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A stohasti SIR model with ontat-traing:large population limits and statistial infereneStéphan Clémençon∗†‡, Viet Chi Tran♯ and Hetor de Arazoza§

† Laboratoire TCI UMR CNRS/GET Teleom Paris No.5141, FRANCE
‡ Unité Met�risk, Institut National de la Reherhe Agronomique, FRANCE

♯ Equipe Probabilités et Statistiques, Laboratoire Paul Painlevé, Université Lille 1, FRANCE
§ MATCOM, Faultad de Matematia y Computaion, Universidad de la Habana, CUBA(Reeived 00 Month 200x; revised 00 Month 200x; in �nal form 00 Month 200x)This paper is devoted to present and study a spei� stohasti epidemi model aounting for the e�et of ontat-traing on thespread of an infetious disease. Preisely, one onsiders here the situation in whih individuals identi�ed as infeted by the publi healthdetetion system may ontribute to deteting other infetious individuals by providing information related to persons with whom theyhave had possibly infetious ontats. The ontrol strategy, that onsists in examining eah individual one has been able to identify onthe basis of the information olleted within a ertain time period, is expeted to reinfore e�iently the standard random-sreeningbased detetion and slak onsiderably the epidemi. In the novel modelling of the spread of a ommuniable infetious disease onsideredhere, the population of interest evolves through demographi, infetion and detetion proesses, in a way that its temporal evolution isdesribed by a stohasti Markov proess, of whih the omponent aounting for the ontat-traing feature is assumed to be valued ina spae of point measures. For adequate salings of the demographi, infetion and detetion rates, it is shown to onverge to the weakdeterministi solution of a PDE system, as a parameter n, interpreted as the population size roughly speaking, beomes large. Fromthe perspetive of the analysis of infetious disease data, this approximation result may serve as a key tool for exploring the asymptotiproperties of standard inferene methods suh as maximum likelihood estimation. We state preliminary statistial results in this ontext.Eventually, relation of the model to the available data of the HIV epidemi in Cuba, in whih ountry a ontat-traing detetion systemhas been set up sine 1986, is investigated and numerial appliations are arried out.Keywords: mathematial epidemiology, stohasti SIR model, ontat-traing, measure-valued Markov proess, HIV, large populationapproximation, maximum likelihood estimation.AMS Subjet Classi�ation: 92D30, 62P10, 60F051. IntrodutionSine the seminal ontribution of [18℄, the mathematial modelling of epidemiologial phenomena has re-eived inreasing attention in the applied mathematis literature. Referenes devoted to epidemi modellingor statistial analysis of infetious disease data are muh too numerous for being listed in this paper (referto [4, 25℄ for reent aounts of stohasti epidemi modelling, while deterministi models for the spreadof infetious diseases are omprehensively presented and disussed in [3, 9℄). Here, an attempt is made toextend the 'general stohasti epidemi model', usually referred to as the standard SIR model, in order totake appropriate aount of the e�et of a ontat-traing ontrol measure on the spread of the epidemiat the population level and to aquire a better understanding of the e�ieny of this intervention strategy.In the area of publi health pratie, by ontat-traing one means the ative detetion mehanism thatonsists in asking individuals identi�ed as infeted to name persons with whom they have had possiblyinfetious ontats and then, on the basis of the information provided, in striving to �nd those persons inorder to propose them a medial examination and a ure in the event of infetion. Though expensive andontroversial, 'ontat-traing' programs are now reeiving muh attention both in the sienti� literature(see [10, 16, 27℄ or [24℄ for instane) and in the publi health ommunity, within whih they are generally
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September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR52onsidered as e�ient guidane methods for bringing the spread of sexually transmissible diseases (STD's)under ontrol. For instane, a ontat-traing detetion system has been set up sine 1986 for ontrolling theHIV epidemi in Cuba (refer to [5℄ for an overview of the evolution of HIV/AIDS in Cuba), whih shall serveas a running illustration for the onepts and methods studied in the present paper. From the perspetiveof publi health guidane pratie, mathematial modelling of epidemis in presene of a ontat-traingstrategy reinforing a sreening-based detetion system is a ruial stake, insofar as it may help evaluatingthe impat of this ostly ontrol measure. In this framework, epidemi models must naturally aount forthe fat that, one deteted, an infeted person keeps on playing a role in the evolution of the epidemi fora ertain time by helping towards identi�ation of infetious individuals.The primary goal of this paper is to generalize the standard SIR model by inorporating a struture byage in the subpopulation of deteted individuals, age being here the time sine whih a person has beenidenti�ed as infeted. At any time, the 'R' lass is desribed by a point measure, on whih the ontat-traing detetion rate is supposed to depend. In this manner, the way an 'R' individual ontributes toontat-traing detetion may be made strongly dependent on the time sine her/his detetion througha given weight funtion ψ, allowing for great �exibility in the modelling. Assuming in partiular a largepopulation in whih the infetious disease is spread, properties of the mathematial model are thoroughlyinvestigated and preliminary statistial questions are takled. Beyond stohasti modelling of the ontat-traing feature, the present work establishes large population limit results (law of large numbers and entrallimit theorem) for the measure-valued Markov proess desribing the epidemi (we follow in this respetthe approah developed in [12,20,29,30℄), as well as in its appliation to statistial analysis of the epidemi.The paper is organized as follows. In Setion 2, a Markov proess with an age-strutured omponentis introdued for modelling the temporal evolution of an epidemi in presene of ontat-traing. A shortqualitative desription is provided, aiming at giving an insight into how the dynami is driven by a fewkey omponents. The proess of interest is the solution of a stohasti di�erential equation (SDE) forwhih existene and uniqueness results are stated, together with a short probabilisti study. The mainresults of the paper are displayed in Setion 3. Considering a sequene of epidemi models with ontat-traing indexed by a parameter n ∈ N
∗ representing the population size roughly speaking, limit results areestablished when n→ ∞. Appliations of the latter to the study of maximum likelihood estimators (basedon omplete data) in the ontext of statistial parametri estimation of the epidemi model with ontat-traing are then onsidered in Setion 4. Eventually, in Setion 5, these inferene tehniques are appliedfor analyzing data related to the HIV epidemi in Cuba and drawing preliminary onlusions about thee�etiveness of ontat-traing in this partiular ase: it an be seen that the hosen model espeially re�etsthe growing e�ieny of the ontat-traing detetion method, the latter beoming almost as ompetitiveas the random sreening based method ten years after the beginning of the epidemi. Tehnial proofs arepostponed to the Appendix.2. The stohasti SIR model with ontat-traingEpidemi problems really present a great hallenge to probabilists and statistiians. Models for the spread ofinfetions are based on hypotheses about suh mehanisms as infetion and detetion. The huge diversityof possible hypotheses ould give rise to an enormous variety of probabilisti models with their spei�features. Although omprehensive mathematial models should inorporate numerous features to aountfor real-life situations (suh as population strati�ed aording to soio-demographi harateristis, time-varying infetivity, e�ets of latent period, hange in behavior, et.), we shall deal with a stohasti epidemimodel with a reasonably simple struture (a modi�ed version of the standard 'Markovian SIR model withdemography', atually), while overing some important aspets and keeping thus its pertinene from theperspetive of pratial appliations. Indeed, inorporating too many features would naturally make themodel too di�ult to study analytially. As previously mentioned, we are mainly onerned here witha probabilisti modelling of the spread of an infetious disease in presene of a ontat-traing ontrolstrategy in the long-range (i.e. when one annot assume that the epidemi eases before some demographihanges our, leading up to take into onsideration immigration/birth and emigration/death proesses).A parimonious Markovian struture for desribing these features is stipulated, the main novelty arising



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR5 3from the measure-valued omponent inorporated into the model in order to aount for the e�ets ofontat-traing. Beyond its simpliity, our modelling hopefully su�es to shed some light on the problemof investigating the e�ay of suh a ontrol measure. In the ase of the HIV epidemi in Cuba for instane(see Setion 5), the model obtained aounts for the fat that ontat-traing has beome as e�ient asrandom sreening after 10 years. To our knowledge, earlier works have not allowed to onstrut a modelre�eting this phenomenon (see [10℄ and the referenes therein).2.1. The population dynamisWe start with a qualitative desription of the population dynamis and a list of all possible events throughwhih the population of interest may evolve (see Fig. 1). The population is strutured into three lassesorresponding to the di�erent possible states with respet to the infetious disease. We adopt the standardSIR terminology for denoting the urrent status of an individual with the only di�erenes that 'R' standshere for the population of 'removed individuals willing to take part in the ontat-traing program' andthat it is strutured aording to the age of detetion, namely the time sine a deteted individual hasbeen identi�ed by the publi health detetion system as infeted. Suh a distintion allows for onsideringheterogeneity in the way eah 'R' individual ontributes to the ontat-traing ontrol. Hene, at any time
t ≥ 0 the lass of removed individuals is desribed by Rt(da) in MP (R+), the set of point measures on
R+: for all 0 < a1 < a2 < ∞, the quantity Rt([a1, a2]) represents the number of removed individuals whohave been deteted between times t− a2 and t − a1. Here and throughout, we use the notation 〈R,ψ〉 =∫
ψ(a)R(da), R being any positive measure on R+ and ψ any R-integrable funtion. In a more standardfashion, we shall denote by St and It the sizes of the lasses of suseptible and infetious individuals.Individuals immigrate one at a time aording to a Poisson proess of intensity λ0. One in the popula-tion, an individual beomes 'suseptible' and may either leave the population without being ontaminated(emigration or death) or independently be infeted. Emigrations our in the population at time t ≥ 0 withthe hazard rate µ0St and infetions with the rate λ1(St, It). One infeted, an individual an be disoveredby the detetion system either by random sreening ('spontaneous detetion') or by ontat-traing, orelse emigrates/dies. The hazard rates assoiated with these events are respetively λ2It, λ3(It, 〈Rt, ψ〉),where ψ : R+ → R+ is a bounded and measurable weight funtion that determines the ontribution of aremoved individual to the ontat-traing ontrol aording to the time a she/he has been deteted (seethe examples disussed below) and µ1It. If deteted, an individual takes part in the ontat-traing systemby providing useful information related to her/his (possibly) infetious ontats. We do not onsider theemigration/death of deteted individuals sine it is the availability of the information that they have givenrather than their presene in the system that plays a role in the ontat-traing proess.The events through whih the sizes St, It and the point measure Rt evolve are numbered as follows:

