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We develop a multiresolution approach to the problem of polygonal curve approximation. We show theoretically and experimentally that, if the simplification algorithm A used between any two successive levels of resolution satisfies some conditions, the multiresolution algorithm MR will have a complexity lower than the complexity of A. In particular, we show that if A has a O(N 2 /K) complexity (the complexity of a reduced search dynamic solution approach), where N and K are respectively the initial and the final number of segments, the complexity of MR is in O(N).We experimentally compare the outcomes of MR with those of the optimal "full search" dynamic programming solution and of classical merge and split approaches. The experimental evaluations confirm the theoretical derivations and show that the proposed approach evaluated on 2D coastal maps either shows a lower complexity or provides polygonal approximations closer to the initial curves.

Introduction

Approximation of multi dimensional discrete curves has been widely studied essentially to speed up data processing required by resource demanding applications such as Computer Vision, Computer Graphics, Geographic Information Systems and Digital Cartography, Data Compression or Time Series Data Mining. For polygonal approximation of discrete curves, the problem can be informally stated as follows: given a digitized curve X of N ≥ 2 ordered samples, find K dominant samples among them that define a sequence of connected segments which most closely approximates the original curve. This problem is known as the min-ε problem. Numerous algorithms have been proposed for more than thirty years to solve efficiently this optimization problem. Most of them belong either to graph-theoretic approaches [START_REF] Imai | Polygonal approximations of a curve (formulations and algorithms)[END_REF]Iri, 1986, 1988;[START_REF] Melkman | On polygonal chain approximation[END_REF][START_REF] Chan | On approximation of polygonal curves with minimum number of line segments or minimum error[END_REF][START_REF] Zhu | Optimal polygonal approximation of digitized curves[END_REF][START_REF] Chen | Space-efficient algorithms for approximating polygonal curves in twodimensional space[END_REF][START_REF] Katsaggelos | MPEG-4 and ratedistortion-based shape-coding techniques[END_REF], dynamic programming (Perez and Vidal, 1994;[START_REF] Salotti | An efficient algorithm for the optimal polygonal approximation of digitized curves[END_REF][START_REF] Horng | Improving fitting quality of polygonal approximation by using the dynamic programming technique[END_REF][START_REF] Kolesnikov | Reduced-search dynamic programming for approximation of polygonal curves Pattern Recognition Letters[END_REF], 2004) or to heuristic approaches [START_REF] Douglas | Algorithm for the reduction of the number of points required to represent a line or its caricature[END_REF][START_REF] Pratt | Search for patterns in compressed time series[END_REF]Debled-Rennesson and Reveillès, 2003;[START_REF] Charbonnier | On-Line Segmentation Algorithm for Continuously Monitored Data in Intensive Care Units IEEE Trans[END_REF]. This paper focuses on polygonal approximation of multidimensional curves using multiresolution. Our concern is the design of an algorithm that, starting from the finest resolution level, finds iteratively min-ε polygonal approximations for coarser resolution levels, exploiting at the any level the approximating segments obtained at the previous (finer) resolution level. In theory, such multiresolution approximation can exploit any polygonal simplification methods between two successive levels of resolution. Nevertheless, the effectiveness and efficiency of such approach is not guaranteed. The aim of this paper is to study the conditions required for efficiency and effectiveness of the multiresolution approach.

The first part of the paper addresses a complexity analysis that sketches conditions for the efficiency of a "top-down" multiresolution approach. Some argumentation is also provided to outline the conditions for effectiveness. A proposal for a simple multiresolution algorithm that fulfils the previous conditions is then proposed.

The second part of the paper addresses the evaluation of the proposed algorithm through experimentations that compare the efficiency and effectiveness of the multiresolution approach with heuristic and dynamic programming solutions.

A Multi Resolution approach to Polygonal Curve

Approximation (MR algorithm)

Basically, the idea behind the multiresolution approach to polygonal curve simplification is to successively re-approximate previous approximations obtained by using some given simplification algorithm, this process being initiated from an original discrete time series.

