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Abstract

We define a natural partial exchangeability assumption for multi-class systems

with Polish state spaces, under which we obtain results extending those for

exchangeable systems: the conditional law of a finite system given the vector

of the empirical measures of its classes corresponds to independent uniform

permutations within classes, and the convergence in law of this vector is

equivalent to that of the system. A corollary is that convergence within

each class to an infinite i.i.d. system implies asymptotic independence between

different classes. We also extend the Hewitt-Savage 0-1 Law.

Keywords: Interacting particle systems; multi-class; multi-type; multi-species;

mixtures; partial exchangeability; convergence of empirical measures; de Finetti

Theorem; chaoticity; Hewitt-Savage 0-1 Law

2000 Mathematics Subject Classification: Primary 60K35

Secondary 60B10; 60G09; 62B05

1. Introduction

Among others, Kallenberg [9], Kingman [10], Diaconis and Freedman [5] and Al-

dous [1] study exchangeable random variables (r.v.) with Polish state space. The

related notion of chaoticity (convergence in law to i.i.d. random variables) appears in

many contexts, such as statistical estimation and asymptotics for interacting particle

systems or communication networks. It is behind many fruitful heuristics, such as the

“molecular chaos assumption” (Stosszahlansatz ) used by Ludwig Boltzmann to derive

the Boltzmann equation, see Cercignani et al. [4, Sect. 2, 4].

A sequence of exchangeable systems with increasing finite sizes converges in law

∗ Postal address: CMAP, École Polytechnique, CNRS, 91128 Palaiseau France.
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if and only if the empirical measures converge to the directing measure of the limit

infinite system, given by the de Finetti Theorem. Hence, chaoticity is equivalent to the

fact that the empirical measures satisfy a weak law of large numbers, for which A.S.

Sznitman developed a compactness-uniqueness method of proof yielding propagation

of chaos results for varied models of interest. See Sznitman [13] for a survey and

Méléard [11] and Graham [7, 6] for some developments.

Many systems in stratified sampling, statistical mechanics, chemistry, communica-

tion networks, biology, etc., involve dissimilar objects (which we call particles) classified

in a certain number of types, particles of a class being similar and numerous. See for

instance Cercignani et al. [4] (“Mixtures”, Subject index p. 454) and the review papers

[2, 7, 8, 12] in a recent book.

The present paper studies natural notions of multi-exchangeability and chaoticity

for multi-class systems, which appeared explicitly in Graham [6, pp. 78, 81] without

names. We have found no previous such explicit definition, and [4, 2, 8, 12] directly

extend the limit equations for systems of identical particles to multi-class models.

We prove that the conditional law of a finite multi-exchangeable system given the

vector of the empirical measures of the classes corresponds to choosing independent

uniform permutations within classes, and that the convergence in law of this vector is

equivalent to that of the system.

As a corollary, for a multi-exchangeable system chaoticity within classes implies

asymptotic independence between classes. This striking result is a major motivation

for this paper, since it allows rigorous derivation of limit models from particle dynamics

by use of Sznitman’s compactness-uniqueness methods.

We conclude with an extension of a result implying the Hewitt-Savage 0-1 Law.

We state as a “Proposition” any known result, and “Theorem” any result we believe

to be new. All state spaces S are Polish, and the weak topology is used for the space

of probability measures P(S) which is then also Polish, and so are products of Polish

spaces. For k ≥ 1 we denote by Σ(k) the set of permutations of {1, . . . , k}.
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2. Some classical results

2.1. Finite and infinite exchangeable systems

For N ≥ 1, a finite system (XN
n )1≤n≤N of random variables (r.v.) with state space

S is exchangeable if

L(XN
σ(1), . . . , X

N
σ(N)) = L(XN

1 , . . . , XN
N ) , σ ∈ Σ(N) .

The conditional law of such a system given its empirical distribution

ΛN =
1

N

N
∑

n=1

δXN
n

corresponds to a uniform ordering of the N (possibly repeated) values occurring in ΛN

(its atoms, counted according to their multiplicity), see Aldous [1, Lemma 5.4 p. 38].