• Event E = 0: reruitment of a suseptible,
• Event E = 1: death/emigration of a suseptible,
• Event E = 2: infetion,
• Event E = 3: 'spontaneous' detetion of an infetive,
• Event E = 4: detetion of an infetive by ontat-traing,
• Event E = 5: death/emigration of an infetive.
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September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR54 Before providing a desription of the population proess introdued above via a system of SDE's, a fewremarks and examples are in order.Examples. (On modelling the ontat-traing feature) As previously explained, the removedindividuals ontribute to ontat-traing in funtion of the time sine their detetions and through theweight funtion ψ.1. In the ase where the information provided by a deteted person enables to examine individuals at aonstant rate over a period of time of �xed length τ > 0 immediately after its detetion (after this timeperiod the information is onsidered as onsumed), the weight funtion ould be hosen as
ψ(a) = 1{a∈[0,τ ]}, for all a ≥ 0.Here we have denoted by 1E the indiator funtion of E. The seond argument of the ontat-traing detetionrate, 〈Rt, ψ〉, is then the number of individuals deteted between times t− τ and t.2. The following hoie:
ψ(a) = e−c·a, for all a ≥ 0,with c > 0, is of partiular interest when assuming that e�ieny of the information provided by a detetedindividual (geometrially) dereases as the time a sine its detetion inreases.3. To take into aount the di�ulties one may enounter at the early stages of the searh for ontats, wean onsider funtions ψ that are inreasing from zero before deaying. From this viewpoint, a suitable betaor gamma density funtion would be possibly a reasonable hoie of parametri weight funtion ψ.Remark 1 (Expliit forms for jump rate funtions) Until now, no expliit form for the infetion rateand the detetion by ontat-traing rate has been spei�ed for generality's sake (it shall be neverthelessassumed that λ1 and λ3 both ful�ll the olletion of assumptions H1 listed below). In pratie typialhoies for the infetion rate funtion are λ1SI, λ1SI/(I + S) or λ1I with λ1 > 0. In ontradistintionto the �rst example, the two last ones orrespond to a situation where the rate at whih a given infetivemakes infetious ontat does not inrease with the size of the population of suseptibles, as it is the asefor STD's in pratie. In a similar fashion, the rate funtion for ontat-traing detetions λ3(I, 〈R,ψ〉)may be hosen as λ3I〈R,ψ〉, λ3I〈R,ψ〉/(I + 〈R,ψ〉) or λ3〈R,ψ〉, with λ3 > 0.Remark 2 (A more general framework) One may onsider generalizations of the setup desribedabove, stipulating for instane that the 'S' and 'I' lasses are strati�ed aording to soio-demographifeatures (or sexual behavior harateristis in the ontext of STD's) in order to aount for heterogeneitiesaused by the soial struture of the population, even if it entails introduing more duration variables in themodel. One may also introdue the 'age of infetion'. This would enable us to model diretly time-varyinginfetivity, o�ering this way an alternative to so-alled 'stage modelling' approahes (see [14℄ for instane).The theoretial results of this paper may be extended in a straightforward manner to suh more generalframeworks. In order to lighten the notation and make proofs simpler, we restrit the study to the modeldesribed above.Assumptions H1: In the remainder of the paper, the rate funtions λ1 and λ3 are assumed to belongto C1(R2

+), the set of real funtions of lass C1 on R
2
+. We denote by by ∂Sλ1, ∂Iλ1, ∂Iλ3 and ∂Rλ3 theirpartial derivatives. We also suppose that all these funtions are loally Lipshitz ontinuous and dominatedby the mapping (x, x′) ∈ R

2
+ 7→ xx′: for k ∈ {1, 3}, we assume that ∀N > 0, ∃Lk(N) > 0 suh that

∀(x, x′), (y, y′) ∈ [0, N ]2, |λk(x, x′) − λk(y, y
′)| ≤ Lk(N)(|x− y| + |x′ − y′|),and that ∃λ̄k > 0, ∀(x, x′) ∈ R

2
+, λk(x, x

′) ≤ λ̄kxx
′ (and similarly for the partial derivatives). Finally, theweight funtion ψ is assumed measurable and bounded. Furthermore, for the entral limit theorem, we willsuppose it is of lass C2.



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR5 52.2. On desribing the epidemi by stohasti di�erential equationsTreading in the steps of [12℄ who fully developed a mirosopi approah for eologial systems (see also[29,30℄ where age-struture is taken into aount), we now desribe the temporal evolution of the epidemiby a measure-valued SDE system driven by Poisson point measures.The proess {(St, It, Rt(da))}t≥0 de�ned through the SDE system below takes its values in N × N ×
MP (R+) and may be seen as a generalization of the lassial vetor-valued Markov proesses arising instohasti SIR models.Definition 2.1 Consider a probability spae (Ω,F ,P), on whih are de�ned:(i) a random vetor (S0, I0) with values in (N∗)2 suh that E[S0 + I0] < +∞ (at t = 0, we assume that noone has been deteted yet),(ii) two independent Poisson point measures on R

2
+, QS(dv, du) and QI(dv, du), with intensity dv⊗du, theLebesgue measure on R

2
+, and independent from the initial onditions (S0, I0).De�ne {(St, It, Rt(da))}t≥0 as the Markov proess solution of the following system of SDE's:





St = S0 +
∫ t
v=0

∫∞
u=0

(
10≤u≤λ0

− 1λ0<u≤λ0+µ0Sv−+λ1(Sv−,Iv−)

)
QS(dv, du)

It = I0 +
∫ t
v=0

∫∞
u=0 1λ0<u≤λ0+λ1(Iv−,Sv−)Q

S(dv, du)

−
∫ t
v=0

∫∞
u=0 10≤u≤(µ1+λ2)Iv−+λ3(Iv−,〈Rv−,ψ〉)Q

I(dv, du)

〈Rt, f〉 =
∫ t
v=0

∫∞
u=0 f(0)10≤u≤λ2Iv−+λ3(Iv−,〈Rv−,ψ〉)Q

I(dv, du) +
∫ t
v=0

∫∞
a=0 ∂af(a)Rv(da)dv,

(1)for all f ∈ C1
b (R+) the set of real bounded funtions of lass C1 with bounded derivatives. We have denotedby ∂af the gradient of f and by g(t−) the left limit in t ∈ R of any àdlàg funtion g : R → R.Under H1 and (i) of De�nition 2.1, it may be seen that there exists a unique strong (non explosive)solution to SDE (1). The tehnial proof is omitted sine it is a slight modi�ation of the proofs of Setion2.2 in [29℄.

