
HAL Id: hal-00171606
https://hal.science/hal-00171606

Preprint submitted on 12 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Boussinesq system for two-way propagation of
interfacial waves

Hai Yen Nguyen, Frédéric Dias

To cite this version:
Hai Yen Nguyen, Frédéric Dias. A Boussinesq system for two-way propagation of interfacial waves.
2007. �hal-00171606�

https://hal.science/hal-00171606
https://hal.archives-ouvertes.fr


ha
l-

00
17

16
06

, v
er

si
on

 1
 -

 1
2 

Se
p 

20
07

A Boussinesq system for two-way propagation

of interfacial waves

Hai Yen Nguyen, Frédéric Dias a

aCMLA, ENS Cachan, CNRS, PRES UniverSud, 61, avenue du Président Wilson,
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Abstract

The theory of internal waves between two layers of immiscible fluids is important
both for its applications in oceanography and engineering, and as a source of inter-
esting mathematical model equations that exhibit nonlinearity and dispersion. A
Boussinesq system for two-way propagation of interfacial waves in a rigid lid con-
figuration is derived. In most cases, the nonlinearity is quadratic. However, when
the square of the depth ratio is close to the density ratio, the coefficients of the
quadratic nonlinearities become small and cubic nonlinearities must be considered.
The propagation as well as the collision of solitary waves and/or fronts is studied
numerically.

1 Introduction

As emphasized by Helfrich & Melville [20] in their recent survey article on long
nonlinear internal waves, observations over the past four decades have demon-
strated that internal solitary-like waves are ubiquitous features of coastal
oceans and marginal seas. Solitary waves are long nonlinear waves consist-
ing of a localized central core and a decaying tail. They arise whenever there
is a balance between dispersion and nonlinearity. They have been proved to
exist in specific parameter regimes, and are often conveniently modelled by
Korteweg–de Vries (KdV) equations or Boussinesq systems. As explained by
Evans & Ford [16], the differences between “free-surface” and “rigid lid” inter-
nal waves are small for internal waves of interest. Therefore the “rigid lid” con-
figuration remains popular for investigating internal waves even if it does not
allow for generalized solitary waves, which are long nonlinear waves consisting
of a localized central core and periodic non-decaying oscillations extending to
infinity. Such waves arise whenever there is a resonance between a linear long
wave speed of one wave mode in the system and a linear short wave speed of
another mode [17].

Preprint submitted to Elsevier Science 13 September 2007



When dealing with interfacial waves with rigid boundaries in the framework
of the full Euler equations, the amplitude of the central core is bounded by
the configuration. In the case of solitary waves, it is known that when the
wave speed approaches a critical value the solution reaches a maximum am-
plitude while becoming indefinitely wider; these waves are often called ‘table-
top’ waves. In the limit as the width of the central core becomes infinite, the
wave becomes a front [13]. Such behavior is conveniently modelled by an ex-
tended Korteweg–de Vries (eKdV) equation, i.e. a KdV equation with a cubic
nonlinear term [18]. Sometimes the terminology ‘modified KdV equation’ or
‘Gardner equation’ is also used. KdV-type equations only describe one-way
wave propagation. The natural extension toward two-way wave propagation
is the class of Boussinesq systems. We will derive two sets of Boussinesq sys-
tems, one with quadratic nonlinearities and another one with quadratic and
cubic nonlinearities. We will use the terminology ‘extended’ for a Boussinesq
system with both quadratic and cubic terms. Some questions arise when deal-
ing with ‘table-top’ solitary waves. What are their properties? How do they
interact? The main goal of this work is to learn more about these waves by
studying and integrating numerically an extended Boussinesq system which al-
lows a comparison between fronts and the more standard solitary waves. More
general models have also been derived by Choi & Camassa [9]. They consid-
ered shallow water as well as deep water configurations. In the shallow water
case, their set of equations is the two-layer version of the Green–Naghdi equa-
tions. The equations derived in [9] were recently extended to the free-surface
configuration [2]. Solitary waves for two-layer flows have also been computed
numerically as solutions to the full incompressible Euler equations in the pres-
ence of an interface by various authors – see for example [22]. Similarly fronts
have been computed for example in [13,14].

The paper is organized as follows. In § 2, we present the governing equations
and the corresponding boundary conditions. A first Boussinesq system of three
equations is derived in § 3. Then it is shown in § 4 how to reduce this system
to a system of two equations, one for the evolution of the interface shape and
the other one for the evolution of a combination of the horizontal velocities in
each layer. The numerical scheme and the numerical solutions are described
in § 5. Results are shown for the propagation of a single wave, for the co-
propagation of two waves and for the collision of two waves of equal as well
as unequal sizes. When the square of the depth ratio is close to the density
ratio, the coefficients of the quadratic nonlinearities become small and cubic
nonlinearities must be considered. An extended Boussinesq system is derived
in § 6. Numerical solutions of the extended Boussinesq system are described
in § 7. In particular, the collision of ‘table-top’ waves is considered. A short
conclusion is given in § 8. In the Appendices, we provide very accurate results
for wave run-up and phase shift, as well as some intermediate steps in the
derivation of the extended Boussinesq system.
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(a) in physical space (b) in dimensionless variables
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Fig. 1. Sketch of solitary waves propagating at the interface between two fluid layers
with different densities ρ′ and ρ. The top and the bottom of the fluid domain are
flat and rigid boundaries, located respectively at z∗ = h′ and z∗ = −h. (a) Sketch
of a solitary wave of depression in physical space; (b) Sketch of a solitary wave of
elevation in dimensionless coordinates, with the thickness h of the bottom layer
taken as unit length and the long wave speed c as unit velocity. The dashed lines
represent arbitrary fluid levels θ and 1 + H − θ′ in each layer. The dimensionless
number H is equal to h′/h.

2 Governing equations

The origin of the systems of partial differential equations that will be derived
below is explained in this section. The methods are standard, but to our
knowledge some of these equations are derived for the first time.

Waves at the interface between two fluids are considered. The bottom as well
as the upper boundary are assumed to be flat and rigid. A sketch is given in
Figure 1. The analysis is restricted to two-dimensional flows. In other words,
there is only one horizontal direction, x∗, in addition to the vertical direction,
z∗. The interface is described by z∗ = η∗(x∗, t∗). The bottom layer Ωt∗ =
{(x∗, z∗) : x∗ ∈ R,−h < z∗ < η∗(x∗, t∗)} and the upper layer Ω′

t∗ = {(x∗, z∗) :
x∗ ∈ R, η∗(x∗, t∗) < z∗ < h′} are filled with inviscid, incompressible fluids,
with densities ρ and ρ′ respectively. All quantities related to the upper layer
are denoted with a prime. All physical variables are denoted with a star.

