases, the weight of the 
onta
t-tra
ing dete
tion in
reases tothe point of almost 
ounterbalan
ing the one of the alternative way of dete
tion. This somehow 
orroboratesthe phenomenon underlined by Fig. 4, in whi
h the proportion of individuals dete
ted by 
onta
t-tra
ingamong all dete
ted individuals 
omputed using a moving-window of �xed length is plotted. The graphsdisplayed in Fig. 4 are model-free and show that the ratio of dete
tions by 
onta
t-tra
ing among alldete
tions stabilizes around 1/2, after having �u
tuated during the 6 �rst years. These years 
orrespondto the "burn-in period" needed for the 
onta
t-tra
ing dete
tion system to start being really e�
ient.Of 
ourse, a very large number of pra
ti
al questions related to model �tting and interpretation/proje
tionmerit further investigation naturally arise, after this premier work. The impa
t of the 
hoi
e of the weightfun
tion ψ on the obtained results should be 
arefully investigated for instan
e. As mentioned above,this shall be the subje
t of further resear
h, mu
h more oriented towards numeri
al appli
ations and thepra
ti
al use of the model.A
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hni
al proofsA1 Proof of Proposition 2.2Observe �rst that, when the Markov epidemi
 pro
ess (S, I,R(da)) is restri
ted to the absorbing set N ×
{0}×MP (R+), the pro
ess (St)t≥0 evolves as an immigration and death pro
ess with immigration rate λ0and death rate µ0St. This pro
ess is 
lassi
ally geometri
ally positive re
urrent. Hen
e, it only remains toshow that the set N × {0} ×MP (R+) is rea
hed in �nite time with probability one, no matter what theinitial state. This may be straightforwardly established by 
oupling analysis: it a
tually su�
es to 
onsidera SIR pro
ess (S′, I ′, R′(da)) with the same dynami
s as (S, I,R(da)) ex
ept that, when I = 0 one supposethat new infe
tives may be re
ruited from the outside at a stri
tly positive rate. Then, one may easilysee that (S′, I ′) is an irredu
ible (non explosive) Markov pro
ess with state spa
e N

2. Besides, denotingby Γ its transition rate matrix, it is straightforward to 
he
k that the following Foster-Lyapounov's drift
riterion is satis�ed, with test fun
tion f(m, l) = m+ l:
∑

(m′,l′)∈N2

Γ((m, l), (m′, l′))(f(m′, l′) − f(m, l)) ≤ λ0 − µ0m− (µ1 + λ2)l ≤ −cf(m, l) + d,with c = min(µ0, µ1 + λ2) and d = λ0. By virtue of Theorem 7.1 in [27℄, (S′, I ′) is geometri
ally re
urrent.Thus, when starting from (S0, R0), (S′, I ′) and (S, I) rea
h N × {0} in a �nite time τ(S0,R0) with �niteexponential moment.Computation of S∞'s distribution. Let us show that S∞ is a Poisson random variable of parameter
λ0/µ0. Set pk := P (S∞ = k) for all k ∈ N. We have

λ0p0 + µ0p1 = 0, and ∀k ≥ 1, λ0pk−1 − λ0pk + µ0(k + 1)pk+1 − µ0kpk = 0. (23)We obtain from the �rst equation that p1 = λ0p0/µ0. Assume that we have proved for k ∈ N that:
∀ℓ ≤ k, pℓ =

1

ℓ!

(
λ0

µ0

)ℓ
p0. (24)Let us prove that (24) holds for k + 1. From (23) we have:

pk+1 =
p0

µ0(k + 1)

(
− λ0

(k − 1)!

(
λ0

µ0

)k−1

+
λ0

k!

(
λ0

µ0

)k
+
µ0k

k!

(
λ0

µ0

)k)
=

1

(k + 1)!