0 5 10 15 20 25
0

2000

4000

6000

8000

Time

P
op

ul
at

io
n 

si
ze

Figure 2. Simulations for the Cuban epidemi: simulated evolution of the size of the I lass (blue) and of the umulated size of the Rlass (green). The bold red line stands for the observed umulated size of the R lass, omputed from data related to the Cuban HIVepidemi over the period 1986-2006. We have hosen ψ = 1[0,4]. In order to mimi the hange in trend that an be observed around1996, two periods have been separately onsidered. During the �rst period (i.e. the �rst �fteen years) the parameters of the simulationhave been piked as follows: S0 = 5106, I0 = 230, λ0 = 10−2, µ0 = 10−8, µ1 = 6.6 10−2, λ1 = 1.14 10−7, λ2 = 3.7510−1 and
λ3 = 6.55 10−5. In the seond period, we have used: λ1 = 1.16 10−7, λ2 = 4.45 10−1 and λ3 = 2.50 10−4.From a pratial perspetive, we also emphasize that this approah paves the way for simulating traje-tories of the epidemi proess (see Fig. 2). An attrative advantage of stohasti models in mathematialepidemiology indeed lies in their ability to reprodue ertain variability features of the observed data. Asan illustration, a simulated trajetory of {(It, 〈Rt, 1〉)}t≥0 generated from Eq. (1) with jump rates λ1SI



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR56and λ3I〈R,ψ〉 is displayed in Fig. 2. For omparison purpose, the observed umulative number of detetedHIV+ individuals in Cuba (1986-2006) has been juxtaposed (see Setion 5 for further details). It an beseen that over the �rst 20 years of the epidemi, the simulated and observed urves for the umulatednumber of detetions are fairly losed to eah other. Between years 7 and 15, the observed urve is belowthe simulated one, but we know that during these years, there was less funds for detetion beause of theeonomi risis aompanying the the ollapse of the Soviet Union.2.3. Limiting behavior in long time asymptotisWe now state a limit result for the epidemi proess introdued above, as time goes to in�nity. Refer toA1 in the Appendix for a proof based on oupling analysis.Proposition 2.2 Assume that f(a) → 0 as a→ ∞. Considering the Markov proess {(St, It, Rt(da))}t≥0introdued in De�nition 2.1, we have, whatever the initial onditions (S0, I0) ∈ (N∗)2, that
(St, It, 〈Rt(da), f〉) → (S∞, 0, 0) in distribution as t → ∞, denoting by S∞ a Poisson random variableof parameter λ0/µ0.The law of S∞ is the stationary distribution of the N-valued immigration and death proess whih jumpsfrom k to k + 1 with rate λ0 and from k to k − 1 with rate µ0k, and is obtained in Appendix A1. Thisergodiity result shows that the time of extintion of the epidemi is almost surely �nite, though it maybe very long in pratie. It is worth mentioning that in the situation of long-lasting epidemis, as in theHIV ase, the long term behavior of the epidemi onditioned upon its non extintion may be re�ned bystudying quasi-stationary measures (see [33℄ for instane). We leave this question (far from trivial whenthe state spae is not �nite) for further researh.3. Large population limitsThe overall purpose of this setion is to provide a thorough analysis of the measure-valued SIR proessintrodued above from the 'large population approximation' perspetive (one may refer to [11℄ for anaount of approximation theorems for Markov proesses and to Chapt. 5 in [4℄ for appliations of theseonepts in approximating vetor-valued SIR models), based on the reent tehniques developed in [12℄and [29, 30℄ for eologial systems.3.1. RenormalizationWe onsider a sequene, ({(S(n)

t , I
(n)
t , R

(n)
t (da))}t≥0, n ∈ N

∗), of SIR proesses with ontat-traing. For
n ≥ 1, {(S(n)

t , I
(n)
t , R

(n)
t (da))}t≥0 orresponds to the stohasti proess desribed in De�nition 2.1, startingfrom (S

(n)
0 , I

(n)
0 ) of size proportional to n and with the following rate modi�ations: the immigrationrate is nλ0, the infetion jump rate funtion is nλ1(S

(n)/n, I(n)/n), while the ontat-traing jump ratefuntion is nλ3(I
(n)/n, 〈R(n), ψ〉/n). We denote by (s

(n)
t , i

(n)
t , r

(n)
t (da)) = (S

(n)
t /n, I

(n)
t /n,R

(n)
t (da)/n)the renormalized proess obtained by re-weighting all individuals of the population by 1/n. We assumefurthermore that (s

(n)
0 , i

(n)
0 ) onverges in probability to a deterministi ouple (s0, i0) ∈ R

∗2
+ as n → ∞.The moment ondition below shall also be required in the sequel. Let p > 2.Moment assumption Mp: supn∈N∗ E[(s

(n)
0 )p + (i

(n)
0 )p] < +∞.This moment assumption ombined with Assumptions H1 implies that the moments of order p propagateon ompat time intervals [0, T ] with T > 0 (see [12,29℄ Setion 3.1.2). Before writing down the martingaleproblem assoiated with {(s(n)

t , i
(n)
t , r

(n)
t (da))}t≥0 for a given n ∈ N

∗, let us give an insight into the waythe renormalizations above may be interpreted in some important examples:



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR5 7Remark 1 (On the meaning of renormalization in basi examples) In the ase of homogeneousrate funtions, the eventual impat of the renormalization on the jump rates may be desribed as follows.
• With λ(n)

0 = nλ0, the immigration/birth rate is assumed proportional to the initial population size,
• If the form hosen for λ1(S, I) is either λ1I or λ1SI/(I + S), the infetion rate funtion is not a�etedby the saling, while if one takes λ1(S, I) = λ1SI, the rate funtion dereases proportionately to 1/n,re�eting the fat that the larger the population size is, the less likely the risk of being ontaminated bya given infetious individual is.
• The same remark holds for the ontat-traing rate funtion λ3(I, 〈R,ψ〉).The next proposition gives a semi-martingale deomposition for {(s(n)

t , i
(n)
t , r

(n)
t (da))}t≥0, whih shallplay a ruial role in our analysis.Proposition 3.1 Let n ∈ N

∗, t ≥ 0 and f : (a, u) 7→ fu(a) a funtion in C1
b (R

2
+). Under H1 and themoment ondition Mp with p > 2,



M

s,(n)
t

M
i,(n)
t

M
r,(n)
t (f)


 =



s
(n)
t − s

(n)
0 − λ0t+

∫ t
u=0{µ0s

(n)
u + λ1(s

(n)
u , i

(n)
u )} du

i
(n)
t − i

(n)
0 −

∫ t
u=0{λ1(s

(n)
u , i

(n)
u ) − (µ1 + λ2)i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du
〈r(n)
t , ft〉 −

∫ t
u=0{〈r

(n)
u , ∂afu + ∂ufu〉 + fu(0)(λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉))}du


 (2)is a àdlàg L2-martingale, with preditable quadrati variation given by:





〈M s,(n)〉t = 1
n

∫ t
u=0 λ0 + {µ0s

(n)
u + λ1(s

(n)
u , i

(n)
u )} du

〈M i,(n)〉t = 1
n

∫ t
u=0{λ1(s

(n)
u , i

(n)
u ) + (µ1 + λ2)i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du
〈M r,(n)(f)〉t = 1

n

∫ t
u=0 f

2
u(0){λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du
〈M s,(n),M i,(n)〉t = − 1

n

∫ t
u=0 λ1(s

(n)
u , I

(n)
u ) du, 〈M s,(n),M r,(n)(f)〉t = 0

〈M i,(n),M r,(n)(f)〉t = − 1
n

∫ t
u=0 fu(0){λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)}du.This result follows from the representation given in De�nition 2.1, in whih the Poisson measures QSand QI are introdued. It may be established by following line by line the proof of Theorem 5.2 of [12℄ andTheorem 3.1.8 of [29℄, tehnial details are thus omitted.3.2. Main results for the large population limit3.2.1. Law of large numbers. Before stating our �rst limit result for the sequene of renormalized SIRproesses introdued above, we make lear the topology we onsider. We denote by MF (R+) the spae of�nite measures on R+, endowed with the metrizable weak onvergene topology (see [26℄). For all n ∈ N
∗,the sample paths {(s(n)

t , i
(n)
t , r

(n)
t )}t≥0 belong to the Skorohod spae D(R+,R

2
+ ×MF (R+)) equipped withthe metrizable J1 topology (see § 2.1 in [17℄ for further details).Heuristially, sine the quadrati variation of the martingale proess displayed above is of order 1/n,one obtains a deterministi limit by letting n tend to in�nity. As a matter of fat, onsider the system ofdeterministi evolution equations, obtained by equating to zero the martingale proess in Proposition 3.1:





st = s0 +
∫ t
u=0 (λ0 − µ0su − λ1(su, iu)) du

it = i0 +
∫ t
u=0 (λ1(su, iu) − (µ1 + λ2)iu + λ3(iu, 〈ru, ψ〉)) du

〈rt, ft〉 =
∫ t
u=0

{∫∞
a=0 (∂uf(a, u) + ∂af(a, u)) ru(da) + f(0, u) (λ2iu + λ3(iu, 〈ru, ψ〉))

}
du

(3)for all f ∈ C1
b (R

2
+). The result below states that there exists a unique (smooth) solution to this deterministisystem, to whih the sequene {(s(n), i(n), r(n)(da))}n≥1 onverges in probability. This may be viewed as



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR58an extension to our measure-valued setup of the Law of Large Numbers stated in Theorem 5.2 of [4℄ forvetor-valued SIR proesses in large population asymptotis (see the referenes therein). A sketh of proofstands in Appendix A2.Theorem 3.2 (Law of Large Numbers) Under H1 and the moment ondition Mp with p > 2, asthe size parameter n tends to in�nity, the sequene of proesses {(s(n), i(n), r(n)(da))}n∈N∗ onverges inprobability in D(R+,R
2
+ ×MF (R+)) to the unique solution {(st, it, rt(da))}t≥0 of (3).(i) for all t > 0, the measure rt(da) is absolutely ontinuous with respet to the Lebesgue measure. Denotingby ρt(a) its density, the map (a, t) 7→ ρt(a) is di�erentiable on the set {a ≤ t} ontaining its support,(ii) the map t 7→ (st, it) is of lass C1.By virtue of the regularity properties mentioned above, (st, it, ρt)t≥0 also solves the following PDE systemwith initial onditions (s0, i0,0), 0 denoting the onstant funtion equal to zero:




dst

dt = λ0 − µ0st + λ1(st, it)
dit
dt = λ1(st, it) − (µ1 + λ2)it − λ3

(
it,
∫

R+
ψ(a)ρt(a)da

)

∂ρt

∂t (a) = −∂aρt(a)
ρt(0) = λ2it + λ3

(
it,
∫

R+
ψ(a)ρt(a)da

)
.