Following [START_REF] Kolesnikov | Multiresolution Polygonal Approximation of Digital Curves[END_REF]), we take a sequence of polygonal curves {X 0 , X 1 , X 2 ,…, X r } as a multiresolution (multiscale) approximation of a N-vertex input curve X, if the set of curves {X i }satisfies the following conditions: i) A polygonal curve X i is an approximation of the curve X for a given number of segments K i (min-ε problem) or error tolerance ε i (min-# problem), where i is a resolution level (i=0,1,2,…, r).

ii) The set of vertices of curve X i for resolution level i is a subset of vertices of curve X i-1 for the previous (higher) resolution level (i-1). The lowest resolution level r is represented by the coarsest approximation of X. The highest resolution level i=0 is represented by the most detailed approximation (namely the original curve X 0 =X) with the largest number of segments K 0 =N. (N=K 0 > K 1 > K 2 >…> K r ) or smallest error tolerance ε 0 =0 for some distance measure (e.g. L 2 ) (ε 0 <ε 1 <ε 2 <…<ε r ).

Thus, an approximation curve X i is either obtained by inserting new points into the approximation curve X i+1 (bottom-up approach), or, conversely, X i+1 is obtained by deleting points from the approximation curve X i (top-down approach). These two variants have led to the development of two very popular heuristic approaches: respectively SPLIT and MERGE methods. In the SPLIT approach, an iterative mechanism splits the input curve into smaller and smaller segments until the maximum deviation is smaller than a given error tolerance ε (min-# problem), or the number of linear segments equals to the given K i (min-ε problem) for the current resolution level i. A famous SPLIT method is the Douglas-Peucker algorithm [START_REF] Douglas | Algorithm for the reduction of the number of points required to represent a line or its caricature[END_REF]; this algorithm is known to have a N) O(K ⋅ complexity; it has been used for multiresolution approximation in (Le Buhan Jordan & al., 1998[START_REF] Buttenfield | vector geospatial data across the Internet[END_REF] and in [START_REF] Kolesnikov | Multiresolution Polygonal Approximation of Digital Curves[END_REF]) that developed the optimal split algorithm (OSA).

In the MERGE approach [START_REF] Pikaz | An algorithm for polygonal approximation based on iterative point elimination[END_REF]Dinstein, 1995, Visvalingam and[START_REF] Visvalingam | Line generalization by repeated elimination of points[END_REF], the polygonal approximation is performed by using a cost function that determines sequential elimination of the vertices with the smallest cost value, while the two adjacent segments of the eliminated vertex are merged into one segment. The approximation curve X i is obtained by discarding vertices from the curve X i-1 until the desired number of vertices K i (min-ε problem) is reached. This Merge approach is known to have a O(N⋅log(N)) complexity.

Complexity of multiresolution approach

We address in this section the efficiency issue of the multiresolution approach comparatively to the complexity of an algorithm that provides the solution in a single step.

Let T be the complexity of an algorithm A that simplifies a polygonal curve X having N segments into a polygonal curve having K segments (K<N). We suppose that T is a polynomial function of N and K, namely

) ( q p K N O = T
where p and q are integers. For all N, 0<K<N and ρ in ]0;1[ there exists a natural number r such that

r r N K N ρ ρ ≤ < +1 . Given N, K<N and ρ, we construct the multiresolution {X 0 , X 1 , X 2 ,…, X r } of curve X such that N K j j ρ =
is the number of segments that compose X j , the j th nested polygonal approximation of X.

In this context, using algorithm A during the first step, we obtain from an original curve (X) of size N a polygonal curve approximation (X 1 ) having
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Considering as a second step the simplification of the X 1 polygonal curve seen as a polygonal curve having N 1 =K 1 samples, still using algorithm A , we get a polygonal curve

approximation X 2 having N ρ = K 2 2
segments from the X 1 curve with time complexity:
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Iterating the process we get successively:
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By induction, it is easy to show that for all j in {1,..,r} we have :
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The final iteration -required to ensure that the last approximation has exactly K segments -is performed using algorithm A with the following complexity:
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Finally, from the original time series of size N, we get after r+1 iterations of the previous process a polygonal approximation having K segments with time complexity:
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In general, the multiresolution approach does not offer computation complexity reduction comparatively to the complexity of the algorithm A applied in a single step. This is due to the presence of term q p N + in the polynomial function MR T . But for some specific cases, MR T simplifies nicely as shown below.