(
λ0

µ0

)k+1

p0. (25)Sin
e the sequen
e {pk} de�nes a probability measure, we have∑+∞
k=0 pk = 1. This entails that p0 = e−λ0/µ0and the desired result then dire
tly follows from the equation above.A2 Proof of Theorem 3.2 (Sket
h of)This result may be derived from 
areful examination of Theorems 5.3's proof in [13℄ or of Theorem 3.2.2'sproof in [34℄. Let MF (R+) be equipped with the vague 
onvergen
e topology. Applying Aldous, Rebolledoand Roelly 
riteria (see [2, 20, 33℄), the sequen
e {(S(n), I(n), R(n))}n∈N∗ is proved tight. By Prohorov'sTheorem, there hen
e exists a subsequen
e that 
onverges in law to a limiting value (S, I,R) ∈ D(R+,R

2
+×

MF (R+)). This subsequen
e 
an be 
hosen su
h that 〈R(n), 1〉 
onverges in law to 〈R, 1〉 in D(R+,R+).Sin
e the pro
ess {(S(n)
t , I

(n)
t , R

(n)
t )}t≥0 has jumps of amplitude 1/n, the limiting value is ne
essarily a
ontinuous pro
ess. Using a 
riterion proposed in [25℄, one may prove that a subsequen
e may again beextra
ted from the previous one, that 
onverges in law to (S, I,R) in D(R+,R

2
+×MF (R+)), whereMF (R+)
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onvergen
e topology this time. The evolution equation is then identi�ed thanksto the martingale representation provided in Proposition 3.1. The quadrati
 variation vanishes as n→ +∞and the moment assumption enables us to take the limit.A3 Proof of Theorem 3.4 (Sket
h of)The proof of Theorem 3.4 is an adaptation of the argument developed at length in Chapter 4 of [34℄,whi
h is inspired from [26℄ and [24℄. We refer the reader to these works for hints to a 
omplete proof andgive here the main steps only. Here and throughout, C(T,N) shall denote a 
onstant, depending on T and
N only, that will not be ne
essarily the same at ea
h appearan
e.As previously emphasized, here and throughout the �u
tuation pro
ess (6) shall be viewed as adistribution-valued pro
ess. We will deal with the spa
es introdu
ed in (9). The 
ontinuous inje
tionswhi
h link these spa
es are proved in Theorem 5.4 [1℄. We 
onsider (6) as taking its values in the spa
e
C−2,0. As the image of C2,0 through the di�erential operator ∂a is in
luded in C1,0, we will be lead tolook for estimates in these both spa
es. In order to work in a Hilbert setting, we 
onsider the 
ontinuousinje
tions linking this spa
e with W−3,0

0 (in whi
h the tightness 
riterion is proved) and with W−1,1
0(subspa
e of C−1,0 and C−2,0 in whi
h the norm of the martingale part of ηn is 
ontrolled). The 
ontinuousembedding C−0,1 →֒W−1,1

0 shall also be required in order to 
ontrol the norm of 
ertain operators ofW−1,1
0 .Flu
tuation pro
ess. We have the following de
omposition: ∀f : (a, t) 7→ ft(a) in C1(R2

+),

η
(n)
t (f) =

√
n



s
(n)
0 − s0

i
(n)
0 − i0

0


+ M̃

(n)
t (f) + Ṽ

(n)
t (f), where: (26)

η
(n)
t (f) =




η
s,(n)
t

η
i,(n)
t

〈ηr,(n)
t , ft〉


 , M̃

(n)
t (f) =




M̃
s,(n)
t

M̃
i,(n)
t

M̃
r,(n)
t (ft)


 =

√
n




M
s,(n)
t

M
i,(n)
t

M
r,(n)
t (ft)


 , Ṽ

(n)
t (f) =




Ṽ
s,(n)
t

Ṽ
i,(n)
t

Ṽ
r,(n)
t (ft)


where M s,(n), M i,(n) and M r,(n)

t (ft) have been de�ned in (3) and where:
Ṽ
s,(n)
t =

∫ t

u=0

{
µ0η

s,(n)
u +

√
n(λ1(s

(n)
u , i(n)

u ) − λ1(su, iu))
}
du

Ṽ
i,(n)
t =

∫ t

u=0

{√
n(λ1(s

(n)
u , i(n)

u ) − λ1(su, iu)) + (µ1 + λ2)η
i,(n)
u

+
√
n(λ3(i

(n)
u , 〈r(n)

u , ψ〉) − λ3(iu, 〈ru, ψ〉))
}
du

Ṽ
r,(n)
t (ft) =

∫ t

u=0

{
fu(0)[λ2η

i,(n)
u +

√
n(λ3(i

(n)
u , 〈r(n)

u , ψ〉) − λ3(iu, 〈ru, ψ〉))]