(4)This PDE system may be seen as a generalization of deterministi epidemi models introdued in [10℄(see also the referenes therein), taking into aount the e�ets of the ontat-traing strategy and de�nedthrough a lassial di�erential system. Besides, we point out that the inrease of the time sine detetion('detetion aging') is translated into a transport equation (the third equation in (4)), with a boundaryondition for a = 0 (fourth equation in (4)). This is a well-known fat in age-strutured population models(see [34℄ for instane). It is easy to prove that the solution is of the form ρt(a) = ρt−a(0). One thenreovers a delay-di�erential equation system, similar as those reently onsidered in epidemi modelling(see [7, 8, 31, 32℄ and the referenes therein for instane).3.2.2. Central limit theorem. In order to re�ne the limit result stated in Theorem 3.2, we establish aentral limit theorem (CLT ), desribing how the renormalized epidemi proess (s(n), i(n), r(n)(da)) �u-tuates around the solution of (4). This is an adaptation of the results obtained in Chapter 4 of [29℄ forage-strutured birth and death proesses. Let T > 0 and onsider the sequene of �utuation proesses:
η

(n)
t =




η
s,(n)
t

η
i,(n)
t

η
r,(n)
t (da)


 =

√
n




s
(n)
t − st

i
(n)
t − it

r
(n)
t (da) − rt(da)


 , (5)

t ∈ [0, T ], n ∈ N
∗, with values in R × R ×MS(R), where MS(R) denotes the spae of signed measures on

R equipped with its Borel σ-�eld.Funtional preliminaries. SineMS(R) embedded with the weak onvergene topology is not metrizable,we will in fat onsider the sequene (ηr,(n)(da))n∈N∗ as a sequene of proesses with values in a well-hosendistribution spae. In order to prove its tightness, we link this distribution spae to ertain Hilbert spaes.We are inspired by the works of Métivier [22℄, Méléard [20℄, and onsider the following spaes:Definition 3.3 For β ∈ N, γ ∈ R+, Cβ,γ is the spae of funtions f of lass Cβ suh that ∀k ≤ β,
|f (k)(a)|/(1 + |a|γ) vanishes as |a| → +∞, equipped with the norm:

‖f‖Cβ,γ :=
∑

k≤β

sup
a∈R

|f (k)(a)|
1 + |a|γ . (6)
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W β,γ

0 is the losure of the spae C∞
K (R) of in�nitely di�erentiable funtions f with ompat support in

R for the norm ‖.‖W β,γ
0

de�ned by:
‖f‖2

W β,γ
0

:=

∫

R

∑

k≤β

|f (k)(a)|2
1 + |a|2γ da. (7)The spaes W β,γ

0 are Hilbert spaes and we denote by W−β,γ
0 their dual spaes.In the following, we will be interested in the following spaes (see [1, 20℄ for the ontinuous injetions).

W 3,0
0 →֒ C2,0 →֒ C1,0 →֒W 1,1

0 →֒ C0,1, and C−0,1 →֒ W−1,1
0 →֒ C−1,0 →֒ C−2,0 →֒W−3,0

0 . (8)The �utuation proesses are now viewed as taking their values in the dual spae C−2,0 for tehnialreasons. The spae C−2,0 is ontinuously inluded in W−3,0
0 , and it is in this spae that the onvergene indistribution stated in the next theorem is proved (see Appendix A3 for a detailed sketh of the proof).Theorem 3.4 (Central Limit Theorem) Suppose that H1 and the moment assumption Mp with p > 2are ful�lled and that supn∈N∗ E

(
|ηs,(n)

0 |2 + |ηi,(n)
0 |2

)
< +∞. Then, ({η(n)

t }t∈[0,T ])n≥1, as a sequene ofrandom variables with values in D([0, T ],R × R ×W−3,0
0 ), onverges in law to the solution of the followingequation, that belongs to C([0, T ],R × R × C−2,0) and is unique in this spae: ∀t ∈ [0, T ],

ηt = η0 +Wt +

∫ t

u=0
Ψ((su, iu, ru), ηu)du, (9)where Ψ((su, iu, ru), ηu)

=




µ0η
s
u + ∂Sλ1(su, iu)η

s
u + ∂Iλ1(su, iu)η

i
u

∂Sλ1(su, iu)η
s
u + [∂Iλ1(su, iu) + µ1 + λ2 + ∂Iλ3(iu, 〈ru, ψ〉)]ηiu + ∂Rλ3(Iu, 〈ru, ψ〉)〈ηru, ψ〉
δ0[λ2 + ∂Iλ3(iu, 〈ru, ψ〉)]ηiu + δ0∂Rλ3(iu, 〈ru, ψ〉)〈ηru, ψ〉 + J∗

uη
r
u,


with ∀t ∈ [0, T ], ∀f ∈ W 3,0

0 (→֒ C2,0), 〈J∗
t η

r
t , f〉 =

∫
R+
∂af(a)ηrt (da), and where W = (W s,W i,W r) is aontinuous, entered, square-integrable Gaussian proess of C([0, T ],R2 × C−2,0). For every t ∈ [0, T ] andall f ∈ C2,0, the quadrati variation of (W s

t ,W
i
t , 〈W r, f〉t

)
t∈[0,T ]

is given by:




〈W s〉t =
∫ t
0 (λ0 + µ0su + λ1(su, iu)) du,

〈W i〉t =
∫ t
0 (λ1(su, iu) + (µ1 + λ2)iu + λ3(iu, 〈ru, ψ〉)) du

〈W r(f)〉t =
∫ t
0 f

2
u(0) (λ2iu + λ3(iu, 〈ru, ψ〉)) du

〈W s,W i〉t = −
∫ t
0 λ1(su, iu)du, 〈W s, 〈W r, f〉〉t = 0〈

W i, 〈W r, f〉
〉
t
= −

∫ t
0 fu(0) (λ2iu + λ3(iu, 〈ru, ψ〉)) du

. (10)
4. Statistial inferene by maximum likelihood estimationWe now turn to the problem of estimating the jump rates governing the dynamis of the epidemi, in aparametri setting. Although, generally, not all events related to the epidemi are observable in pratie,in this premier work we deal with the ideal ase where one dispose of omplete epidemi data by meansof maximum likelihood estimation (MLE). Indeed, MLE methods for omplete data are of interest from apratial viewpoint, insofar as in ertain situations they may be readily used after implementing adequate



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR510augmentation data proedures. They onstitute, besides, the maximization step of (Monte Carlo-) EMproedures, whih are extensively used for analyzing infetious disease data (see [6℄ for instane).We start with some de�nitions. Let us �x the renormalization parameter n. We assoiate to the proess
(s

(n)
t , i

(n)
t , r

(n)
t )t≥0 the sequene {E(n)

k , T
(n)
k }k∈N∗ where {T (n)

k }k∈N∗ is the sequene of suessive jump timesof the proess, and where E(n)
k ∈ E = {0, . . . , 5} is the type of event ourring at time T (n)

k , k ≥ 1 (seeSetion 2.1). By onvention, the time origin is T (n)
0 = 0. For notational simpliity only, the rates µ0, µ1, λ0,

λ1 are supposed to be known and we fous on the estimation of the detetion rates λ2 and λ3 (extensionsto a more general statistial framework are straightforward, in partiular when estimating the infetionrate is the matter). We suppose that the latter are entirely determined by a parameter θ, taking values ina set Θ ⊂ R
d, d ≥ 1: λ2 = λ2(θ) and λ3(., .) = λ3(., ., θ). We set {Pθ}θ∈Θ the resulting family of probabilitymeasures on the underlying spae (Ω,A). We denote by P̃ the probability measure on (Ω,A) orrespondingto the ase when the (E

(n)
k )'s are i.i.d. and uniformly distributed on E , independent from the durations

∆T
(n)
k = T

(n)
k − T

(n)
k−1, k ∈ N, supposed i.i.d. and exponentially distributed with mean 1/(6n).4.1. The likelihood funtionLet T > 0 and n ∈ N

∗. We denote by K(n)
T =

∑
k≥1 1{T (n)

k ≤T} the total number of events ourring beforetime T and write the likelihood of {(E(n)
k , T

(n)
k )}1≤k≤K(n)

T

. The omplete history of the epidemi until time
T is desribed by the σ-�eld F (n)

t = σ{s(n)
u , i

(n)
u , r

(n)
u , u ≤ t}. With the notation above, the statistial model

(Ω,A, {Pθ}θ∈Θ) is dominated along the �ltration (F (n)
t )t≥0 and P̃ is a dominating probability measure. Inpartiular, for all θ ∈ Θ, we have on F (n)

T :
Pθ =L(n)