From formula (1), we see that if
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hence, if 0 ≠ + q p and q<0, we note that MR T is upper bounded by a polynomial function of N that does not depend upon r, the number of iterations required by the multiresolution algorithm. Furthermore, if 0 q and 0 < > + q p , the multiresolution algorithm brings a complexity reduction of order q N -.

As an example, for 1 and 2 -q p = = , we get the upper bound:
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Since this upper bound is independent from K and r, we show that the time complexity of the multiresolution approach is O(N). This lower bound is minimized for 2 1 / = ρ , i.e. when at each step the number of segments is halved.

It is not straightforward to generalize this result for non polynomial complexities.

Nevertheless if the complexity of A is in O(f(N)), where f is independent from K, (e.g.

f(N)=NLog(N)) one cannot expect to reduce this complexity using multiresolution.

Effectiveness considerations

There are two sources of error increasing in multiresolution approximation in comparison with polygonal approximation obtained in a single step:

1. In multiresolution approximation, vertices for the next level of resolution should be selected among the vertices available at the current level of resolution. This constraint does not exist for single step approximation.

2. The non-optimality of algorithm used to solve min-ε polygonal approximation produces error propagation inside multiresolution approximation.

We cannot reduce inaccuracies related to the first source of errors, but if we use near-tooptimal algorithm to solve min-ε problems between successive levels of resolution, one can expect to approach also near-to-optimal solutions for multiresolution approximation.

Conditions for optimizing the (Efficiency.Effectiveness) product

The condition to maximize the efficiency gain is to select an algorithm A that solves min-ε problems in one step with a complexity
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where 0 and 0 < q > q + p : In that case, the complexity gain is q N -.

The condition to maximize the effectiveness or accuracy of the multiresolution algorithm is to select the optimal algorithm A that solves optimally the min-ε problem.

As we know, the optimal algorithm (or the so-called FSDP : "Full Search Dynamic programming") is the one proposed by (Perez and Vidal, 1994): it solves the min-ε problem with a complexity in
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(p=2 and q=1). Unfortunately, the condition 0 < q is not satisfied since q=1. In the other hand, the near-to-optimal solution developed by [START_REF] Kolesnikov | Reduced-search dynamic programming for approximation of polygonal curves Pattern Recognition Letters[END_REF], the so-called "Reduced Search Dynamic Programming"

(RSDP) has a complexity in
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(p=2 and q=-1) as far as no reference solution is used: with this restriction, RSDP satisfies the conditions of a complexity gain for the multiresolution solution. If RSDP is selected as the algorithm A then the complexity of the multiresolution is in O(N) as stated by equation ( 3), whatever the decimation factor ρ is. Comparatively, the OSA multiresolution approache gives the coarsest approximation having K segments in
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if RSDP is selected to process the first step (OSA-RSDP). We experimentally verify this claim in the next section. Note that if a reference solution is used to bootstrap RSDP, an extra complexity cost is added. The referred methods and associated complexities are summarized in Table 1.

Bottom-up Top-down Other

Single-step

SPLIT, N) O(K ⋅ MERGE, (N)) O(N Log ⋅ FSDP ) N O(K 2 ⋅ RSDP ) O(N /K 2 Multi-step OSA-RSDP, ) O(N /K 2 MR-RSDP, O(N)
TAB. 1 -Typology of methods for polygonal curve approximation and associated complexities.