In addition the flows are assumed to be irrotational. Therefore we are dealing
with potential flows and only stable configurations with ρ > ρ′ are considered.
Velocity potentials φ∗ = φ∗((x∗, z∗), t∗) in Ωt∗ and φ∗

′

= φ∗
′

((x∗, z∗), t∗) in Ω′

t∗

are introduced, so that the velocity vectors v∗ and v∗
′

are given by

v∗ = ∇φ∗, (1)

v∗
′

= ∇φ∗
′

. (2)
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Writing the continuity equations in each layer leads to

φ∗

x∗x∗ + φ∗

z∗z∗
= 0 for − h < z∗ < η∗(x∗, t∗), (3)

φ∗
′

x∗x∗ + φ∗
′

z∗z∗
= 0 for η∗(x∗, t∗) < z∗ < h′. (4)

The boundary of the system {Ωt∗ , Ω
′

t∗} has two parts: the flat bottom z∗ = −h
and the flat roof z∗ = h′. The impermeability conditions along these rigid
boundaries give

φ∗

z∗ = 0 at z∗ = −h, (5)

φ∗
′

z∗
= 0 at z∗ = h′. (6)

The kinematic conditions along the interface, namely D(η∗ − z∗)/Dt∗ = 0,
give

η∗

t∗ = φ∗

z∗ − φ∗

xη
∗

x at z∗ = η∗(x∗, t∗), (7)

η∗

t∗
= φ∗

′

z∗
− φ∗

′

x
η∗

x
at z∗ = η∗(x∗, t∗). (8)

The dynamic boundary condition imposed on the interface, namely the con-
tinuity of pressure since surface tension effects are neglected, gives

ρ

(
∂φ∗

∂t∗
+

1

2
|∇φ∗|2 + gz∗

)
= ρ′

(
∂φ∗

′

∂t∗
+

1

2
|∇φ∗

′ |2 + gz∗
)

at z∗ = η∗(x∗, t∗), (9)

where g is the acceleration due to gravity. The system of seven equations (3)–
(9) represents the starting model for the study of wave propagation at the
interface between two fluids. Combined with initial conditions or periodicity
conditions, it is the classical interfacial wave problem, which has been studied
for more than a century. A nice feature of this formulation is that the pressures
in both layers have been removed. In some cases, it is advantageous to keep
the pressures in the equations. For example, Bridges & Donaldson [8] in their
study of the criticality of two-layer flows provide an appendix on the inclusion
of the lid pressure in the calculation of uniform flows. In the next sections, we
will derive simplified models based on certain additional assumptions on wave
amplitude, wavelength and fluid depth.

3 System of three equations in the limit of long, weakly dispersive

waves

The derivation follows closely that of [5] for a single layer. Let us now consider
waves whose typical amplitude, A, is small compared to the depth of the
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bottom layer h, and whose typical wavelength, ℓ, is large compared to the
depth of the bottom layer 1 . Let us define the three following dimensionless
numbers, with their characteristic magnitude:

α =
A

h
≪ 1, β =

h2

ℓ2
≪ 1, S =

α

β
=

Aℓ2

h3
≈ 1.

Here S is the Stokes number. Let us also introduce the dimensionless density
ratio r as well as the depth ratio H :

r =
ρ′

ρ
, H =

h′

h
.

Obviously r takes values between 0 and 1, the case r = 0 corresponding to
water waves 2 while the case r ≈ 1 corresponds to two fluids with almost the
same density such as an upper, warmer layer extending down to the interface
with a colder, more saline layer. The depth ratio takes theoretical values be-
tween 0 and ∞ but as said above values H ≪ 1 or H ≫ 1 should be avoided
in the framework of our weakly nonlinear analysis.

The procedure is most transparent when working with the variables scaled in
such a way that the dependent quantities appearing in the problem are all of
order one, while the assumptions about small amplitude and long wavelength
appear explicitly connected with small parameters in the equations of motion.
Such consideration leads to the scaled, dimensionless variables

x∗ = ℓx, z∗ = h(z−1), η∗ = Aη, t∗ = ℓt/c0, φ∗ = gAℓφ/c0, φ∗
′

= gAℓφ′/c0,

where c0 =
√

gh. The speed c0, which represents the long wave speed in the
limit r → 0, is not necessarily the most natural choice for interfacial waves.
The natural choice would be to take

c0 =
√

gh

√
1 − r

1 + r/H
,

which is the speed of long waves in the configuration shown in Figure 1. It
does not matter for the asymptotic expansions to be performed later.

1 There is some arbitrariness in this choice since there are two fluid depths in the
problem. We could have also chosen the depth of the top layer as reference depth.
In fact, we implicitly make the assumption that the ratio of liquid depths is neither
too small nor too large, without going into mathematical details. Models valid for
arbitrary depth ratio have been derived for example by Choi & Camassa [9].
2 In a recent paper, Kataoka [21] showed that when H is near unity, the stability of
solitary waves changes drastically for small density ratios r. Therefore one must be
careful in evaluating the stability of air-water solitary waves. In other words, there
may be differences between r = 0 and the true value r = 0.0013.
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In these new variables, the set of equations (3)–(9) becomes after reordering

βφxx + φzz =0 in 0 < z < 1 + αη, (10)

φz =0 on z = 0, (11)

ηt + αφxηx −
1

β
φz =0 on z = 1 + αη, (12)

βφ′

xx + φ′

zz =0 in 1 + αη < z < 1 + H, (13)

φ′

z =0 on z = 1 + H, (14)

ηt + αφ′

xηx −
1

β
φ′

z =0 on z = 1 + αη, (15)

(
η + φt +

1

2
αφ2

x
+

1

2

α

β
φ2

z

)
= r

(
η + φ′

t
+

1

2
αφ

′2
x

+
1

2

α

β
φ

′2
z

)
on z = 1 + αη.(16)

We represent the potential φ as a formal expansion,

φ((x, z), t) =
∞∑

m=0

fm(x, t)zm.

Demanding that φ formally satisfy Laplace’s equation (10) leads to the recur-
rence relation

(m + 2)(m + 1)fm+2(x, t) = −β(fm(x, t))xx, ∀m = 0, 1, 2, . . . . (17)

Let F (x, t) = f0(x, t) denote the velocity potential at the bottom z = 0 and
use (17) repeatedly to obtain

f2k(x, t) =
(−1)kβk

(2k)!

∂2kF (x, t)

∂x2k
, ∀k = 0, 1, 2, . . . ,

f2k+1(x, t) =
(−1)kβk

(2k + 1)!

∂2kf1(x, t)

∂x2k
, ∀k = 0, 1, 2, . . . .

Equation (11) implies that f1(x, t) = 0, so

f2k+1(x, t) = 0, ∀k = 0, 1, 2, . . . , (18)

and therefore

φ((x, z), t) =
∞∑

k=0

(−1)kβk

(2k)!

∂2kF (x, t)

∂x2k
z2k.

Let ∂F (x, t)/∂x = u(x, t). Substitute the latter representation into (12) to
obtain

ηt + ux + α(uη)x −
1

6
βuxxx −

1

2
αβ(ηuxx)x +

1

120
β2uxxxxx + O(β3) = 0.(19)
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Similarly we represent the potential φ′ as a formal expansion,

φ′((x, z), t) =
∞∑

m=0

f ′

m(x, t)(1 + H − z)m.

Demanding that φ′ formally satisfy Laplace’s equation (13) leads to the re-
currence relation

(m + 2)(m + 1)f ′

m+2(x, t) = −β(f ′

m(x, t))xx, ∀m = 0, 1, 2, . . . . (20)

Let F ′(x, t) = f ′

0(x, t) denote the velocity potential on the roof z = 1+H and
use (20) repeatedly to obtain

f ′

2k
(x, t) =

(−1)kβk

(2k)!

∂2kF ′(x, t)

∂x2k
, ∀k = 0, 1, 2, . . . ,

f ′

2k+1(x, t) =
(−1)kβk

(2k + 1)!

∂2kf ′

1(x, t)

∂x2k
, ∀k = 0, 1, 2, . . . .

Equation (14) implies that f ′

1(x, t) = 0, so

f ′

2k+1(x, t) = 0, ∀k = 0, 1, 2, . . . , (21)

and therefore

φ′((x, z), t) =
∞∑

k=0

(−1)kβk

(2k)!

∂2kF ′(x, t)

∂x2k
(1 + H − z)2k.

Let ∂F ′(x, t)/∂x = u′(x, t). Substitute the latter representation into (15) to
obtain

ηt − Hu′

x
+ α(u′η)x +

1

6
βH3u′

xxx
− 1

2
αβH2(ηu′

xx
)x

− 1

120
β2H5u′

xxxxx
+ O(β3) = 0. (22)

It is important at this stage that H = O(1).