T (θ) · P̃, with the likelihood: (11)
L(n)
T (θ) = exp

(
nT −

∫ T

u=0
(nλ0 + µ0ns

(n)
u + nλ1(s

(n)
u , i(n)

u ) + (µ1n+ λ2(θ)n)i(n)
u + nλ3(i

(n)
u , 〈r(n)

u , ψ〉, θ))du
)

×
K(n)

T∏

k=1

Lθ(Ek, (s
(n)
Tk
, i

(n)
Tk
, r

(n)
Tk

(da))), (12)where: Lθ(E, (s, i, r(da))) = λ
1{E=0}

0 (µ0s)
1{E=1} λ1(s, i)

1{E=2} (λ2(θ)i)
1{E=3} λ3(i, 〈r, ψ〉, θ)1{E=4}(µ1i)

1{E=5}.If θ∗ ∈ Θ denotes the 'true value' of the parameter, by taking the logarithm, keeping the terms dependingon θ solely and using the representation of De�nition 2.1, one is lead to maximize the log-likelihood :
l
(n)
T (θ) =

∫ T

t=0

∫ ∞

u=0

[
log(λ2(θ)i

(n)
t− )1{0≤u≤λ2(θ∗)ni(n)

t− }

+ log(λ3(i
(n)
t− , 〈r

(n)
t− , ψ〉, θ)1{λ2(θ∗)ni(n)

t− <u≤λ2(θ∗)ni(n)
t− +nλ3(i

(n)
t− ,〈r(n)

t− ,ψ〉,θ∗)}

]
QI(dt, du)

−n
∫ T

t=0
{λ2(θ)i

(n)
t + λ3(i

(n)
t , 〈r(n)

t , ψ〉, θ)}dt. (13)4.2. MLE onsistenyConsider the ML estimator for T > 0 and n ∈ N
∗:

θ̂n = arg max
θ∈Θ

l
(n)
T (θ). (14)



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR5 11The following assumptions shall be required:Identi�ability assumption H2: The map θ ∈ Θ 7→ (λ2(θ), λ3(., ., θ)) is injetive.Regularity assumption R1: For all (x, y) ∈ R
∗2
+ , the maps θ ∈ Θ 7→ λ2(θ) and θ ∈ Θ 7→ λ3(x, y, θ), areequiontinuous.As shown by the result below, under the basi identi�ability and regularity onditions stipulated above,ML estimators are onsistent.Theorem 4.1 (Consisteny of ML Estimators) Set Φ(x) = log(x) + 1/x − 1. Under AssumptionsH1, Mp with p > 2, H2 and R1, for all T > 0 and any (θ∗, θ) ∈ Θ2, as n → ∞, we have the followingonvergene in Pθ∗-probability,

Kn(θ, θ
∗) =

1

n
{l(n)
T (θ∗) − l

(n)
T (θ)} → K(θ, θ∗), (15)where: K(θ, θ∗) =

∫ T

t=0
λ2(θ

∗)i∗tΦ(
λ2(θ

∗)

λ2(θ)
)dt+

∫ T

t=0
λ3(i

∗
t , 〈r∗t , φ〉, θ∗)Φ(

λ3(i
∗
t , 〈r∗t , φ〉, θ∗)

λ3(i∗t , 〈r∗t , φ〉, θ)
)dt,denoting by (s∗, i∗, r∗(da)) the solution of the PDE system (4) with rate funtions assoiated with θ∗.Under the further assumption that the parameter spae Θ is ompat, the ML estimator (14) is onsistent:

lim
n→∞

θ̂n = θ∗, in Pθ∗ − probability. (16)This result mainly relies on the Law of Large Numbers stated in Theorem 3.2 (see A4 in the Appendixfor tehnial details).4.3. MLE asymptoti normalityIn order to re�ne our study of the asymptoti behavior of the ML estimator, we suppose that the strongerregularity assumption below is satis�ed.Regularity ondition R2: For all (x, y) ∈ R
∗2
+ , the maps θ ∈ Θ 7→ λ2(θ) and θ ∈ Θ 7→ λ3(x, y, θ) aretwie ontinuously di�erentiable.Let Hθg denote the hessian matrix of any twie di�erentiable funtion θ ∈ Θ 7→ g(θ) and set Jθg(θ) =

Hθg(θ) −∇θg(θ) ·t ∇θg(θ) then. Observe that the Fisher information matrix is given by:
Iθ = −

∫ T

u=0

{
Hθλ2(θ)i

∗
u

(
λ2(θ

∗)

λ2(θ)
− 1

)
−∇θλ2(θ) ·t ∇θλ2(θ)

λ2(θ
∗)i∗u

λ2(θ)2

+ Hθλ3(i
∗
u, 〈r∗u, ψ〉, θ)

(
λ3(i

∗
u, 〈r∗u, ψ〉, θ∗)

λ3(i∗u, 〈r∗u, ψ〉, θ)
− 1

)

− ∇θλ3(i
∗
u, 〈r∗u, ψ〉, θ) ·t ∇θλ3(i

∗
u, 〈r∗u, ψ〉, θ)

λ3(i
∗
u, 〈r∗u, ψ〉, θ∗)

λ3(i∗u, 〈r∗u, ψ〉, θ)2
}
du. (17)The next limit result then follows from Theorem 3.4 (see Appendix A5).Theorem 4.2 (Asymptoti Normality of ML Estimators) Suppose that the assumptions of Theo-rem 4.1 are ful�lled with the additional onditionR2. Then we have the following onvergene in distribution



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR512under Pθ∗:
√
n∇θl

(n)
T (θ∗) ⇒ N (0,Iθ∗), as n→ ∞, (18)where Iθ∗ is given by (17).Moreover, if Iθ∗ is invertible, then the ML estimator (14) is asymptotially normal: under Pθ∗, we havethe onvergene in distribution

√
n(θ̂n − θ∗) ⇒ N (0,I−1

θ∗ ), as n→ ∞. (19)4.4. MLE on a �rst simple exampleLet us onsider the important situation where:
∀i ∈ R+, ∀r ∈ MF (R+), λ3(i, 〈r, ψ〉) = λ3〈r, ψ〉i.Here θ = (λ2, λ3) ∈ Θ ⊂ R

∗2
+ , and the true parameter is denoted θ∗ = (λ∗2, λ

∗
3).We di�erentiate the log-likelihood with respet to λ2 and λ3. For n ∈ N

∗ and t ∈ [0, T ], the sore proessesare de�ned by




∂l(n)
t

∂λ2
(λ2, λ3) =

∫ t
v=0

∫∞
u=0

1
λ2

10≤u≤λ∗
2ni

(n)
v−
QI(dv, du) − n

∫ t
v=0 i

(n)
v dv

∂l(n)
t

∂λ3
(λ2, λ3) =

∫ t
v=0

∫∞
u=0

1
λ3

1λ∗
2ni

(n)
v−<u≤λ

∗
2ni

(n)
v−+nλ∗

3i
(n)
v− 〈r(n)

v− ,ψ〉
QI(dv, du) − n

∫ t
v=0 i

(n)
v 〈r(n)

v , ψ〉dv.Equating the sore funtion to zero and solving the resulting equations, one gets:
λ̂

(n)
2 =

∫ T
v=0

∫∞
u=0 1

0≤u≤nλ∗
2i

(n)
v−
QI(dv, du)

n
∫ T
v=0 i

(n)
v dv

, λ̂
(n)
3 =

∫ T
v=0

∫∞
u=0 1

λ∗
2ni

(n)
v−<u≤λ

∗
2ni

(n)
v−+nλ∗

3i
(n)
v− 〈r

(n)
v− ,ψ〉

QI(dv, du)

n
∫ T
0 i

(n)
v 〈r(n)

v , ψ〉dv
.Taking the expetation, one may immediately hek that the ML estimator is unbiased:

Eθ∗[(λ̂
(n)
2 , λ̂

(n)
3 )] = (λ∗2, λ

∗
3),denoting by Eθ∗[.] the Pθ∗-expetation.Furthermore, the Fisher information matrix may be easily expliited in this ase. Preisely, we have:

Iθ∗ =

(∫ T
0

i∗t
λ∗

2
dt 0

0
∫ T
0

i∗t 〈r
∗
t ,ψ〉
λ∗

3
dt

)
.5. Appliation to HIV data related to the Cuban epidemi (1986-96)This setion is devoted to brie�y present and disuss preliminary numerial results derived from theappliation of the statistial modelling previously desribed to real data. These data are related to theHIV epidemi in Cuba over the period 1986-1996. Our aim is to illustrate the pratial interest of thetheoretial notions onsidered in this paper. Owing to spae limitations, the statistial issues of validatingthe parametri model stipulated below for suh data shall be thoroughly investigated in a forthomingpaper, entirely dediated to model heking, estimation and testing.The Cuban HIV epidemi. In prospet of management and analysis of the epidemi, informationrelated to the spread of HIV/AIDS in Cuba has started to be olleted and gathered (in a now massive