An infinite system (Xn)n≥1 is exchangeable if every finite subsystem (Xn)1≤n≤N is

exchangeable. The de Finetti Theorem, see e.g. [9, 10, 5, 1], states that such a system

is a mixture of i.i.d. sequences: its law is of the form
∫

P⊗∞LΛ(dP )

where LΛ is the law of the (random) directing measure Λ which can be obtained as

Λ = lim
N→∞

1

N

N
∑

n=1

δXn
a.s. (1)

These facts lead to the following.

Proposition 1. Let (XN
n )1≤n≤N for N ≥ 1 be finite exchangeable systems. This

sequence converges in law to (Xn)n≥1, which is necessarily infinite exchangeable and

thus has a directing measure Λ, if and only if

lim
N→∞

1

N

N
∑

n=1

δXN
n

= Λ in law.

For proof, see Kallenberg [9, Theorem 1.3 p. 25] and Aldous [1, Prop. 7.20 p. 55]. The

proof in the latter uses [1, Prop. 5.6 p. 39], also Diaconis and Freedman [5, Theorem 13

p. 749] where it was used for proving the de Finetti Theorem.

The sequence (XN
n )1≤n≤N for N ≥ 1 is P -chaotic, where P ∈ P(S), if

lim
N→∞

L(XN
1 , . . . , XN

k ) = P⊗k , k ≥ 1 ,
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or equivalently, converges in law to an i.i.d. system of r.v. of law P . This limit is

infinite exchangeable with directing measure P , and Proposition 1 has the following

immediate corollary.

Proposition 2. Let (XN
n )1≤n≤N for N ≥ 1 be finite exchangeable systems. This

sequence is P -chaotic, where P ∈ P(S), if and only if

lim
N→∞

1

N

N
∑

n=1

δXN
n

= P in law

and hence in probability (since the limit is deterministic).

Direct proofs can be found in [13, Prop. 2.2 p. 177] and [11, Prop. 4.2 p. 66].

2.2. Multi-exchangeable systems

For a C ≥ 1 and multi-index N = (Ni)1≤i≤C ∈ N
C we consider a multi-class system

(XN

n,i)1≤n≤Ni, 1≤i≤C , XN

n,i with state space Si,

where XN

n,i is the n-th particle, or object, of class i. We say that this system is multi-

exchangeable if its law is invariant under permutation of the particles within classes:

L
(

(XN

σi(n),i)1≤n≤Ni, 1≤i≤C

)

= L
(

(XN

n,i)1≤n≤Ni, 1≤i≤C

)

, σi ∈ Σ(Ni) .

This natural assumption means that particles of a class are statistically indistinguish-

able, and implies that (XN

n,i)1≤n≤Ni
is exchangeable for 1 ≤ i ≤ C. It is sufficient to

check that it is true when all σi but one are the identity.

We say that the multi-class system (Xn,i)n≥1 ,1≤i≤C with infinite classes is multi-

exchangeable if every finite sub-system (Xn,i)1≤n≤N ,1≤i≤C is multi-exchangeable. The

following remarkable result is attributed to de Finetti by Aldous [1, Cor. 3.9 p. 25].

Proposition 3. Let (Xn,i)n≥1, 1≤i≤C be an infinite multi-exchangeable system, and

Λi be the directing measure of (Xn,i)n≥1. Given (Λi)1≤i≤C , the Xn,i are conditionally

independent and have regular conditional distributions Λi.

3. The extended results

We shall extend to multi-exchangeable systems the main results for exchangeable

systems, even though the assumption and resulting structure is much weaker, since for
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instance the respective symmetry orders are N1! · · ·NC ! ≪ (N1 + · · · + NC)! = N !.