Substitute the representations for φ and φ′ into the dynamic condition (16) to
obtain the third equation

(1 − r)η + Ft − rF ′

t −
1

2
β
(
uxt − rH2u′

xt

)

−αβη(uxt + rHu′

xt) +
1

24
β2
(
uxxxt − rH4u′

xxxt

)
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+
1

2
α(u2 − βuuxx) −

1

2
αr(u′2 − βH2u′u′

xx) +
1

2
αβ(u2

x − rH2u′2
x ) + O(β3)= 0.

Differentiating with respect to x yields

(1 − r)ηx + ut − ru′

t
− 1

2
β(uxxt − rH2u′

xxt
) + α(uux − ru′u′

x
)

−αβ(ηuxt)x − αβrH(ηu′

xt
)x +

1

24
β2(uxxxxt − rH4u′

xxxxt
)

−1

2
αβ(uuxx − rH2u′u′

xx
)x + αβ(uxuxx − rH2u′

x
u′

xx
) + O(β3) = 0. (23)

The three equations (19),(22) and (23) provide a Boussinesq system of equa-
tions describing waves at the interface η(x, t) between two fluid layers based on
the horizontal velocities u and u′ along the bottom and the roof, respectively.
It is correct up to second order in α, β.

One can derive a class of systems which are formally equivalent to the system
we just derived. This will be accomplished by considering changes in the de-
pendent variables and by making use of lower-order relations in higher-order
terms. Toward this goal, begin by letting w(x, t) be the scaled horizontal ve-
locity corresponding to the physical depth (1 − θ)h below the unperturbed
interface, and w′(x, t) be the scaled horizontal velocity corresponding to the
physical depth (H − θ′)h above the unperturbed interface. The ranges for the
parameters θ and θ′ are 0 ≤ θ ≤ 1 and 0 ≤ θ′ ≤ H . Note that (θ, θ′) = (0, 0)
leads to w = u and w′ = u′, while (θ, θ′) = (1, H) leads to both velocities eval-
uated along the interface. A formal use of Taylor’s formula with remainder
shows that

w = φx|z=θ =
(
Fx −

1

2
βFxxxθ

2 +
1

24
β2θ4Fxxxxx

)
+ O(β3)

= u − 1

2
βθ2uxx +

1

24
β2θ4uxxxx + O(β3)

as β → 0. In Fourier space, the latter relationship may be written as

ŵ =
(
1 +

1

2
βθ2k2 +

1

24
β2θ4k4

)
û + O(β3).

Inverting the positive Fourier multiplier yields

û =
(
1 +

1

2
βθ2k2 +

1

24
β2θ4k4

)−1

ŵ + O(β3)

=
(
1 − 1

2
βθ2k2 +

5

24
β2θ4k4

)
ŵ + O(β3)
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as β → 0. Thus there appears the relationship

u = w +
1

2
βθ2wxx +

5

24
β2θ4wxxxx + O(β3). (24)

Similarly

w′ = φ′

x
|z=1+H−θ′ =

(
F ′

x
− 1

2
βF ′

xxx
θ′2 +

1

24
β2F ′

xxxxx
θ′4
)

+ O(β3)

=u′ − 1

2
βθ′2u′

xx +
1

24
β2θ′4u′

xxxx + O(β3)

and

ŵ′ =
(
1 +

1

2
βθ′2k2 +

1

24
β2θ′4k4

)
û′ + O(β3).

Inverting the positive Fourier multiplier yields

û′ =
(
1 − 1

2
βθ′2k2 +

5

24
β2θ′4k4

)
ŵ′ + O(β3)

and thus the relationship

u′ = w′ +
1

2
βθ′2w′

xx
+

5

24
β2θ′4w′

xxxx
+ O(β3). (25)

Substitute the expressions (24) and (25) for u and u′ into (19) and (22),
respectively, to obtain

ηt + wx + α(wη)x +
1

2
β
(
θ2 − 1

3

)
wxxx

+
1

2
αβ(θ2 − 1)(ηwxx)x +

5

24
β2
(
θ2 − 1

5

)2

wxxxxx + O(β3) = 0

(26)

ηt − Hw′

x
+ α(w′η)x −

1

2
βH

(
θ′2 − 1

3
H2
)

w′

xxx

+
1

2
αβ

(
θ′2 − H2

)
(ηw′

xx
)x −

5

24
β2H

(
θ′2 − 1

5
H2
)2

w′

xxxxx
+ O(β3) = 0.

(27)

Substitute the expressions (24) and (25) for u and u′ into (23) to obtain

(1 − r)ηx + wt − rw′

t +
1

2
β
[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

+ α(wwx − rw′w′

x)

+
1

24
β2
[
(θ2 − 1)(5θ2 − 1)wxxxxt − r(θ′2 − H2)(5θ′2 − H2)w′

xxxxt

]
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−αβ [(ηwxt)x + rH(ηw′

xt)x] +
1

2
αβ

[
(θ2 − 1)wwxxx − r(θ′2 − H2)w′w′

xxx

]

+
1

2
αβ

[
(θ2 + 1)wxwxx − r(θ′2 + H2)w′

xw
′

xx

]
+ O(β3)= 0.

(28)

The system of three equations (26)–(28) is formally equivalent to the previous
system but it allows one to choose the fluid levels θ and θ′ as reference for the
horizontal velocities. Among all these systems that model the same physical
problem one can select those with the best dispersion relations. Neglecting
terms of O(α2, β2, αβ), the system (26)–(28) reduces to

ηt + wx + α(wη)x + 1
2
β(θ2 − 1

3
)wxxx = 0

ηt − Hw′

x + α(w′η)x − 1
2
βH(θ′2 − 1

3
H2)w′

xxx = 0

(1 − r)ηx + wt − rw′

t
+ 1

2
β[(θ2 − 1)w − r(θ′2 − H2)w′]xxt + α(wwx − rw′w′

x
) = 0

(29)

4 System of two equations

The systems obtained in the previous section are not appropriate for numerical
computations. One would like to obtain a system of two evolution equations
for the variables η and W = w − rw′. In fact, Benjamin and Bridges [3] (see
also [12,11,1] ) formulated the interfacial wave problem using Hamiltonian
formalism and showed that the canonical variables for interfacial waves are
η∗(x∗, t∗) and ρφ∗(x∗, η∗, t∗) − ρ′φ∗

′

(x∗, η∗, t∗).

At leading order, the first two equations of system (29) give





ηt + wx = 0,

ηt − Hw′

x = 0.

Assuming the fluids to be at rest as x → ∞, one has w = −Hw′. Therefore

w =
H

r + H
W + O(β), w′ =

−1

r + H
W + O(β). (30)

Adding H times the first equation to r times the second equation of system
(29) yields

(r + H)ηt + H(w − rw′)x + α[(Hw + rw′)η]x

+H

2
β
[
(θ2 − 1

3
)wxxx − r

(
θ′2 − 1

3
H2
)
w′

xxx

]
= 0.

(31)
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Using (30) and neglecting higher-order terms, one obtains

ηt = − H

r + H
Wx −α

H2 − r

(r + H)2
(Wη)x −β

(
1

2

H2S

(r + H)2
+

1

3

H2(1 + rH)

(r + H)2

)
Wxxx,

where
S = (θ2 − 1) +

r

H

(
θ′2 − H2

)
.

In the third equation of system (29), the term with the xxt−derivatives can
be written as

1

2
β
[
(θ2 − 1)wxxt − r(θ′2 − H2)w′

xxt

]
=

1

2
β

HS

r + H
Wxxt.

The quadratic terms of the third equation of system (29) can be written as

α(wwx − rw′w′

x
) = α

H2 − r

(r + H)2
WWx.