Experimentations and discussion

To evaluate the quality of suboptimal algorithms, [START_REF] Rosin | Techniques for assessing polygonal approximations of curves[END_REF] introduced a measure known as fidelity (F). It measures how good (or how bad) a given suboptimal approximation is in respect to the optimal approximation in terms of the approximation error: , where E min is the approximation error of the optimal solution, and E is the approximation error of the given suboptimal solution. In practice, we will identify E min to the error (the Euclidian distance between the original time series and the polygonal approximation) obtained using the 'Full Search' dynamic programming (FSDP) solution, namely the algorithm of Perez and Vidal (Perez and Vidal,1994).

The MR algorithm we evaluate uses a simplified version of the RSDP algorithm for which the reduced search space is determined by a fixed size corridor β [START_REF] Sakoe | Dynamic programming algorithm optimization for spoken word recognition[END_REF][START_REF] Kolesnikov | Reduced-search dynamic programming for approximation of polygonal curves Pattern Recognition Letters[END_REF][START_REF] Marteau | Adaptive Multiresolution and Dedicated Elastic Matching in Linear Time Complexity for Time Series Data Mining[END_REF] without using a reference solution. This version of the RSDP is known to have a complexity in K) / O(N 2 [START_REF] Horng | Improving fitting quality of polygonal approximation by using the dynamic programming technique[END_REF][START_REF] Kolesnikov | Reduced-search dynamic programming for approximation of polygonal curves Pattern Recognition Letters[END_REF]. This ensures that the MR algorithm has a complexity of O(N) as shown in the previous section. 

Conclusion

We have explored multiresolution (MR) applied to the problem of simplifying a discrete curve using nested polygonal approximations. It consists in iteratively applying a simplification algorithm to get the successive nested approximations, from the finest (the original curve) to the coarsest. We have shown both theoretically and practically that, when the simplification is based on a Reduced Search Dynamic Programming (RSDP) algorithm, MR has a linear time complexity O(N), whatever the chosen number of resolution levels.

This solution is suboptimal but maintains partial optimality between each resolution levels.

It offers good approximating solutions when real time and storage space are issues, namely each time the optimal solution cannot be calculated due to the size of N. For all tests we have performed, the quality of the resulting approximation is significantly better than the quality of well known heuristic approaches (the Douglas-Peucker splitting approach or the merge approach that have respectively a complexity in N) O(K ⋅ and (N)) O(N Log ⋅ : the gain on the quality measure F varies from 30% to 50 % according to the tuning of parameters. As the tests suggest, MR associated to RSDP provides the best polygonal approximating algorithm having complexity in O(N) . The experimental results give some highlights for the choice of the parameters, i.e. ρ and β, that could be tuned according to the task. Furthermore, the multiresolution aspect of the method allows managing simultaneously various resolution levels, a functionality that could be very useful to speed up time series information retrieval tasks. For all methods, N is constant equal to 4096. (MERGE, square, green) and "Full Search" dynamic programming procedure (FSDP, up-down triangles, black) and "Reduced Search" dynamic programming procedure with fixed size corridor and alpha=4 (RSDP, right-left triangle, grey). Here K = 10 for all methods, and ρ=.5, β=4 for MR and RSDP.

  FIG.3 is a scatter plot allows evaluating simultaneously the SPLIT, MERGE and MR

  FIG. 1 -Western Europe map from which the testing dataset containing 10 disjoint 2D time series has been constructed.

  FIG.2-Average of the fidelity measure (F) as a function of K evaluated for the crudest approximation map given by the MR with β=4 and ρ=.5( MR, diamond, red), Merge_L2 (MERGE, square, green) , Douglas Peucker (SPLIT, triangle, blue) and RSDP with fixed size corridor and β=4 (RSDP, right-left triangle, grey).

  FIG.3-Average of the fidelity measure (F) as a function of the average processing time evaluated for the crudest approximation map given by the MR with β=4 and ρ=.5( MR, diamond, red), Merge_L2 (MERGE, square, green) and Douglas Peucker (SPLIT, triangle, blue). Each curve is labelled with a K value. For all methods, N is constant equal to 4096.