A surprising fact in the following extension of [1, Lemma 5.4 p. 38] (stated in words

at the beginning of Section 2) is that for a finite multi-exchangeable system, the classes

are conditionally independent given the empirical measures of each class, and no further

information can be attained on its law by mixing astutely what happens in different

classes. The empirical measure vector is a sufficient statistic for the law of the system,

the family of all such laws being trivially parameterized by the laws themselves.

Theorem 1. Let (XN

n,i)1≤n≤Ni, 1≤i≤C be a finite multi-exchangeable system. Then its

conditional law given the empirical measure vector

(ΛN

i )1≤i≤C , ΛN

i =
1

Ni

Ni
∑

n=1

δXN

n,i
,

corresponds to C independent uniform orderings of the Ni (possibly repeated) particles

of class i which are the atoms of ΛN

i (counted with their multiplicities).

Proof. Multi-exchangeability implies that for g, fi ≥ 0 we have

E

[

g
(

(ΛN

j )1≤j≤C

)

C
∏

i=1

fi(X
N

1,i, . . .X
N

Ni,i
)

]

=
1

C
∏

k=1

Nk!

∑

σk∈Σ(Nk)
for 1≤k≤C

E



g









1

Nj

Nj
∑

n=1

δXN

σj(n),j





1≤i≤C





C
∏

i=1

fi(X
N

σi(1),i
, . . . XN

σi(Ni),i
)





= E



g
(

(ΛN

j )1≤j≤C

)

C
∏

i=1

1

Ni!

∑

σ∈Σ(Ni)

fi(X
N

σ(1),i, . . . , X
N

σ(Ni),i
)





= E



g
(

(ΛN

j )1≤j≤C

)

C
∏

i=1

〈

fi,
1

Ni!

∑

σ∈Σ(Ni)

δXN

σ(1),i
,...,XN

σ(Ni),i

〉



 (2)

where the empirical measure 1
Ni!

∑

σ∈Σ(Ni)
δXN

σ(1),i
,...,XN

σ(Ni),i
is a function of ΛN

i , since it

corresponds to exhaustive draws without replacement among the XN

1,i, . . . ,XN

Ni,i
which

are the atoms of ΛN

i counted according to multiplicity (there are algebraic formulas,

see the proof of Theorem 2 below for a step in that direction). The characteristic

property of conditional expectation yields

E

[

C
∏

i=1

fi(X
N

1,i, . . .X
N

Ni,i
)

∣

∣

∣

∣

(ΛN

i )1≤i≤C

]

=

C
∏

i=1

〈

fi,
1

Ni!

∑

σ∈Σ(Ni)

fi(X
N

σ(1),i, . . . , X
N

σ(Ni),i
)

〉
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which implies, classically for such Polish state spaces, that the conditional law of

(XN

n,i)1≤n≤Ni, 1≤i≤C given (ΛN

i )1≤i≤C is the one stated.

The following extension of Proposition 1 is again remarkable in that we do not have

to mix what happens in different classes. It follows essentially from Theorem 1 and its

proof and Proposition 3 by regularity considerations, and implies the same for families

of infinite multi-exchangeable systems.

We say that N = (Ni)1≤i≤C goes to infinity when min1≤i≤C Ni goes to infinity.

Theorem 2. Consider the family of finite multi-exchangeable systems

(XN

n,i)1≤n≤Ni, 1≤i≤C , N ∈ N
C , (3)

with empirical measures (ΛN

i )1≤i≤C given in Theorem 1. This family converges in law

as N goes to infinity to (Xn,i)n≥1 ,1≤i≤C , which is necessarily infinite multi-exchangeable

and has directing measure vector (Λi)1≤i≤C , if and only if

lim
N→∞

(ΛN

i )1≤i≤C = (Λi)1≤i≤C in law.

Proof. Let (m)k = m!
(m−k)! = m(m − 1) · · · (m − k + 1) for m, k ≥ 1. For bounded

continuous fi on Sk
i , consideration of (2) with g = 1 and the extensions of fi on SNi

i

depending only on the first k coordinates yields

E

[

C
∏

i=1

fi(X
N

1,i, . . .X
N

k,i)

]

= E







C
∏

i=1

〈

fi,
1

(Ni)k

∑

1≤n1,...,nk≤Ni

distinct

δXN

n1,i,...,X
N

nk,i

〉






.