+ 〈ηr,(n)
u , ∂afu(a) + ∂ufu(a)〉

}
du.Lo
alization. A di�
ulty arises from the fa
t that the size of the population is not a priori bounded. Inthis respe
t, for any N > 0, 
onsider the stopping time:

ζ
(n)
N = inf

{
t ≥ R+, max

(
s
(n)
t , i

(n)
t , 〈r(n)

t , 1〉, 〈r(n)
t , |a|〉

)
> N

}
. (27)
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ing_revised218One may easily see that for all N > 0 su
h that
N > max( sup

t∈[0,T ]
st, sup

t∈[0,T ]
it, sup

t∈[0,T ]
〈rt, 1〉, sup

t∈[0,T ]
〈rt, |a|〉). (28)we have:

lim
n→+∞

P

(
ζ
(n)
N ≤ T

)
= 0 (29)Moment estimates. It is straightforward that E[supt∈[0,T ] ‖ηr,(n)
t ‖2

W−1,1
0

] ≤ C(T, n), for all n ∈ N
∗. Sin
e

C(T, n) depends on n, this estimate is not very interesting. Its importan
e lies in setting W−1,1
0 as areferen
e spa
e. Using (9), we 
an then also 
onsider it as a pro
ess with values in C−1,0, C−2,0 or W−3,0

0 .Estimates that do not depend on n 
an be obtained by following the proofs of Lemmas 4.4.3, 4.4.4 and4.4.5 in [34℄:Lemma 5.1 Let N be �xed as in (28). Then,
sup
n∈N∗

E[ sup
t∈[0,T∧ζ(n)

N ]

{|ηs,(n)
t |2 + |ηi,(n)

t |2 + ‖ηr,(n)
t ‖2

W−3,0
0

}]

≤ sup
n∈N∗

E[ sup
t∈[0,T∧ζ(n)

N ]

{|ηs,(n)
t |2 + |ηi,(n)

t |2 + ‖ηr,(n)
t ‖2

C−1,0}] ≤ C(N,T ) < +∞. (30)Proof The �rst inequality is a 
onsequen
e of the 
ontinuous inje
tion C−1,0 →֒W−3,0
0 . Then, (30) followsfrom the assumed properties of λ1, λ3 and ψ 
ombined with the de�nition of ‖.‖C−1,0 and the use ofGronwall's Lemma. �Tightness of the sequen
e {L(η(n))}n∈N∗. By using a tightness 
riterion due to Métivier (see Se
tion2.1.5 and Theorem 2.3.2 in [20℄ and Corollary 1.5 and Theorem 1.6 in [26℄), we will prove thanks to thepre
eding moment estimates that:Lemma 5.2 The sequen
e {L(η(n))}n∈N∗ of the laws of the �u
tuation pro
esses {η(n)}n∈N∗ , when 
onsid-ered as a sequen
e of D([0, T ],R2 ×W−3,0

0 ), is tight.Proof Let ε > 0, K > 0, n ∈ N
∗ and φ ∈ W 3,0

0 non zero. We start with proving that supt∈[0,T ] |ηs,(n)
t | +

|ηi,(n)
t | + |〈ηr,(n)

t , φ〉| is bounded with large probability. Using the fa
t that, for all t ∈ [0, T ], |〈ηr,(n)
t , φ〉| ≤

‖ηr,(n)
t ‖W−3,0

0
‖φ‖W 3,0

0
≤ ‖ηr,(n)

t ‖C−1,0‖φ‖W 3,0
0
, as well as Markov's inequality, (29) and Lemma 5.1, one gets:

P

(
sup
t∈[0,T ]

|ηs,(n)
t | + |ηi,(n)

t | + |〈ηr,(n)
t , φ〉| > K

)
≤ C(N,T )

K2
+ P

(
ζ
(n)
N ≤ T

)
≤ ε, (31)for a proper 
hoi
e of K, with N as in (28) and for su�
iently large n.We shall now prove that the �u
tuation pro
esses 'almost belong' to a �nite dimensional spa
e. Considera Hilbert basis (ϕk)k∈N∗ of W 3,0