Then the third equation of system (29) becomes

Wt = −(1 − r)ηx −
1

2
β

HS

r + H
Wxxt − α

H2 − r

(r + H)2
WWx.

The final system of two equations for interfacial waves in the limit of long,
weakly dispersive waves, can be written in terms of the horizontal velocities
at arbitrary fluid levels as (in dimensionless form)





ηt = − H

r+H
Wx − α H2

−r

(r+H)2
(Wη)x − β

(
1
2

H2S

(r+H)2
+ 1

3
H2(1+rH)

(r+H)2

)
Wxxx

Wt = −(1 − r)ηx − α H2
−r

(r+H)2
WWx − 1

2
β HS

r+H
Wxxt,

(32)

or as (in physical variables)





η∗

t∗
= −hd1W

∗

x∗ − d4(W
∗η∗)x∗ − h3d2W

∗

x∗x∗x∗,

W ∗

t∗ = −g(1 − r)η∗

x∗ − d4W
∗W ∗

x∗ − h2d3W
∗

x∗x∗t∗ ,
(33)

where

d1 =
H

r + H
, d2 =

H2

2(r + H)2

(
S +

2

3
(1 + rH)

)
, d3 =

1

2
Sd1, d4 =

H2 − r

(r + H)2
.(34)

Notice that Choi & Camassa [9] also derived a system of two equations (see
their equations (3.33) and (3.34)), but it is different from ours. In particular,
their coefficient d2 is equal to 0, and their equation for Wt possesses an extra

11



quadratic term ηηx. The reason is that their ‘W ’ is the mean horizontal velocity
through the upper layer. The value of S which best approximates the Choi
& Camassa equations is S = −2

3
(1 + rH). Indeed the coefficient d2 then

vanishes. This particular value for S can be explained as follows. The leading
order correction to the horizontal velocity is given by

w(z) = u − 1
2
βz2uxx.

The value of z, say z = θ, for which the mean velocity

w =

1∫

0

w(z) dz

is equal to w(θ) is given by θ = 1/
√

3. Similarly, one finds θ′ = (1/
√

3)H for
the upper layer. Therefore S = −2

3
(1 + rH).

Recall that the scaling that led to our Boussinesq system is given by

x∗

h
=

x√
β

,
t∗

h/c0
=

t√
β

,
η∗

h
= αη,

W ∗

gh/c0
= αW,

with c0 =
√

gh, α ≪ 1, β ≪ 1 and α = O(β). Linearizing system (33) and
looking for solutions (η∗, W ∗) proportional to exp(ikx∗ − iωt∗) leads to the
dispersion relation

ω2

k2
=

gh(1 − r)(d1 − d2k
2h2)

1 − d3k2h2
.

Plots of the dispersion relation are given in the next section. Since 0 ≤ θ ≤ 1
and 0 ≤ θ′ ≤ H , the definition of S implies that

−1 − rH ≤ S ≤ 0.

It follows that d3 ≤ 0 and therefore the denominator 1 − d3h
2k2 is positive.

In order to have well-posedness (that is ω2/k2 positive for all values of k), d2

must be negative, which is the case if S ≤ −2
3
(1 + rH). Finally the condition

we want to impose on S is that

− (1 + rH) ≤ S ≤ −2

3
(1 + rH). (35)

It is satisfied if one takes the horizontal velocities on the bottom and on the
roof (S = −(1 + rH)) or the mean horizontal velocities in the bottom and
upper layers (S = −2

3
(1 + rH)), but it is not if one takes the horizontal

velocities along the interface (S = 0).
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5 The numerical scheme and numerical solutions

In order to integrate numerically the Boussinesq system (33), we introduce a
slightly different change of variables, where the stars still denote the physical
variables and no new notation is introduced for the dimensionless variables:

x =
x∗

h
, η =

η∗

h
, t =

c

h
t∗, W =

W ∗

c
, with c2 = gh

H(1− r)

r + H
.

The system (33) becomes





ηt = −d1Wx − d4(Wη)x − d2Wxxx

Wt = − 1

d1
ηx − d4WWx − d3Wxxt

, (36)

with dispersion relation

ω2

k2
=

d1 − d2k
2

d1(1 − d3k2)
. (37)

As k → 0, ω/k → 1. As k → ∞,

ω2

k2
→ d2

d1d3
= 1 +

2(1 + rH)

3S
.

Typical plots of the dispersion relation (37) are given in Figure 2. Comparisons
between the approximate and the exact dispersion relations, given by

ω2

k2
=

tanh k tanh kH

d1k(tanh kH + r tanh k)

are also shown. A very good agreement is found for small k. Taking the Fourier
transform of the system (36) gives





η̂t = (d2k
2 − d1)ikŴ − d4ikŴ η

Ŵt = − 1

d1(1 − d3k2)
ikη̂ − d4

2(1 − d3k2)
ikŴ 2

.

The system of differential equations is solved by a pseudo-spectral method in
space with a number N of Fourier modes on a periodic domain of length L. For
most applications, N = 1024 was found to be sufficient. The time integration
is performed using the classical fourth-order explicit Runge–Kutta scheme.
The time step ∆t was optimized through a trial and error process and was
found to have a dependence in 1/N .
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Fig. 2. Dispersion relation (37) for the Boussinesq system (36) with S = −1 − rH,
r = 0.9: (a) H = 1.2, (b) H = 0.8. The dashed curves represent the dispersion rela-
tion for the linearized interfacial wave equations, without the long wave assumption
(see for example [22]).

Since the main goal is to study the propagation and the collision of solitary
waves, we first look for solitary wave solutions of the system (36). As op-
posed to the KdV equation, there are no explicit solitary wave solutions of the
Boussinesq system that are physically relevant. Therefore we look for an ap-
proximate solitary wave solution to (36) as in [4] (see also [15] for the existence
of solitary wave solutions). The leading-order terms give

ηt = −d1Wx, Wt = − 1

d1
ηx.

A solution representing a right-running wave is

W (x − t) =
1

d1
η(x − t).

Let us look for solutions of system (36) in the form

W (x, t) =
1

d1

[η(x, t) + M(x, t)],

where M is assumed to be small compared to η and W . Substituting the
expression for W into (36) and neglecting higher-order terms yields





ηt = −ηx − Mx −
d4

d1
(η2)x −

d2

d1
ηxxx

ηt = −ηx − Mt −
1

2

d4

d1
(η2)x − d3ηxxt

. (38)
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Assuming that the solitary wave goes to the right, one has Mt ≈ −Mx. There-
fore

Mx = −1

4

d4

d1
(η2)x −

1

2

d2

d1
ηxxx +

1

2
d3ηxxt.

Substituting the expression for Mx into one of the equations of system (38)
yields

ηt + ηx +
3d4

4d1
(η2)x +

d2

2d1
ηxxx +

d3

2
ηxxt = 0. (39)

This is essentially the model equation that was studied in [7].

Looking for solitary wave solutions of (39) in the form

η = η0 sech2[κ(x + x0 − V t)] (40)

leads to two equations for κ and V :




−V + 1 + 2(d2/d1)κ

2 − 2d3κ
2V = 0

d4η0 − 4d2κ
2 + 4d1d3κ

2V = 0
.

Solving for κ2 and V yields

κ2 =
d4η0

4
(
d2 − d1d3 − 1

2
d3d4η0

) , V = 1 +
d4η0

2d1
,

and, assuming M(±∞) = 0, one obtains explicitly the following expression
for M :

M = − d4

4d1
η2 − d2

2d1
ηxx +

d3

2
ηxt.

For a given pair (r, H), one must only consider values of η0 which are such that
κ2 > 0. In addition one has the condition (35) on S. The sign of d4 depends
on the relation between H2 and r. Let us assume first that H2 > r so that
d4 > 0. In order for the condition κ2 > 0 to be satisfied, one needs

η0

(
d2 − d1d3 −

1

2
d3d4η0

)
> 0.