The empirical measures for distinct k-tuples in each class, appearing in the last

term, correspond to sampling without replacement, which is asymptotically equivalent

to sampling with replacement: more precisely,

(ΛN

i )⊗k =
1

Nk
i

∑

1≤n1,...,nk≤Ni

distinct

δXN

n1,i,...,X
N

nk,i
+

1

Nk
i

∑

1≤n1,...,nk≤Ni

not distinct

δXN

n1,i,...,X
N

nk,i

so that, in total variation norm ‖µ‖ = sup{ 〈φ, µ〉 : ‖φ‖∞ ≤ 1 },

∥

∥

∥

∥

∥

∥

∥

(ΛN

i )⊗k −
1

(Ni)k

∑

1≤n1,...,nk≤Ni

distinct

δXN

n1,i,...,X
N

nk,i

∥

∥

∥

∥

∥

∥

∥

≤ 2
Nk

i − (Ni)k

Nk
i

≤
k(k − 1)

Ni
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where we bound Nk
i − (Ni)k by counting k(k−1)/2 possible positions for two identical

indices with Ni choices and Nk−2
i choices for the other k − 2 positions.

Hence, with bounds depending only on the ‖fi‖∞ for 1 ≤ i ≤ C, we have

E

[

C
∏

i=1

fi(X
N

1,i, . . . X
N

k,i)

]

= E

[

C
∏

i=1

〈

fi, (Λ
N

i )⊗k
〉

]

+ O

(

k(k − 1)

min1≤i≤C Ni

)

. (4)

If limN→∞(ΛN

i )1≤i≤C = (Λi)1≤i≤C then continuity and Proposition 3 imply

lim
N→∞

E

[

C
∏

i=1

fi(X
N

1,i, . . . X
N

k,i)

]

= E

[

C
∏

i=1

〈

fi, Λ
⊗k
i

〉

]

= E

[

C
∏

i=1

fi(X1,i, . . . Xk,i)

]

so that, since the state spaces are Polish,

lim
N→∞

L
(

(XN

1,i, . . .X
N

k,i)1≤i≤C

)

= L
(

(X1,i, . . . Xk,i)1≤i≤C

)

, k ≥ 1 ,

and (XN

n,i)1≤n≤Ni, 1≤i≤C converges in law to (Xn,i)n≥1 ,1≤i≤C . Conversely, this con-

vergence, (4), continuity, and Proposition 3 imply that

lim
N→∞

E

[

C
∏

i=1

〈

fi, (Λ
N

i )⊗k
〉

]

= E

[

C
∏

i=1

fi(X1,i, . . . Xk,i)

]

= E

[

C
∏

i=1

〈

fi, Λ
⊗k
i

〉

]

and classical characterizations of convergence in law for r.v. with the Polish state space

⊗1≤i≤CP(Si) imply that limN→∞(ΛN

i )1≤i≤C = (Λi)1≤i≤C .

We have the following corollary, in which the striking fact is asymptotic indepen-

dence between particles in different classes. We say that the family of finite multi-class

systems (3) is (P1, . . . , PC)-chaotic, where Pi ∈ P(Si), if

lim
N→∞

L
(

(XN

n,i)1≤n≤k, 1≤i≤C

)

= P⊗k
1 ⊗ · · · ⊗ P⊗k

C , k ≥ 1 .

This means that the multi-class systems converge to an independent system, in which

particles of class i have law Pi.

Theorem 3. The family of finite multi-exchangeable systems (3) is (P1, . . . , PC)-chaotic,

where Pi ∈ P(Si), if and only if the (XN

n,i)1≤n≤Ni
are Pi-chaotic for 1 ≤ i ≤ C.