0 and denote by Fm the subspa
e of W 3,0
0 , with m ∈ N

∗, that is generatedby (ϕk)k∈[[1,m]]. Let ε > 0 and ρ > 0. By Markov's inequality,
P


 sup
t∈[0,T ]

√√√√
+∞∑

k=m+1

〈ηr,(n)
t , ϕk〉2 > ρ


 ≤ 1

ρ
E


 sup
t∈[0,T∧ζ(n)

N ]

√√√√
+∞∑

k=m+1

〈ηr,(n)
t , ϕk〉2


+ P

(
ζ
(n)
N ≤ T

)
. (32)The sequen
e {supt∈[0,T∧ζ(n)

N ]

√∑+∞
k=m+1〈η

r,(n)
t , ϕk〉2

}

m∈N∗

almost surely 
onverges to 0 and is dominated
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ing_revised2 19by supt∈[0,T∧ζ(n)
N ] ‖η

r,(n)
t ‖W−3,0

0
. It is hen
e uniformly integrable by virtue of (30). It is thus possible to 
hoose

m0 ∈ N
∗ so that the �rst term in the right hand side of (32) is bounded by ε/2. The se
ond term is boundedby ε/2 using (29).Finally, we establish an Aldous type 
ondition for the �nite-variation pro
esses {Ṽ (n)}n∈N∗ , the quadrati
variation pro
esses {〈M̃ s,(n)〉}n∈N∗ and {〈M̃ i,(n)〉}n∈N∗ and the tra
e pro
esses {<| M̃ r,(n) |>}n∈N∗ of

{M̃ r,(n)}n∈N∗ , de�ned for a Hilbert basis (ϕk)k∈N∗ of W 1,1
0 by: ∀n ∈ N

∗, ∀t ∈ [0, T ],
<| M̃ r,(n) |>t =

∫ t

0
(
∑

k≥1

ϕ2
k(0))

(
λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)
)
du. (33)Sin
e ∑k≥1 ϕ

2
k(0) ≤ C (see [24℄), <| M̃ r,(n) |>t is P-almost surely de�ned.Let δ > 0 and (Sn, Tn)n∈N∗ be a family of stopping times su
h that Sn ≤ Tn ≤ Sn + δ. We have:

∀n ∈ N
∗, ∀ς > 0,

P

(∥∥∥Ṽ r,(n)
Tn

− Ṽ
r,(n)
Sn

∥∥∥
W−3,0

0

≥ ς

3

)
≤ 9

ς2 E

(∥∥∥Ṽ r,(n)
Tn∧ζn

N
− Ṽ

r,(n)
Sn∧ζn

N

∥∥∥
2

W−3,0
0

)
+ P

(
ζ
(n)
N ≤ T

)
. (34)To bound the �rst term, we bound E

[∥∥∥f 7→
∫ t
s

∫
R+
∂af(a)η

r,(n)
u (da)du

∥∥∥
2

C−2,0

] by (C
∫ t
s ‖η

r,(n)
u ‖C−1,0du)2 bynoting that ∀f ∈ C2,0, ∂af ∈ C1,0 with ‖∂af‖C1,0 ≤ ‖f‖C2,0 , and that ∀s, t ∈ [0, T ], ∀n ∈ N

∗,

∣∣∣∣
∫ t

s

∫

R+

∂af(a)ηr,(n)
u (da)du

∣∣∣∣ ≤
∫ t

s
‖ηr,(n)
u ‖C−1,0‖∂af‖C1,0du ≤ C

∫ t

s
‖ηr,(n)
u ‖C−1,0‖f‖C2,0du.Using Lemma 5.1, we thus obtain:

P

(∥∥∥Ṽ r,(n)

Tn∧ζ
(n)