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR5 13and well-doumented data repository) sine 1986, after the �rst HIV ases were deteted (see the site ofthe World Health Organization [35℄ and refer to [5℄ for a detailed desription of the HIV/AIDS epidemiin Cuba). Eah time a person is deteted as seropositive (HIV+), the following information is reported:date and way of detetion, age, gender, area of residene, gender of sexual partners in the last two years.Furthermore, from the beginning of 1986, all deteted persons are invited to give names and ontat detailsof their reent sexual partners. Theses partners are then traed and a reommendation for HIV testingis made over a period of one year after the last sexual ontat with the HIV-infeted person (see [36℄for further details on the Cuban management system of the AIDS epidemi). Based on the informationprovided, through the interview following HIV detetion in the one hand and through the ontat-traingsystem in the other hand, a plausible date of infetion for eah individual is reported in the database bythe Health authorities (here, as a �rst go, we shall use these approximate dates as if they were all exat).After being deteted, the person reeives, either in the sanatoria or in the ambulatory system, regularounselling on living with HIV in order to prevent the risk of transmitting the retrovirus (defendingin this respet the assumption that, one deteted, a HIV arrier does not belong to the I populationany more). Besides, it is essential to notie that one may assert that HIV spreads in Cuba by means ofsexual transmission quasi-solely, due to ertain distintive soiologial features (see [5℄): indeed, sine theepidemi began, injetion drug use and blood transfusion aounted for a negligible number of infetions,orresponding to very isolated ases.ML estimation. A �rst attempt is now made to �t the simple parametri SIR model with ontat-traingdesribed in Setion 4.4 with the weight funtion ψ(a) = exp(−a/1000) (the age a being given in days).The umulative number of deteted patients has been drawn on Figure 2. Sine a signi�ant hange intrend has been observed in 1996 (see Fig. 2), we have restrited ourselves to the 2400 �rst days after the�rst detetion (more than 6.5 years). From the available data, the trajetory {(s(n)
t , i

(n)
t , r

(n)
t (da))}t∈[0,T ]may be reonstruted over the period 1986-1996 and we onsidered that the observations at our disposalare omplete and noiseless. Numerial results are displayed in Table 1.parameter estimated value standard deviation estimate

λ2 9.57 10−4 1.89 10−9

λ3 3.11 10−6 3.35 10−14Table 1. Estimated parameters and asymptoti standard deviations.Figure 3 shows the instantaneous detetion rates t 7→ λ̂
(n)
2 i

(n)
t and t 7→ λ̂

(n)
3 i

(n)
t 〈r(n)

t , ψ〉. We an see thatthe rate of detetion by ontat-traing inreases and reahes a level at whih the two ways of detetionbeome almost as muh e�ient. This somehow orroborates the phenomenon underlined by Fig. 4, inwhih the proportion of individuals deteted by ontat-traing among all deteted individuals omputedusing a moving-window of �xed length is plotted. Naturally, there are a very large number of questionsonerning model �tting and projetion that merit further investigation. For instane, we need to lookpreisely at the e�et the hoie of the weight funtion ψ has on the obtained results. As mentioned above,this shall be the subjet of further researh, muh more oriented towards numerial appliations and thepratial use of the model.AknowledgementsThe authors are grateful to Dr. J. Perez of the National Institute of Tropial Diseases in Cuba for grantingthem aess to the HIV/AIDS database. They aknowledge full support by the Frenh Ageny for Researhunder grant ACI-NIM no. 04-37.
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Figure 3. Evolution of the instantaneous detetion rates t 7→ λ̂
(n)
2 i

(n)
t (in thik blue line) and t 7→ λ̂

(n)
3 i

(n)
t 〈r

(n)
t , ψ〉 (in thin blakline). We have hosen to set the �rst detetion as time origin.
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Figure 4. Left: 3-months Moving Average for the number of total detetions (thin blak line) and for the number of detetion byontat-traing (thik blue line). Right: Perentage of detetions by ontat-traing obtained with the moving averages omputed over 1month (dotted magenta), 2 months (dash-dot blue), 3 months (dashed red) and 4 months (solid blak). These graphs show that thenumber of detetion by ontat-traing is approximatively the half of the total number of detetions.Appendix - Tehnial proofsA1 Proof of Proposition 2.2Observe �rst that, when the Markov epidemi proess (S, I,R(da)) is restrited to the absorbing set N ×
{0}×MP (R+), the proess (St)t≥0 evolves as an immigration and death proess with immigration rate λ0and death rate µ0St. This proess is lassially geometrially positive reurrent. Hene, it only remains toshow that the set N × {0} ×MP (R+) is reahed in �nite time with probability one, no matter what theinitial state. This may be straightforwardly established by oupling analysis: it atually su�es to onsidera SIR proess (S′, I ′, R′(da)) with the same dynamis as (S, I,R(da)) exept that, when I = 0 one supposethat new infetives may be reruited from the outside at a stritly positive rate. Then, one may easilysee that (S′, I ′) is an irreduible (non explosive) Markov proess with state spae N

2. Besides, denotingby Γ its transition rate matrix, it is straightforward to hek that the following Foster-Lyapounov's driftriterion is satis�ed, with test funtion f(m, l) = m+ l:
∑

(m′,l′)∈N2

Γ((m, l), (m′, l′))(f(m′, l′) − f(m, l)) ≤ λ0 − µ0m− (µ1 + λ2)l ≤ −cf(m, l) + d,



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR5 15with c = min(µ0, µ1 + λ2) and d = λ0. By virtue of Theorem 7.1 in [23℄, (S′, I ′) is geometrially reurrent.Thus, when starting from (S0, R0), (S′, I ′) and (S, I) reah N × {0} in a �nite time τ(S0,R0) with �niteexponential moment.Computation of S∞'s distribution. Let us show that S∞ is a Poisson random variable of parameter
λ0/µ0. Set pk := P (S∞ = k) for all k ∈ N. We have

λ0p0 + µ0p1 = 0, and ∀k ≥ 1, λ0pk−1 − λ0pk + µ0(k + 1)pk+1 − µ0kpk = 0. (20)We obtain from the �rst equation that p1 = λ0p0/µ0. Assume that we have proved for k ∈ N that:
∀ℓ ≤ k, pℓ =

1

ℓ!

(
λ0

µ0

)ℓ
p0. (21)Let us prove that (21) holds for k + 1. From (20) we have:

pk+1 =
p0

µ0(k + 1)

(
− λ0

(k − 1)!

(
λ0

µ0

)k−1

+
λ0

k!

(
λ0

µ0

)k
+
µ0k

k!

(
λ0

µ0

)k)
=

1

(k + 1)!

(
λ0

µ0

)k+1

p0. (22)Sine the sequene {pk} de�nes a probability measure, we have∑+∞
k=0 pk = 1. This entails that p0 = e−λ0/µ0and the desired result then diretly follows from the equation above.A2 Proof of Theorem 3.2 (Sketh of)This result may be derived from areful examination of Theorems 5.3's proof in [12℄ or of Theorem 3.2.2'sproof in [29℄. Let MF (R+) be equipped with the vague onvergene topology. Applying Aldous, Rebolledoand Roelly riteria (see [2, 17, 28℄), the sequene {(S(n), I(n), R(n))}n∈N∗ is proved tight. By Prohorov'sTheorem, there hene exists a subsequene that onverges in law to a limiting value (S, I,R) ∈ D(R+,R

2
+×

MF (R+)). This subsequene an be hosen suh that 〈R(n), 1〉 onverges in law to 〈R, 1〉 in D(R+,R+).Sine the proess {(S(n)
t , I

(n)
t , R

(n)
t )}t≥0 has jumps of amplitude 1/n, the limiting value is neessarily aontinuous proess. Using a riterion proposed in [21℄, one may prove that a subsequene may again beextrated from the previous one, that onverges in law to (S, I,R) in D(R+,R

2
+×MF (R+)), whereMF (R+)is endowed with the weak onvergene topology this time. The evolution equation is then identi�ed thanksto the martingale representation provided in Proposition 3.1. The quadrati variation vanishes as n→ +∞and the moment assumption enables us to take the limit.A3 Proof of Theorem 3.4 (Sketh of)The proof of Theorem 3.4 is an adaptation of the argument developed at length in Chapter 4 of [29℄,whih is inspired from [22℄ and [20℄. We refer the reader to these works for hints to a omplete proof andgive here the main steps only. Here and throughout, C(T,N) shall denote a onstant, depending on T and

N only, that will not be neessarily the same at eah appearane.As previously emphasized, here and throughout the �utuation proess (5) shall be viewed as adistribution-valued proess. We will deal with the spaes introdued in (8). The ontinuous injetionswhih link these spaes are proved in Theorem 5.4 [1℄. We onsider (5) as taking its values in the spae
C−2,0. As the image of C2,0 through the di�erential operator ∂a is inluded in C1,0, we will be lead tolook for estimates in these both spaes. In order to work in a Hilbert setting, we onsider the ontinuousinjetions linking this spae with W−3,0

0 (in whih the tightness riterion is proved) and with W−1,1
0(subspae of C−1,0 and C−2,0 in whih the norm of the martingale part of ηn is ontrolled). The ontinuous
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0 shall also be required in order to ontrol the norm of ertain operators ofW−1,1