Proof. The “only if” result is obvious. Conversely, if the (XN

n,i)1≤n≤Ni
are Pi-

chaotic, then Proposition 2 implies that limN→∞(ΛN

i )1≤i≤C = (Pi)1≤i≤C in probabil-

ity, and we conclude using Theorem 2 and Proposition 3.
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Remark 1. Theorem 3 allows for the proof of (P1, . . . , PC)-chaoticity by use of Propo-

sition 2 and Sznitman’s compactness-uniqueness methods for proving that the empirical

measures ΛN

i converge in law to Pi for 1 ≤ i ≤ C. This was a main goal of this study.

We finish with the following extension of Aldous [1, Cor. 3.10 p. 26] and of the

Hewitt-Savage 0-1 Law. For k ≥ 1, we say that a set

B ⊂ S⊗∞
1 ⊗ · · · ⊗ S⊗∞

C

is k-multi-exchangeable if

(xn,i)n≥1, 1≤i≤C ∈ B ⇔ (xσi(n),i)n≥1, 1≤i≤C ∈ B , σi ∈ Σ(k) ,

and define the multi-exchangeable σ-algebra

E =
⋂

k≥1

Ek , Ek =
{

{(Xn,i)n≥1, 1≤i≤C ∈ B} : B is k-multi-exchangeable
}

,

and multi-tail σ-algebra

T =
⋂

k≥1

Tk , Tk = σ
(

(Xn,i)n≥k, 1≤i≤C

)

.

Clearly, Tk ⊂ Ek and hence T ⊂ E .

Theorem 4. Let (Xn,i)n≥1, 1≤i≤C be an infinite multi-exchangeable system, and Λi be

the directing measure of (Xn,i)n≥1. Then

σ((Λi)1≤i≤C) = T = E a.s.

If moreover the Xn,i are independent, then A ∈ E ⇒ P (A) ∈ {0, 1}.

Proof. Consideration of (1) yields σ((Λi)1≤i≤C) ⊂ T , a.s., and we have seen that

T ⊂ E . Hence, the first statement is true if E ⊂ σ((Λi)1≤i≤C), a.s.

For all k ≥ 1 and σi ∈ Σ(k) for 1 ≤ i ≤ C and A = {(Xn,j)n≥1, 1≤j≤C ∈ B} ∈ E ,

where B is multi-exchangeable, this last property implies

(1A, Xσi(n),i)n≥1, 1≤i≤C = (1{(Xσj (n),j)n≥1, 1≤j≤C∈B}, Xσi(n),i)n≥1, 1≤i≤C

so that the multi-exchangeability of (Xn,i)n≥1, 1≤i≤C implies

L
(

(1A, Xσi(n),i)n≥1, 1≤i≤C

)

= L
(

(1A, Xn,i)n≥1, 1≤i≤C

)

.
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Hence (1A, Xn,i)n≥1, 1≤i≤C is infinite multi-exchangeable, and Proposition 3 implies

that the (1A, Xn,i) are conditionally independent given (Λ̂i)1≤i≤C and have conditional

laws Λ̂i given by

Λ̂i = lim
N→∞

1

N

N
∑

n=1

δ1A,Xn,i
= δ1A

⊗ lim
N→∞

1

N

N
∑

n=1

δXn,i
= δ1A

⊗ Λi a.s.,

so that for k ≥ 1 and Borel sets Bn,i ⊂ Si we have

P
(

Xn,i ∈ Bn,i : 1 ≤ n ≤ k, 1 ≤ i ≤ C
∣

∣A, (Λi)1≤i≤C

)

=
∏

1≤n≤k,1≤i≤C

Λi(Bn,i)

which is a function of (Λi)1≤i≤C , and thus E and (Xn,i)n≥1, 1≤i≤C are conditionally

independent given (Λi)1≤i≤C . Since E ⊂ σ((Xn,i)n≥1, 1≤i≤C) this can only happen if

E ⊂ σ((Λi)1≤i≤C), a.s., and we conclude to the first statement.

The Kolmogorov 0-1 Law yields that T is a.s. trivial if the Xn,i are independent.
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