N

− Ṽ
r,(n)
Sn∧ζn

N

∥∥∥
2

W−3,0
0

>
ς

3

)
<
C(N)δ2

ς2
+ P

(
ζ
(n)
N ≤ T

)
. (35)Similar 
omputations 
an be 
arried out for Ṽ s,(n), Ṽ i,(n), 〈M̃ s,(n)〉, 〈M̃ i,(n)〉 and <| M̃ r,(n) |>.With (31), (32) and (35), Métivier's 
riterion is satis�ed and Lemma 5.2 is proved. �By virtue of Prohorov's theorem, the sequen
e {L(η(n))}n∈N∗ is relatively 
ompa
t in

P(D([0, T ],R2 × W−3,0
0 )) embedded with the weak 
onvergen
e topology. The proof of Theorem 3.4is �nished by showing that there is a unique adheren
e value.Identi�
ation of the adheren
e values. Let η ∈ D([0, T ],R2 ×W−3,0

0 ) su
h that L(η) is an adheren
evalue of this sequen
e. In order to simplify notation, denote again by (η(n))n∈N∗ a subsequen
e that 
onvergesin law to η. Sin
e the magnitude of the jumps of η(n) is of order 1/n, the limiting pro
ess η is 
ontinuous.A �rst di�
ulty arises from the fa
t that Lemma 5.1 only deals with the �u
tuations lo
alized by thestopping times ζ(n)
N whi
h depends on N .We start o� with studying the tightness and the 
onvergen
e in law of the martingales (M̃ (n))n∈N∗ forwhi
h estimates that do not depend on n nor on N 
an be established (see [34℄, Lemma 4.4.5). We 
anprove, using the same tightness 
riterion as above, that (M̃ (n))n∈N∗ is tight in D([0, T ],R2 ×W−1,1

0 ). Let
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W = (W s,W i,W r) be 
ontinuous martingales as in Theorem 3.4: ∀ε > 0, ∀φ ∈ C2,0,

P( sup
t∈[0,T ]

∣∣∣〈M̃ r,(n)(φ)〉t − 〈W r(φ)〉t
∣∣∣ > ε)

≤1

ε
E[ sup
t∈[0,T∧ζ(n)

N ]

∫ t

0
{φ2(0)λ2

|ηi,(n)
s |√
n

+ φ2(0)λ̄3N
2‖ψ‖∞

|ηi,(n)
s |√
n

+ L3(N)N
|ηi,(n)
s | + ‖ηr,(n)

s ‖C−1,0‖ψ‖C1,0√
n

}ds]

+ P

(
ζ
(n)
N ≤ T

)

≤C(N,T, ‖ψ‖C1,0)‖φ‖∞
ε
√
n

E[ sup
t∈[0,T∧ζ(n)

N ]

|ηi,(n)
s | + ‖ηr,(n)

s ‖C−1,0 ] + P

(
ζ
(n)
N ≤ T

)
.By (29) and by Lemma 5.1, this gives that (〈M̃ r,(n)(φ)〉)n∈N∗ 
onverges in probability and uniformly in

t ∈ [0, T ] to 〈W r(φ)〉, de�ned in Theorem 3.4. Sin
e supt∈[0,T ] |∆M̃ r,(n)
t (φ)| is bounded by C/

√
n andhen
e uniformly integrable, we obtain by applying Theorem 3.12 page 432 of Ja
od and Shiryaev [19℄that (M̃ r,(n)(φ))n∈N∗ 
onverges in law to the 
ontinuous square-integrable gaussian martingale W r(φ)starting from 0 and with quadrati
 variation given by (11). Similar 
omputations 
an be done for theother terms of the bra
ket. Then, (M̃n)n∈N∗ 
onverges in law in D([0, T ],R2 × W−3,0

0 ) to a pro
ess
W ∈ C([0, T ],R2 × C−2,0) su
h as in Theorem 3.4.To 
hara
terize now the limit value η, we introdu
e the following fun
tional, for ν = (νs, νi, νr) ∈
D([0, T ],R2 × C−2,0), φ ∈ C2,0 and t ∈ [0, T ]:

Ψ(ν, φ, t) =




νst
νit

νrt (φ)


−



ηs0
ηi0
0


 (36)

−
∫ t

0




− (µ0 + ∂Sλ1(su, iu)) ν
s
u − ∂Iλ1(su, iu)ν

i
u

∂Sλ1(su, iu)ν
s
u − (∂Iλ1(su, iu) + µ1 + λ2 + ∂Iλ3(iu, 〈ru, ψ〉)) νiu − ∂Rλ3(iu, 〈ru, ψ〉)〈νru, ψ〉