The values of η0 for which the left-hand side of the inequality vanishes are

η01 = 0, η02 =
4H(r + H)(1 + rH)

3(H2 − r)S
.
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Since S < 0, η02 < 0 and therefore η02 < η01. The coefficient of η2
0 in the

inequality is positive. Consequently one must have

η0 > η01 = 0 or η0 < η02 =
4H(r + H)(1 + rH)

3(H2 − r)S
.

This second branch is not acceptable since

4H(r + H)(1 + rH)

3(H2 − r)
> 1 + rH > −S > 0.

Therefore
4H(r + H)(1 + rH)

3(H2 − r)S
< −1,

which gives an amplitude larger than the depth!

Similarly, when H2 < r one finds a second branch which is not acceptable.
The summary of acceptable values for η0 is given in the table

H2 − r > 0 0 < η0 < H

H2 − r < 0 −1 < η0 < 0

For a “thick” upper layer (H2 > r), the solitary waves are of elevation, while
they are of depression for a “thick” bottom layer (H2 < r). The weakly non-
linear theory developed in the present section does not provide any bounds
on the amplitude of the solitary waves. We have added a physical constraint
based on the fact that both layers are bounded by flat solid boundaries. It
is well-known in the framework of the full interfacial wave equations (see for
example [22]) that the rigid top and bottom provide natural bounds on the
solitary wave amplitudes. As the speed increases, the wave amplitude reaches
a limit. In the next section, we extend our weakly nonlinear analysis to cubic
terms so that this effect can be incorporated.

Once the approximate solitary wave (40) has been obtained, it is possible to
make it cleaner by iterative filtering. This technique has been used by several
authors, including [4,6], and is explained in Appendix A. In order to study
run-ups and phase shifts during collision of solitary waves, it is important to
use clean solitary waves for the initial conditions. On the other hand, in order
to show only the qualitative behavior, it is not necessary. Therefore results in
this Section are given for non-filtered solitary waves. Some results with filtered
waves are described in Appendix A.

In Figure 3, we show the propagation of an almost perfect right-running soli-
tary wave of elevation. Even though all computations are performed with
dimensionless variables, it is interesting to provide numerical applications for
a configuration that could be realized in the laboratory [23]. Keeping r = 0.9
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(e) t = 380 (f) evolution in time
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Fig. 3. An approximate solitary wave propagating to the right. This is a solution
to the system of quadratic Boussinesq equations (36), with parameters H = 1.1,
r = 0.9, L = 512, N = 1024, S = −1 − rH, η0 = 0.1.

as in the figure, one could take for example h = 10 cm, h′ = 11 cm (H = 1.1).
The solitary wave amplitude is 1 cm, its speed c ≈ 23.2 cm/s, the length of
the domain 51.2 m (a bit long!). The plots (b)–(e) would then correspond to
snapshots at t = 21.5 s, t = 68.9 s, t = 94.8 s and t = 163.7 s.

In Figure 4, we show the head-on collision of two almost perfect solitary waves
of elevation of equal amplitude moving in opposite directions. As in the one-
layer case, the solution rises to an amplitude slightly larger than the sum of
the amplitudes of the two incident solitary waves (see Appendix A). After the
collision, two similar waves emerge and return to the form of two separated
solitary waves. As a result of this collision, the amplitudes of the two result-

17



(a) t = 0 (b) t = 40
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(e) t = 250 (f) evolution in time
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Fig. 4. Head-on collision of two approximate solitary waves of elevation of equal
size. This is a solution to the system of quadratic Boussinesq equations (36), with
parameters H = 1.2, r = 0.8, L = 512, N = 1024, S = −1 − rH, ηℓ

0 = ηr
0 = 0.1,

where the superscripts ℓ and r stand for left and right respectively.

ing solitary waves are slightly smaller than the incident amplitudes and their
centers are slightly retarded from the trajectories of the incoming centers (see
again Appendix A).

In Figure 5, we show the collision of two almost perfect solitary waves of
depression of unequal amplitudes moving in opposite directions. The numerical
simulations exhibit a number of the same features that have been observed in
the symmetric case.
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(e) t = 110 (f) evolution in time
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Fig. 5. Head-on collision of two almost perfect solitary waves of depression of differ-
ent sizes. This is a solution to the system of quadratic Boussinesq equations (36),
with parameters H = 0.6, r = 0.85, L = 256, N = 1024, S = −1− rH, ηℓ

0 = −0.04,
ηr
0 = −0.11, where the superscripts ℓ and r stand for left and right respectively. In

plot (f), note that −η(x, t) has been plotted for the sake of clarity.

In Figure 6, we show the co-propagation of two solitary waves of elevation of
different amplitudes. A sequence of spatial profiles is shown. The larger one,
which is faster, eventually passes the smaller one, which is slower. Again there
is a phase shift after the interaction. The amplitude of the solution η(x, t) never
exceeds that of the larger solitary wave, nor does it dip below the amplitude
of the smaller.
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Fig. 6. Co-propagation of two almost perfect solitary waves of elevation of different
sizes. This is a solution to the system of quadratic Boussinesq equations (36), with
parameters H = 1.6, r = 0.95, L = 214, N = 214, S = −1−rH, ηℓ

0 = 0.1, ηr
0 = 0.03,

where the superscripts ℓ and r stand for left and right respectively.

6 Extended Boussinesq system of two equations with cubic terms

When |H2 − r| is small, one needs to go one step beyond and take into con-
sideration the cubic terms. Again one would like to obtain a system of two
equations for the variables η and W = w − rw′. We derive first a general sys-
tem of two equations with cubic terms. Then we introduce a specific scaling
for the case where |H2 − r| is small. A lot of terms in the system drop out
because they are of higher order.
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The leading order terms lead to the same equation as before, namely w =
−Hw′. And again

w =
H

r + H
W + O(β), w′ =

−1

r + H
W + O(β). (41)

At the next order, the first two equations of (29) give

wx+α(wη)x+
1

2
β
(
θ2 − 1

3

)
wxxx = −Hw′

x+α(w′η)x−
1

2
βH

(
θ′2 − 1

3
H2
)

w′

xxx.

Since the speeds w and w′ vanish as x → ∞ one has

w = −Hw′ + α(w′ − w)η − 1

2
β
(
H
(
θ′2 − 1

3
H2
)

w′

xx
+
(
θ2 − 1

3

)
wxx

)
.

Using (41) for the terms containing α or β and neglecting terms of O(β2), one
obtains

w =−Hw′ − α
1 + H

r + H
Wη +

1

2
βH

(
θ′2 − 1

3
H2
)
−
(
θ2 − 1

3

)

r + H
Wxx, (42)

w′ =−w

H
− α

1 + H

H(r + H)
Wη +

1

2
β

(
θ′2 − 1

3
H2
)
−
(
θ2 − 1

3

)

r + H
Wxx. (43)

In Appendix B, after several substitutions, one obtains the system of two
equations (B.8) and (B.15). Switching back to the physical variables

x∗ = ℓx, η∗ = Aη, t∗ = ℓt/c0, W ∗ = gAW/c0, with c0 =
√

gh,

the system (B.8)-(B.15) becomes

(r + H)η∗

t∗
+ hHW ∗

x∗ + H2
−r

r+H
(W ∗η∗)x∗ + 1

2
h3H

H(θ2
−

1

3
)+r(θ′2− 1

3
H2)

r+H
W ∗

x∗x∗x∗

− 1
h

r(1+H)2

(r+H)2
(W ∗η∗2)x∗ + 1

2
h2rH(1 + H)

(θ′2− 1

3
H2)−(θ2

−
1

3
)