0 .Flutuation proess. We have the following deomposition: ∀f : (a, t) 7→ ft(a) in C1(R2
+),

η
(n)
t (f) =

√
n



s
(n)
0 − s0

i
(n)
0 − i0

0


+ M̃

(n)
t (f) + Ṽ

(n)
t (f), where: (23)

η
(n)
t (f) =




η
s,(n)
t

η
i,(n)
t

〈ηr,(n)
t , ft〉


 , M̃

(n)
t (f) =




M̃
s,(n)
t

M̃
i,(n)
t

M̃
r,(n)
t (ft)


 =

√
n




M
s,(n)
t

M
i,(n)
t

M
r,(n)
t (ft)


 , Ṽ

(n)
t (f) =




Ṽ
s,(n)
t

Ṽ
i,(n)
t

Ṽ
r,(n)
t (ft)


where M s,(n), M i,(n) and M r,(n)

t (ft) have been de�ned in (2) and where:
Ṽ
s,(n)
t =

∫ t

u=0

{
µ0η

s,(n)
u +

√
n(λ1(s

(n)
u , i(n)

u ) − λ1(su, iu))
}
du

Ṽ
i,(n)
t =

∫ t

u=0

{√
n(λ1(s

(n)
u , i(n)

u ) − λ1(su, iu)) + (µ1 + λ2)η
i,(n)
u

+
√
n(λ3(i

(n)
u , 〈r(n)

u , ψ〉) − λ3(iu, 〈ru, ψ〉))
}
du

Ṽ
r,(n)
t (ft) =

∫ t

u=0

{
fu(0)[λ2η

i,(n)
u +

√
n(λ3(i

(n)
u , 〈r(n)

u , ψ〉) − λ3(iu, 〈ru, ψ〉))]

+ 〈ηr,(n)
u , ∂afu(a) + ∂ufu(a)〉

}
du.Loalization. A di�ulty arises from the fat that the size of the population is not a priori bounded. Inthis respet, for any N > 0, onsider the stopping time:

ζ
(n)
N = inf

{
t ≥ R+, max

(
s
(n)
t , i

(n)
t , 〈r(n)

t , 1〉, 〈r(n)
t , |a|〉

)
> N

}
. (24)One may easily see that for all N > 0 suh that

N > max( sup
t∈[0,T ]

st, sup
t∈[0,T ]

it, sup
t∈[0,T ]

〈rt, 1〉, sup
t∈[0,T ]

〈rt, |a|〉). (25)we have:
lim

n→+∞
P

(
ζ
(n)
N ≤ T

)
= 0 (26)Moment estimates. It is straightforward that E[supt∈[0,T ] ‖ηr,(n)
t ‖2

W−1,1
0

] ≤ C(T, n), for all n ∈ N
∗. Sine

C(T, n) depends on n, this estimate is not very interesting. Its importane lies in setting W−1,1
0 as areferene spae. Using (8), we an then also onsider it as a proess with values in C−1,0, C−2,0 or W−3,0

0 .Estimates that do not depend on n an be obtained by following the proofs of Lemmas 4.4.3, 4.4.4 and4.4.5 in [29℄:
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sup
n∈N∗

E[ sup
t∈[0,T∧ζ(n)

N ]

{|ηs,(n)
t |2 + |ηi,(n)

t |2 + ‖ηr,(n)
t ‖2

W−3,0
0

}]

≤ sup
n∈N∗

E[ sup
t∈[0,T∧ζ(n)

N ]

{|ηs,(n)
t |2 + |ηi,(n)

t |2 + ‖ηr,(n)
t ‖2

C−1,0}] ≤ C(N,T ) < +∞. (27)Proof The �rst inequality is a onsequene of the ontinuous injetion C−1,0 →֒W−3,0
0 . Then, (27) followsfrom the assumed properties of λ1, λ3 and ψ ombined with the de�nition of ‖.‖C−1,0 and the use ofGronwall's Lemma. �Tightness of the sequene {L(η(n))}n∈N∗. By using a tightness riterion due to Métivier (see Setion2.1.5 and Theorem 2.3.2 in [17℄ and Corollary 1.5 and Theorem 1.6 in [22℄), we will prove thanks to thepreeding moment estimates that:Lemma 5.2 The sequene {L(η(n))}n∈N∗ of the laws of the �utuation proesses {η(n)}n∈N∗ , when onsid-ered as a sequene of D([0, T ],R2 ×W−3,0

0 ), is tight.Proof Let ε > 0, K > 0, n ∈ N
∗ and φ ∈ W 3,0

0 non zero. We start with proving that supt∈[0,T ] |ηs,(n)
t | +

|ηi,(n)
t | + |〈ηr,(n)

t , φ〉| is bounded with large probability. Using the fat that, for all t ∈ [0, T ], |〈ηr,(n)
t , φ〉| ≤

‖ηr,(n)
t ‖W−3,0

0
‖φ‖W 3,0

0
≤ ‖ηr,(n)

t ‖C−1,0‖φ‖W 3,0
0
, as well as Markov's inequality, (26) and Lemma 5.1, one gets:

P

(
sup
t∈[0,T ]

|ηs,(n)
t | + |ηi,(n)

t | + |〈ηr,(n)
t , φ〉| > K

)
≤ C(N,T )

K2
+ P

(
ζ
(n)
N ≤ T

)
≤ ε, (28)for a proper hoie of K, with N as in (25) and for su�iently large n.We shall now prove that the �utuation proesses 'almost belong' to a �nite dimensional spae. Considera Hilbert basis (ϕk)k∈N∗ of W 3,0

0 and denote by Fm the subspae of W 3,0
0 , with m ∈ N

∗, that is generatedby (ϕk)k∈[[1,m]]. Let ε > 0 and ρ > 0. By Markov's inequality,
P


 sup
t∈[0,T ]

√√√√
+∞∑

k=m+1

〈ηr,(n)
t , ϕk〉2 > ρ


 ≤ 1

ρ
E


 sup
t∈[0,T∧ζ(n)

N ]

√√√√
+∞∑

k=m+1

〈ηr,(n)
t , ϕk〉2


+ P

(
ζ
(n)
N ≤ T

)
. (29)The sequene {supt∈[0,T∧ζ(n)

N ]

√∑+∞
k=m+1〈η

r,(n)
t , ϕk〉2

}

m∈N∗

almost surely onverges to 0 and is dominatedby supt∈[0,T∧ζ(n)
N ] ‖η

r,(n)
t ‖W−3,0

0
. It is hene uniformly integrable by virtue of (27). It is thus possible to hoose

m0 ∈ N
∗ so that the �rst term in the right hand side of (29) is bounded by ε/2. The seond term is boundedby ε/2 using (26).Finally, we establish an Aldous type ondition for the �nite-variation proesses {Ṽ (n)}n∈N∗ , the quadrativariation proesses {〈M̃ s,(n)〉}n∈N∗ and {〈M̃ i,(n)〉}n∈N∗ and the trae proesses {<| M̃ r,(n) |>}n∈N∗ of

{M̃ r,(n)}n∈N∗ , de�ned for a Hilbert basis (ϕk)k∈N∗ of W 1,1
0 by: ∀n ∈ N

∗, ∀t ∈ [0, T ],
<| M̃ r,(n) |>t =

∫ t

0
(
∑

k≥1

ϕ2
k(0))

(
λ2i

(n)
u + λ3(i

(n)
u , 〈r(n)

u , ψ〉)
)
du. (30)Sine ∑k≥1 ϕ

2
k(0) ≤ C (see [20℄), <| M̃ r,(n) |>t is P-almost surely de�ned.Let δ > 0 and (Sn, Tn)n∈N∗ be a family of stopping times suh that Sn ≤ Tn ≤ Sn + δ. We have:
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∀n ∈ N

∗, ∀ς > 0,

P

(∥∥∥Ṽ r,(n)
Tn

− Ṽ
r,(n)
Sn

∥∥∥
W−3,0

0

≥ ς

3

)
≤ 9

ς2 E

(∥∥∥Ṽ r,(n)
Tn∧ζn

N

− Ṽ
r,(n)
Sn∧ζn

N

∥∥∥
2

W−3,0
0

)
+ P

(
ζ
(n)
N ≤ T

)
. (31)To bound the �rst term, we bound E

[∥∥∥f 7→
∫ t
s

∫
R+
∂af(a)η

r,(n)
u (da)du

∥∥∥
2

C−2,0

] by (C
∫ t
s ‖η

r,(n)
u ‖C−1,0du)2 bynoting that ∀f ∈ C2,0, ∂af ∈ C1,0 with ‖∂af‖C1,0 ≤ ‖f‖C2,0 , and that ∀s, t ∈ [0, T ], ∀n ∈ N

∗,

∣∣∣∣
∫ t

s

∫

R+

∂af(a)ηr,(n)
u (da)du

∣∣∣∣ ≤
∫ t

s
‖ηr,(n)
u ‖C−1,0‖∂af‖C1,0du ≤ C

∫ t

s
‖ηr,(n)
u ‖C−1,0‖f‖C2,0du.Using Lemma 5.1, we thus obtain:

P

(∥∥∥Ṽ r,(n)