φ(0) (λ2 + ∂Iλ3(iu, 〈ru, ψ〉)) νiu + φ(0)∂Rλ3(iu, 〈ru, ψ〉)〈νru, ψ〉 +
∫

R+
∂aφ(a)νru(da)


 duNoti
e that, in the de�nition of Ψ, the density dependen
e has been "frozen". We 
an show that the pro
essof C([0, T ],R2 ×C−2,0) de�ned for every φ ∈ C2,0 and t ∈ [0, T ] by (M̃ s

t , M̃
i
t , M̃

r
t (φ)

)
:= Ψ(η, φ, t) has thesame law as the pro
ess W de�ned in Theorem 3.4.Indeed, sin
e (η(n))n∈N∗ 
onverges in law to the 
ontinuous pro
ess η, we have ∀φ ∈

C2,0, limn→+∞ Ψ(η(n), φ, .) = Ψ(η, φ, .). We shall now prove that Ψ(η(n), φ, .) has the same limit in lawas M̃ (n)(φ).From (6) and (36): ∀n ∈ N
∗, ∀φ ∈ C2,0, ∀t ∈ [0, T ],

|Ψ(η(n), φ, t) − (M̃
s,(n)
t , M̃ i,(n)

s , M̃
r,(n)
t (φ))|2 =

(∫ t

0
A(n, s)ds

)2

+

(∫ t

0
[A(n, s) +B(n, φ, s)] ds

)2

+

(∫ t

0
φ(0)B(n, φ, s)ds

)2

, (37)where:
A(n, u) = ∂Sλ1(su, iu)η

s,(n)
u + ∂Iλ1(su, iu)η

i,(n)
u −√

n{λ1(s
(n)
u , i(n)

u ) − λ1(su, iu)},
B(n, s) = {∂Iλ3(iu, 〈ru, ψ〉)ηi,(n)

u − ∂Rλ3(iu, 〈ru, ψ〉)〈ηr,(n)
u , ψ〉} − √

n{λ3(i
(n)
u , 〈r(n)

u , ψ〉) − λ3(iu, 〈ru, ψ〉)}.
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λ1(s

(n)
u , i(n)

u ) − λ1(su, iu) = λ1(su +
η
s,(n)
u√
n
, is +

η
i,(n)
u√
n

) − λ1(su, iu)

=

∫ 1

0
{∂Sλ1(su + α

η
s,(n)
u√
n
, iu + α

η
i,(n)
u√
n

)
η
s,(n)
u√
n

+ ∂Iλ1(su + α
η
s,(n)
u√
n
, iu + α

η
i,(n)
u√
n

)
η
i,(n)
u√
n

}dα,and from the Lips
hitz properties of ∂Sλ1 and ∂Iλ1 that |A(n, u)| ≤ C(su, iu)(|ηs,(n)
u |2 + |ηi,(n)

u |2)/√n and:
P

(
sup
t∈[0,T ]

∣∣∣∣
∫ t

0
A(n, u)du

∣∣∣∣ > ε

)
≤
CNE

(
supt∈[0,T∧ζn

N ] |ηs,(n)
u |2 + |ηi,(n)

u |2
)

ε
√
n

+ P (ζnN ≤ T ) , (38)whi
h tends to zero as n → ∞, by virtue of Lemma 5.1 and of (29). We deal with the term B(n, s) withsimilar 
omputations and obtain that ∫ t0 B(n, s)ds 
onverges in probability to 0 uniformly in t ∈ [0, T ].As a 
onsequen
e, Ψ(η(n), φ, .) 
onverges uniformly in t ∈ [0, T ] and in probability to the same limit as
(M̃

s,(n)
t , M̃

i,(n)
u , M̃ r,(n)(φ)), whi
h shows that the limiting values η satisfy (10).In order to 
omplete Theorem 3.4's proof, we establish that the strong uniqueness property holds for(10) (for given W and η0) and that its solution belongs to C([0, T ],R2 × C−2,0). These results rely on theuse of Gronwall's lemma and on the fa
t that when the density dependen
e is 'frozen' (s(n), i(n) or r(n)(da)have been repla
ed by their deterministi
 limits) the 
onstants appearing in the estimates do not dependon the lo
alization in N any more.Consequently, the adheren
e value of (L(η(n)))n∈N∗ is unique and the sequen
e η(n) 
onverges in law in