(r+H)2
(W ∗η∗)x∗x∗x∗

+1
2
h2

(
rH(1 + H)

(θ′2− 1

3
H2)−(θ2

−
1

3
)

(r+H)2
+ H2(θ2

−1)−r(θ′2−H2)
r+H

)
(W ∗

x∗x∗η∗)x∗

−1
4
h5

(
rH2((θ′2− 1

3
H2)−(θ2

−
1

3
))

2

(r+H)2
− 5

6

H2(θ2
−

1

5
)2+rH(θ′2− 1

5
H2)2

r+H

)
W ∗

x∗x∗x∗x∗x∗ = 0,

(44)
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g(1 − r)η∗

x∗ + W ∗

t∗
+ H2

−r

(r+H)2
W ∗W ∗

x∗ + 1
2
h2 H(θ2

−1)+r(θ′2−H2)
r+H

W ∗

x∗x∗t∗

− 1
h

r(1+H)2

(r+H)3
(W ∗2η∗)x∗ + 1

2
h2rH(1 + H)

(θ′2− 1

3
H2)−(θ2

−
1

3
)

(r+H)3
(W ∗W ∗

x∗x∗)x∗

+hH(1−r)
r+H

(η∗W ∗

x∗t∗)x∗ + 1
2
h2 H2(θ2

−1)−r(θ′2−H2)
(r+H)2

W ∗W ∗

x∗x∗x∗

+1
2
h2 H2(θ2+1)−r(θ′2+H2)

(r+H)2
W ∗

x∗W ∗

x∗x∗ − 1
2
hrH(1 + H) (θ2

−1)−(θ′2−H2)
(r+H)2

(W ∗η∗)x∗x∗t∗

+h4

(
rH((θ2

−1)−(θ′2−H2))((θ′2− 1

3
H2)−(θ2

−
1

3
))

4(r+H)2
+ H(θ2

−1)(5θ2
−1)+r(θ′2−H2)(5θ′2−H2)

2(r+H)

)

W ∗

x∗x∗x∗x∗t∗
= 0.

(45)

The specific scaling for small values of |H2 − r|,

x∗

h
=

x

β
,

t∗

h/c0
=

t

α
,

η∗

h
= αη,

W ∗

gh/c0
= αW, H2 − r = αC,

with c0 =
√

gh, α ≪ 1, β ≪ 1, α = O(β), will lead to a new Boussinesq
system with cubic terms. A lot of terms in (44)-(45) drop out because they
are of higher order. Keeping terms of order α2 and α4 and going back to
physical variables, the system of two equations becomes

η∗

t∗
= −h H

r+H
W ∗

x∗ − h3
(

1
2

H2S

(r+H)2
+ 1

3
H2(1+rH)

(r+H)2

)
W ∗

x∗x∗x∗

− H2
−r

(r+H)2
(W ∗η∗)x∗ + 1

h

r(1+H)2

(r+H)3
(W ∗η∗2)x∗

W ∗

t∗ = −g(1 − r)η∗

x∗ − 1
2
h2 HS

r+H
W ∗

x∗x∗t∗ − H2
−r

(r+H)2
W ∗W ∗

x∗ + 1
h

r(1+H)2

(r+H)3
(W ∗2η∗)x∗.

(46)

This is the same system as (33) with two extra terms, the cubic terms. We will
call it a system of extended Boussinesq equations (see also [11]). Linearizing
(46) gives the same dispersion relation as before.

7 Numerical solutions of the extended Boussinesq system

In order to integrate numerically the extended Boussinesq system (46), we
introduce a slightly different change of variables, where the stars still denote
the physical variables and no new notation is introduced for the dimensionless
variables:

x =
x∗

h
, η =

η∗

h
, t =

c

h
t∗, W =

W ∗

c
, with c2 =

ghh′(ρ − ρ′)

ρ′h + ρh′
=

ghH(1 − r)

r + H
.

22



Using the same coefficients as in (34), we rewrite system (46) with the new
variables as

ηt = −d1Wx − d2Wxxx − d4(Wη)x + d5(Wη2)x

Wt = −(1/d1)ηx − d3Wxxt − d4WWx + d5(W
2η)x

(47)

where the new coefficient d5 is equal to

d5 =
r(1 + H)2

(r + H)3
.

When (θ, θ′) = (0, 0), one recovers the system with horizontal velocities on the
bottom and on the roof.

Taking the Fourier transform of the system (47) gives

η̂t =(d2k
2 − d1)ikŴ − d4ik(̂Wη) + d5ik(̂Wη2),

(1 − d3k
2)Ŵt =− 1

d1

ikη̂ − d4

2
ik(̂W 2) + d5ik(̂W 2η).

The system of differential equations is integrated numerically with the same
method as in § 5.

Again we look for approximate solitary wave solutions to (47). As before we
look for solutions of the form

W (x, t) =
1

d1
[η(x, t) + M(x, t)],

where M is assumed to be small compared to η and W . Substituting the
expression for W into (47) and neglecting higher-order terms yields

Mx = −1

4

d4

d1
(η2)x −

1

2

d2

d1
ηxxx +

1

2
d3ηxxt. (48)

Substituting the expression for Mx into one of the equations of system (47)
yields

ηt + ηx +
3d4

4d1
(η2)x −

d5

d1
(η3)x +

d2

2d1
ηxxx +

d3

2
ηxxt = 0. (49)

We have checked that the extended KdV equation (49) is in agreement with
previously derived eKdV equations such as in [14].
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(a) (b)

Fig. 7. ‘Table-top’ solitary waves which are approximate solutions of the extended
Boussinesq system (47). The horizontal velocities are taken on the top and the
bottom so that S = −(1+ rH). (a) H = 1.8, r = 0.8. The wave speeds V are, going
from the smallest to the widest solitary wave, Vmax − V ∼ 10−3, 10−9, 10−15; (b)
H = 0.4, r = 0.9. The wave speeds V are, going from the smallest to the widest
solitary wave, Vmax − V ∼ 10−3, 10−9, 10−14.

Let V = 1 + c1 be the wave speed, with c1 small. In the moving frame of
reference X = x − (1 + c1)t, T = t, equation (49) becomes

−c1ηX+ηT +
3d4

4d1

(η2)X−d5

d1

(η3)X+
d2

2d1

ηXXX+
d3

2
[−(1 + c1)ηXXX + ηXXT ] = 0.

Looking for stationary solutions and integrating with respect to X yields

− c1η +
3d4

4d1

η2 − d5

d1

η3 +
1

2

(
d2

d1

− d3 − c1d3

)
ηXX = 0. (50)

Letting

α1 =
3

2

H2 − r

H(r + H)
, β1 = 3

r(1 + H)2

H(r + H)2
, λ1 =

1

6

H(rH + 1)

r + H
− 1

4

HS

r + H
c1,

equation (50) becomes

−c1η +
1

2
α1η

2 − 1

3
β1η

3 + λ1ηXX = 0.

It has solitary wave solutions

η(X) =

(
α1

β1

)
1 − ǫ2

1 + ǫ cosh(
√

c1

λ1

X)
, with ǫ =

√
α2

1 − 6β1c1

|α1|
.

In the fixed frame of reference, the profile of the solitary waves is given by
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η(x, t) =

(
α1

β1

)
1 − ǫ2

1 + ǫ cosh
(√

V −1
λ1

(x − V t)
) . (51)

When H2 > r the solitary waves are of elevation. When H2 < r they are of
depression. The parameter ǫ can take values ranging from 0 (infinitely wide
solution) to 1 (solution of infinitesimal amplitude). Assuming M(±∞) = 0,
one can compute M explicitly by integrating equation (48) with respect to x:

M = − d4

4d1

η2 − d2

2d1

ηxx +
d3

2
ηxt.