Tn∧ζ
(n)

N

− Ṽ
r,(n)
Sn∧ζn

N

∥∥∥
2

W−3,0
0

>
ς

3

)
<
C(N)δ2

ς2
+ P

(
ζ
(n)
N ≤ T

)
. (32)Similar omputations an be arried out for Ṽ s,(n), Ṽ i,(n), 〈M̃ s,(n)〉, 〈M̃ i,(n)〉 and <| M̃ r,(n) |>.With (28), (29) and (32), Métivier's riterion is satis�ed and Lemma 5.2 is proved. �By virtue of Prohorov's theorem, the sequene {L(η(n))}n∈N∗ is relatively ompat in

P(D([0, T ],R2 × W−3,0
0 )) embedded with the weak onvergene topology. The proof of Theorem 3.4is �nished by showing that there is a unique adherene value.Identi�ation of the adherene values. Let η ∈ D([0, T ],R2 ×W−3,0

0 ) suh that L(η) is an adherenevalue of this sequene. In order to simplify notation, denote again by (η(n))n∈N∗ a subsequene that onvergesin law to η. Sine the magnitude of the jumps of η(n) is of order 1/n, the limiting proess η is ontinuous.A �rst di�ulty arises from the fat that Lemma 5.1 only deals with the �utuations loalized by thestopping times ζ(n)
N whih depends on N .We start o� with studying the tightness and the onvergene in law of the martingales (M̃ (n))n∈N∗ forwhih estimates that do not depend on n nor on N an be established (see [29℄, Lemma 4.4.5). We anprove, using the same tightness riterion as above, that (M̃ (n))n∈N∗ is tight in D([0, T ],R2 ×W−1,1

0 ). Let
W = (W s,W i,W r) be ontinuous martingales as in Theorem 3.4: ∀ε > 0, ∀φ ∈ C2,0,

P( sup
t∈[0,T ]

∣∣∣〈M̃ r,(n)(φ)〉t − 〈W r(φ)〉t
∣∣∣ > ε)

≤1

ε
E[ sup
t∈[0,T∧ζ(n)

N ]

∫ t

0
{φ2(0)λ2

|ηi,(n)
s |√
n

+ φ2(0)λ̄3N
2‖ψ‖∞

|ηi,(n)
s |√
n

+ L3(N)N
|ηi,(n)
s | + ‖ηr,(n)

s ‖C−1,0‖ψ‖C1,0√
n

}ds]

+ P

(
ζ
(n)
N ≤ T

)

≤C(N,T, ‖ψ‖C1,0)‖φ‖∞
ε
√
n

E[ sup
t∈[0,T∧ζ(n)

N ]

|ηi,(n)
s | + ‖ηr,(n)

s ‖C−1,0 ] + P

(
ζ
(n)
N ≤ T

)
.By (26) and by Lemma 5.1, this gives that (〈M̃ r,(n)(φ)〉)n∈N∗ onverges in probability and uniformly in

t ∈ [0, T ] to 〈W r(φ)〉, de�ned in Theorem 3.4. Sine supt∈[0,T ] |∆M̃ r,(n)
t (φ)| is bounded by C/

√
n andhene uniformly integrable, we obtain by applying Theorem 3.12 page 432 of Jaod and Shiryaev [15℄that (M̃ r,(n)(φ))n∈N∗ onverges in law to the ontinuous square-integrable gaussian martingale W r(φ)starting from 0 and with quadrati variation given by (10). Similar omputations an be done for the
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0 ) to a proess

W ∈ C([0, T ],R2 × C−2,0) suh as in Theorem 3.4.To haraterize now the limit value η, we introdue the following funtional, for ν = (νs, νi, νr) ∈
D([0, T ],R2 × C−2,0), φ ∈ C2,0 and t ∈ [0, T ]:

Ψ(ν, φ, t) =




νst
νit

νrt (φ)


−



ηs0
ηi0
0


 (33)

−
∫ t

0




− (µ0 + ∂Sλ1(su, iu)) ν
s
u − ∂Iλ1(su, iu)ν

i
u

∂Sλ1(su, iu)ν
s
u − (∂Iλ1(su, iu) + µ1 + λ2 + ∂Iλ3(iu, 〈ru, ψ〉)) νiu − ∂Rλ3(iu, 〈ru, ψ〉)〈νru, ψ〉

φ(0) (λ2 + ∂Iλ3(iu, 〈ru, ψ〉)) νiu + φ(0)∂Rλ3(iu, 〈ru, ψ〉)〈νru, ψ〉 +
∫

R+
∂aφ(a)νru(da)


 duNotie that, in the de�nition of Ψ, the density dependene has been "frozen". We an show that the proessof C([0, T ],R2 ×C−2,0) de�ned for every φ ∈ C2,0 and t ∈ [0, T ] by (M̃ s

t , M̃
i
t , M̃

r
t (φ)

)
:= Ψ(η, φ, t) has thesame law as the proess W de�ned in Theorem 3.4.Indeed, sine (η(n))n∈N∗ onverges in law to the ontinuous proess η, we have ∀φ ∈

C2,0, limn→+∞ Ψ(η(n), φ, .) = Ψ(η, φ, .). We shall now prove that Ψ(η(n), φ, .) has the same limit in lawas M̃ (n)(φ).From (5) and (33): ∀n ∈ N
∗, ∀φ ∈ C2,0, ∀t ∈ [0, T ],

|Ψ(η(n), φ, t) − (M̃
s,(n)
t , M̃ i,(n)

s , M̃
r,(n)
t (φ))|2 =

(∫ t

0
A(n, s)ds

)2

+

(∫ t

0
[A(n, s) +B(n, φ, s)] ds

)2

+

(∫ t

0
φ(0)B(n, φ, s)ds

)2

, (34)where:
A(n, u) = ∂Sλ1(su, iu)η

s,(n)
u + ∂Iλ1(su, iu)η

i,(n)
u −√

n{λ1(s
(n)
u , i(n)

u ) − λ1(su, iu)},
B(n, s) = {∂Iλ3(iu, 〈ru, ψ〉)ηi,(n)

u − ∂Rλ3(iu, 〈ru, ψ〉)〈ηr,(n)
u , ψ〉} − √

n{λ3(i
(n)
u , 〈r(n)

u , ψ〉) − λ3(iu, 〈ru, ψ〉)}.Using the fat that
λ1(s

(n)
u , i(n)

u ) − λ1(su, iu) = λ1(su +
η
s,(n)
u√
n
, is +

η
i,(n)
u√
n

) − λ1(su, iu)

=

∫ 1

0
{∂Sλ1(su + α

η
s,(n)
u√
n
, iu + α

η
i,(n)
u√
n

)
η
s,(n)
u√
n

+ ∂Iλ1(su + α
η
s,(n)
u√
n
, iu + α

η
i,(n)
u√
n

)
η
i,(n)
u√
n

}dα,we obtain from the Lipshitz properties of ∂Sλ1 and ∂Iλ1 that |A(n, u)| ≤ C(su, iu)(|ηs,(n)
u |2 + |ηi,(n)

u |2)/√nand:
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+ P (ζnN ≤ T ) , (35)whih tends to zero as n → ∞, by virtue of Lemma 5.1 and of (26). We deal with the term B(n, s) withsimilar omputations and obtain that ∫ t0 B(n, s)ds onverges in probability to 0 uniformly in t ∈ [0, T ].As a onsequene, Ψ(η(n), φ, .) onverges uniformly in t ∈ [0, T ] and in probability to the same limit as



September 12, 2007 20:34 Journal of Biologial Dynamis ContatTraingSIR520
(M̃

s,(n)
t , M̃

i,(n)
u , M̃ r,(n)(φ)), whih shows that the limiting values η satisfy (9).In order to omplete Theorem 3.4's proof, we establish that the strong uniqueness property holds for (9)(for given W and η0) and that its solution belongs to C([0, T ],R2 ×C−2,0). These results rely on the use ofGronwall's lemma and on the fat that when the density dependene is 'frozen' (s(n), i(n) or r(n)(da) havebeen replaed by their deterministi limits) the onstants appearing in the estimates do not depend on theloalization in N any more.Consequently, the adherene value of (L(η(n)))n∈N∗ is unique and the sequene η(n) onverges in law in

D([0, T ],R2 ×W−3,0) to the solution of SDE (9) in C([0, T ],R2 × C−2,0).A4 Proof of Theorem 4.1Using representation (13), the onvergene (15) diretly results from Theorem 3.2 ombined with theassumed smoothness properties of λ1, λ3. Now, by virtue of the identi�ability assumption, the limitingontrast K(θ, θ∗) equals to 0 in the sole ase where θ = θ∗ and (16) then follows from the regularityassumption R1 in a standard fashion (see [13℄).A5 Proof of Theorem 4.2Observe �rst that the map θ ∈ Θ 7→ l
(n)
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QI(dt, du).We have the following result.Lemma 5.3 Under the assumptions of Theorem (4.2), we have:(i) I(n)

θ∗ → Iθ∗ in Pθ∗-probability, as n→ ∞,(ii) for all T > 0, the sequene of proesses ({n−1/2∇θl
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