D([0, T ],R2 ×W−3,0) to the solution of SDE (10) in C([0, T ],R2 × C−2,0).A4 Proof of Theorem 4.1Using representation (13), the 
onvergen
e (15) dire
tly results from Theorem 3.2 
ombined with theassumed smoothness properties of λ1, λ3. Now, by virtue of the identi�ability assumption, the limiting
ontrast K(θ, θ∗) equals to 0 in the sole 
ase where θ = θ∗ and (16) then follows from the regularityassumption R1 in a standard fashion (see [16℄).A5 Proof of Theorem 4.2Observe �rst that the map θ ∈ Θ 7→ l
(n)
T (θ) is twi
e di�erentiable, and denoting by θ∗ ∈ Θ the true valueof the parameter, for all θ ∈ Θ and T > 0, the s
ore ∇θl

(n)
T (θ) equals to

∫ T

t=0

∫ ∞

u=0

∇θλ2(θ)

λ2(θ)
1
{0≤u≤nλ2(θ∗)i

(n)
t− }

QI(dt, du)

+

∫ T

t=0

∫ ∞

u=0

∇θλ3(i
(n)
t− , 〈r

(n)
t− , ψ〉, θ)

λ3(i
(n)
t− , 〈r

(n)
t− , ψ〉, θ)

1{λ2(θ∗)ni(n)
t− <u≤λ2ni

(n)
t− +nλ3(i

(n)
t− ,〈r(n)

t− ,ψ〉,θ∗)}Q
I(dt, du)

− n

∫ T

u=0
{∇θλ2(θ

∗)i(n)
u + ∇θλ3(i

(n)
u , 〈r(n)

u , ψ〉, θ)}du
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θ∗ = −Hθl

(n)
T (θ). We have

I
(n)
θ∗ = −n

∫ T

u=0
{Hθλ2(θ)i

(n)
u +Hθλ3(i

(n)
u , 〈r(n)

u , ψ〉, θ)}du+
∫ T

t=0

∫ ∞

u=0

[∇θλ2(θ) ·t ∇θλ2(θ)

λ2(θ)
i
(n)
t− 1{0≤u≤nλ2i

(n)
t− }

+
∇θλ3(i

(n)
t− , 〈r

(n)
t− , ψ〉, θ) ·t ∇θλ3(i

(n)
t− , 〈r

(n)
t− , ψ〉, θ)

λ3(i
(n)
t− , 〈r

(n)
t− , ψ〉, θ)

1{λ2(θ∗)ni(n)
t− <u≤λ2(θ∗)ni(n)

t− +nλ3(i
(n)
t− ,〈r(n)

t− ,ψ〉,θ∗)}

]
QI(dt, du).We have the following result.Lemma 5.3 Under the assumptions of Theorem (4.2), we have:(i) I(n)

θ∗ → Iθ∗ in Pθ∗-probability, as n→ ∞,(ii) for all T > 0, the sequen
e of pro
esses ({n−1/2∇θl
(n)
t (θ)}t∈[0,T ], n ∈ N

∗), 
onverges in law in D(R+,R)to the 
ontinuous gaussian martingale pro
ess with 0 as initial value and quadrati
 variation given by:
∫ t

0

{∇θλ2(θ
∗) ·t ∇θλ2(θ

∗)

λ2(θ∗)
i∗u +

∇θλ3(i
∗
u, 〈r∗u, ψ〉, θ∗) ·t ∇θλ3(i

∗
u, 〈r∗u, ψ〉, θ∗)

λ3(i∗u, 〈r∗u, ψ〉, θ∗)

}
ds (39)Proof The �rst assertion follows from Theorem 3.2. The se
ond one is a 
onsequen
e of Theorem 3.4. �The argument of the asymptoti
 normality results may be 
lassi
ally derived from the lemma above (seeChapter 4 in [23℄ for instan
e). Te
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