Typical approximate solitary waves solutions are shown in Figure 7. Notice
that the condition |H2 − r| small is not really satisfied for the selected values
of H and r. The reason is that otherwise the waves would have been too
small to be clearly visible. Of course we still have the conditions on S for
well-posedness:

−(1 + rH) ≤ S ≤ −2

3
(1 + rH).

The solitary waves are characterized by wave velocities larger than 1 (c1 > 0).
The maximum wave velocity Vmax is obtained when ǫ → 0. One finds c1 →
α2

1/6β1, so that

Vmax = 1 +
(H2 − r)2

8rH(1 + H)2
.

Once the approximate solitary wave (51) has been obtained, it is again possible
to make it cleaner by iterative filtering. Qualitative results for non-filtered
solitary waves are given in this Section. Some accurate results for run-ups and
phase shifts with filtered waves are described in Appendix A.

In Figure 8, we show the head-on collision of two almost perfect ‘table-top’
solitary waves of elevation of equal amplitude moving in opposite directions.
As in the case with only quadratic nonlinearities, the solution rises to an
amplitude larger than the sum of the amplitudes of the two incident solitary
waves. After the collision, two similar waves emerge and return to the form
of two separated ‘table-top’ solitary waves. As a result of this collision, the
amplitudes of the two resulting solitary waves are slightly smaller than the
incident amplitudes and their centers are slightly retarded from the trajectories
of the incoming centers.

In Figure 9, we show the collision of two almost perfect solitary waves of
depression of equal amplitude moving in opposite directions. The numerical
simulations exhibit the same features that have been observed in the elevation
case.
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(e) t = 1700 (f) evolution in time
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Fig. 8. Head-on collision of two approximate ‘table-top’ elevation solitary waves of
equal size. This is a solution to the system of cubic Boussinesq equations (47), with
parameters H = 0.95, r = 0.8, L = 4096, N = 1024, S = −1−rH, Vmax−V ∼ 10−17.

In Figure 10, we show the collision of an almost perfect ‘table-top’ solitary
wave of elevation with a solitary wave of elevation moving in the opposite
direction. The numerical simulations exhibit a number of the same features
that have been observed in the symmetric case. The phase lag is asymmetric,
with the smaller solitary wave being delayed more significantly than the larger.

Note that in the quadratic as well as in the cubic cases, it is not possible
to consider the collision between a solitary wave of depression and a solitary
wave of elevation. Indeed the sign of H2 − r determines whether the wave is
of elevation or of depression.
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(a) t = 0 (b) t = 300
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(c) t = 700 (d) t = 1000
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(e) t = 2200 (f) evolution in time
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Fig. 9. Head-on collision of two approximate ‘table-top’ depression solitary waves of
equal size. This is a solution to the system of cubic Boussinesq equations (47), with
parameters H = 0.9, r = 0.85, L = 4096, N = 1024, S = −1−rH, Vmax−V ∼ 10−14.
In plot (f), note that −η(x, t) has been plotted for the sake of clarity.

8 Conclusion

In this paper, we derived a system of extended Boussinesq equations in order
to describe weakly nonlinear waves at the interface between two heavy fluids
in a ‘rigid-lid’ configuration. To our knowledge we have described for the
first time the collision between ‘table-top’ solitary waves. The extension to
a ‘free-surface’ configuration and to arbitrary wave amplitude is left to future
studies. Indeed, since the waves we considered are only weakly nonlinear, we
do not have to worry about the resulting wave reaching the roof or the bottom.
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(a) t = 0 (b) t = 320
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(c) t = 480 (d) t = 600
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(e) t = 800 (f) evolution in time
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Fig. 10. Head-on collision of a solitary wave of elevation and of a ‘table-top’ solitary
wave of elevation. This is a solution to the system of cubic Boussinesq equations
(47), with parameters H = 0.95, r = 0.8, L = 2048, N = 1024, S = −1 − rH,
Vmax − V ℓ ∼ 10−4, Vmax − V r ∼ 10−11.

However, in a fully nonlinear regime, this could happen. Indeed the maximum
amplitude A for ‘table-top’ solitary waves is given by

A

h
=

H −√
r

1 +
√

r
.

Take the case where H2 > r. It is easy to see that while A/h is always smaller
than H , 2A/h can exceed H , so that the resulting wave will hit the roof.
Therefore it will be interesting to consider the collision of solitary waves of
arbitrary amplitudes by using the full Euler equations. On the other hand, for
‘table-top’ solitary waves of depression, the resulting wave cannot touch the
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bottom.

A Additional results on run-ups and phase shifts

In this appendix, we provide accurate results on run-ups and phase shifts.
The terminology ‘run-up’ denotes the fact that during the collision of two
counterpropagating solitary waves the wave amplitude increases beyond the
sum of the two single wave amplitudes. Since run-ups and phase shifts are
always very small, they must be computed with high accuracy. This is why it is
important to clean the solitary waves obtained by the approximate expressions
(40) or (51). We proceed as follows. We begin with an approximate solution,
let it propagate across the domain, truncate the leading pulse, use it as new
initial value by translating it to the left of the domain, let it propagate again
and distance itself from the trailing dispersive tail, truncate again, and repeat
the whole process over and over until a clean, at least to the eye, solitary wave
is produced. Then we use this new filtered solution as initial guess to study
the various collisions.

For solitary wave solutions to the system of equations with quadratic nonlin-
earities (36), the behavior is the same as the behavior shown for example in
[10]. In particular we obtain pictures that look very similar to their Figure 2
for the phase shift resulting from the head-on collision of two solitary waves
of equal height, to their Figure 4 for the time evolution of the maximum am-
plitude of the solution (it rises sharply to more than twice the elevation of the
incident solitary waves, then descends to below this level after crest detach-
ment, and finally relaxes back to almost its initial level) and to their Figure 12
for the asymmetric head-on collision of two solitary waves of different heights.

Since the main contribution of the present paper is the inclusion of cubic
terms in addition to the quadratic terms, we focus on results for the extended
Boussinesq system (46). Figure A.1 shows the effect of cleaning. In Figure
A.2, the collision between two clean ‘table-top’ solitary waves (the clean-
ing has been applied 400 times) is shown. Their speed is V = 1.00183358.
The amplitude before cleaning was ηmax = 0.063476. After iterative clean-
ing, it reached ηmax = 0.06812113. The run-up during collision is extremely
small: indeed ηmax = 0.13624323 at collision, which is slightly larger than
2 × 0.06812113 = 0.13624226. The phase shift is also very small. In Figure
A.3, the collision between the clean ‘table-top’ solitary wave of the Figure A.1
and a clean solitary wave (the cleaning has been applied 230 times) is shown.
The maximum amplitude is greater than the sum of the two wave amplitudes.
The speed of the smaller wave is V = 1.0015. Its amplitude before cleaning
was ηmax = 0.03647847. After iterative cleaning, it reached ηmax = 0.03719492.
The run-up during collision is again extremely small, even if it is larger than
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Fig. A.1. Flat solitary wave produced by iterative cleaning. This is a solution to the
system of extended Boussinesq equations (47). (a) Difference in the profile before
(solid line) and after (dashed line) cleaning. (b) Profile of the approximate solitary
wave (51) after one propagation across the domain. (c) Profile (b) after cleaning
and translation to the left of the domain. (d) Profile after several cleanings. Notice
the change of scale in the vertical axis. (e) Evolution of the maximum amplitude
ηmax as cleaning is repeated over and over. The amplitude reaches an asymptotic
level.

in the previous case: indeed ηmax = 0.10556057 at collision, which is slightly
larger than 0.06812113 + 0.03719492 = 0.10531605. The phase shift is very
small and the crest trajectory shows an interesting path. The overall conclu-
sion is that run-ups and phase shifts are smaller for ‘table-top’ solitary waves
than for ‘classical’ solitary waves.
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Fig. A.2. A collision between two clean ‘table-top’ solitary waves of equal height.
This is a solution to the system of extended Boussinesq equations (47). (a) Initial
profiles. (b) Time evolution of the amplitude ηmax. (c) Crest trajectory.

B Intermediate steps in the derivation of the extended Boussinesq

system with cubic terms

Adding H times equation (26) to r times equation (27) yields

(r + H)ηt + H(wx − rw′

x
) + α[(Hw + rw′)η]x

+
H

2
β
[
(θ2 − 1

3
)wxxx − r(θ′2 − 1

3
H2)w′

xxx

]

+
1

2
αβ

[
H(θ2 − 1)(ηwxx)x + r(θ′2 − H2)(ηw′

xx
)x

]

+
5H

24
β2

[(
θ2 − 1

5

)2

wxxxxx − r
(
θ′2 − 1

5
H2
)2

w′

xxxxx

]
= 0. (B.1)

Let us replace the variables w and w′ in (B.1) by their expressions (42)-(43)
in terms of W and let

F =
1 + H

r + H
, G = H

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

r + H
.

We consider all the terms one by one:
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Fig. A.3. A collision between a clean solitary wave and a clean ‘table-top’ solitary
wave. This is a solution to the system of extended Boussinesq equations (47). (a)
Initial profiles. (b) Time evolution of the amplitude ηmax. (c) Crest trajectory.

(1) Term H(wx − rw′

x
)

H(wx − rw′

x
) = HWx (B.2)

(2) Term α[(Hw + rw′)η]x
From equation (42), we have

w − rw′ = −(r + H)w′ − αFWη +
1

2
βGWxx,

so that

w′ = − 1

r + H
W − α

1

r + H
FWη +

1

2
β

1

r + H
GWxx. (B.3)

Similarly from equation (43), we obtain

w =
H

r + H
W − α

r

r + H
FWη +

1

2
β

r

r + H
GWxx. (B.4)

Combining (B.3) and (B.4) yields

Hw + rw′ =
H2 − r

r + H
W − α

r(1 + H)

r + H
FWη +

1

2
β

r(1 + H)

r + H
GWxx.
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Therefore

α
[
(Hw + rw′)η

]
x
=α

H2 − r

r + H
(Wη)x − α2 r(1 + H)2

(r + H)2
(Wη2)x

+
1

2
αβ

rH(1 + H)
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)2
(Wxxη)x.

(3) Term in wxxx and w′

xxx

Combining (B.3) and (B.4) yields

H

2
β
[
(θ2 − 1

3
)wxxx − r(θ′2 − 1

3
H2)w′

xxx

]

=
1

2
βH

H(θ2 − 1
3
) + r(θ′2 − 1

3
H2)

r + H
Wxxx

+
1

2
αβrH(1 + H)

(
θ′2 − 1

3
H2
)
−
(
θ2 − 1

3

)

(r + H)2
(Wη)xxx

−1

4
β2rH2

(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)2

(r + H)2
Wxxxxx. (B.5)

(4) Term in (ηwxx)x and (ηw′

xx)x

Using (41) yields

1

2
αβ

[
H(θ2 − 1)(ηwxx)x + r(θ′2 − H2)(ηw′

xx)x

]

=
1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

r + H
(ηWxx)x (B.6)

(5) Term in wxxxxx and w′

xxxxx

Using (41) yields

5

24
Hβ2

[(
θ2 − 1

5

)2

wxxxxx − r
(
θ′2 − 1

5
H2
)2

w′

xxxxx

]

=
5

24
Hβ2H(θ2 − 1

5
)2 + r(θ′2 − 1

5
H2)2

r + H
Wxxxxx (B.7)
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Combining all terms (B.2)–(B.7) yields the first equation of the extended
Boussinesq system

(r + H)ηt + HWx + α
H2 − r

r + H
(Wη)x

+
1

2
β

H
(
H(θ2 − 1

3
) + r(θ′2 − 1

3
H2)

)

r + H
Wxxx−α2 r(1 + H)2

(r + H)2
(Wη2)x

+
1

2
αβ

rH(1 + H)

(r + H)2

(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(Wxxη)x

+
1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

r + H
(Wxxη)x

+
1

2
αβrH(1 + H)

(θ′2 − 1
3
H2) − (θ2 − 1

3
)

(r + H)2
(Wη)xxx

−1

4
β2

rH2
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)2

(r + H)2
Wxxxxx

+
5

24
Hβ2H(θ2 − 1

5
)2 + r(θ′2 − 1

5
H2)2

r + H
Wxxxxx = 0

(B.8)

We proceed the same way for equation (28).

(1) Term in wxxt and w′

xxt

1

2
β
[
(θ2 − 1)w − r(θ′2 − H2)w′

]
xxt

=

1

2
β

H(θ2 − 1) + r(θ′2 − H2)

r + H
Wxxt −

1

2
αβ

r(1 + H)
(
(θ2 − 1) − (θ′2 − H2)

)

(r + H)2
(Wη)xxt

+
1

4
β2

rH
(
(θ2 − 1) − (θ′2 − H2)

)(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)2
Wxxxxt (B.9)

(2) Term α(wwx − rw′w′

x
)

α(wwx − rw′w′

x) =α
H2 − r

(r + H)2
WWx − α2 r(H + 1)2

(r + H)3
(W 2η)x
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+
1

2
αβ

rH(H + 1)
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)3
(WWxx)x

(B.10)

(3) Term

αβ
[
(ηwxt)x + rH(ηw′

xt)x

]
= αβ

H(1 − r)

r + H
(ηWxt)x (B.11)

(4) Term

1

2
αβ
[
(θ2 − 1)wwxxx − r(θ′2 − H2)w′w′

xxx

]
=

1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

(r + H)2
WWxxx

(B.12)

(5) Term

1

2
αβ
[
(θ2 + 1)wxwxx − r(θ′2 + H2)w′

xw
′

xx

]
=

1

2
αβ

H2(θ2 + 1) − r(θ′2 + H2)

(r + H)2
WxWxxx

(B.13)

(6) Term

1

2
β2
(
(θ2 − 1)(5θ2 − 1)wxxxxt − r(θ′2 − H2)(5θ′2 − H2)w′

xxxxt

)

=
1

2
β2H(θ2 − 1)(5θ2 − 1) + r(θ′2 − H2)(5θ′2 − H2)

r + H
Wxxxxt (B.14)

35



Combining all terms (B.9)–(B.14) yields

(1 − r)ηx + Wt+α
H2 − r

(r + H)2
WWx

+
1

2
β

H(θ2 − 1) + r(θ′2 − H2)

r + H
Wxxt−α2 r(1 + H)2

(r + H)3
(W 2η)x

+
1

2
αβ

rH(H + 1)
(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)3
(WWxx)x

+αβ
H(1 − r)

r + H
(ηWxt)x+

1

2
αβ

H2(θ2 − 1) − r(θ′2 − H2)

(r + H)2
WWxxx

+
1

2
αβ

H2(θ2 + 1) − r(θ′2 + H2)

(r + H)2
WxWxx

−1

2
αβ

r(1 + H)
(
(θ2 − 1) − (θ′2 − H2)

)

(r + H)2
(Wη)xxt

+
1

4
β2

rH
(
(θ2 − 1) − (θ′2 − H2)

)(
(θ′2 − 1

3
H2) − (θ2 − 1

3
)
)

(r + H)2
Wxxxxt

+
1

2
β2H(θ2 − 1)(5θ2 − 1) + r(θ′2 − H2)(5θ′2 − H2)

r + H
Wxxxxt = 0

(B.15)
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