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We consider a multidimensional financial model with mild con-
ditions on the underlying asset price process. The trading is only
allowed at some fixed discrete times and the strategy is constrained
to lie in a closed convex cone. We show how the minimal cost of
a super hedging strategy can be easily computed by a backward
recursive scheme. As an application, when the underlying follows
a stochastic differential equation including stochastic volatility or
Poisson jumps, we compute those super-replication prices for a
range of European and American style options, including Asian,
Lookback or Barrier Options. We also perform some multidimen-
sional computations.
Key words: Closed formula for Super-replication cost; convex cone
constraints on portfolio; exotic European and American options.
AMS Classification: 90A09, 60G42, 26B25.

1. Introduction
We consider a financial market consisting of d risky assets with dis-

counted price process denoted by S, and one risk-less bond: the trading is
allowed only at fixed discrete times. We assume that the trading strategies
are also subject to portfolio constraints. Namely, given a closed convex
cone K with vertex in 0, the vector of number of shares invested in the
risky assets is constrained to lie in K. Such formalization includes in par-
ticular incomplete markets and markets with short-selling constraints. It
is well-known that in those contexts, it is not possible to define an unique
fair price, i.e the initial cost of a strategy replicating a given contingent
claim, as in the context of complete markets. A possible way of defining
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a price is to consider the minimal initial wealth needed to hedge with-
out risk the contingent claim. This is called the super-replication cost
and has been introduced in the binomial setup for transaction costs by
Bensaid-Lesne-Pagès-Scheinkman [1], in a L2-setup for transaction costs
and short-sales constraints by Jouini-Kallal [14, 15] and in the diffusion
setup for incomplete markets by El Karoui-Quenez [9]. In the context of
convex constraints, this notion has been studied among others by Cvitanić-
Karatzas [4], Karatzas-Kou [17], Broadie-Cvitanić-Soner [3] and in a great
generality by Föllmer-Kramkov [11]. In those papers a dual formulation
is given. Namely, the super-replication cost of an European contingent
claim, H, is essentially the supremum over a given set of probability of the
expectation of H (or a modification of H). Nevertheless this dual formula-
tion does not enable in general to effectively compute the super-replication
price.

Here we combine primal and dual formulations, in order to provide
a closed formula for European and American style options under general
assumptions on the underlying S (namely, an usual non degeneracy condi-
tion), and also to give the hedging strategy. In the case of European vanilla
options, finding the super-replication price reduces to compute some con-
cave envelop of the payoff function. For more general options, it involves
recursive computations using again kind of concave envelops. The coeffi-
cients of the affine function which appears in the concave envelop give the
hedging strategy. The application of this algorithm turns to be simple to
derive the super-replication prices of all usual options. Patry [20] obtains a
similar formula, in the Black-Scholes case, for an European vanilla option.

Our effective computation shows that, when the asset prices can heavily
fluctuate, the super-replication prices are trivial in the sense that they
correspond to basic strategies such as ”Buy and Hold”. In particular, for
an European call option, the super-replication price is equal to the initial
price of the underlying: this result has been already obtained in the context
of transaction costs by Cvitanić-Shreve-Soner [7] and Cvitanić-Pham-Touzi
[6], and for a continuous time stochastic volatility model by Cvitanić-Pham-
Touzi [5]. Our approach emphasizes the fact that the super-replication price
depends on the law of the underlying asset price process only through its
null sets. These results are presumably not surprising, even if, up to our
knowledge, only specific one dimensional cases have been handled in the
literature. Finally, this work provides a relatively complete answer to the
problem of how to explicitly compute super-replication prices in a general
discrete time strategies framework.

The paper is organized as follows. In section 2, we describe the financial
model and give the notation of the paper. Then, we recall the notion
of No Arbitrage and state a dual formulation for the super-replication
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problem: while this result is standard in the European case (see Kabanov-
Ràsonyi-Stricker [16] and Schachermayer [23]), it has not been yet stated
in the American context (this is Theorem 2.2, which proof is postponed
in Appendix). Section 3 is devoted to the closed formulae for the super-
replication prices, and their proofs. In Section 4, we effectively compute
the super-replication price for European and American style exotic options
(including Asian, Lookback or Barrier options), when there is only one
risky asset (See table 1 for those explicit computations). We also handle
some multidimensional examples. These results hold true if the underlying
asset law admits a positive density w.r.t. the Lebesgue measure: it includes
for example Black-Scholes model, general stochastic differential equations,
stochastic volatility models, or models governed by Brownian motion and
Poisson process. We will also see that increasing the number of hedging
dates does not modify the super-replication prices.

2. The financial model and super-replication theorem
2.1 Notations and definitions

Let T > 0 be a finite time horizon and set T = {0, 1, . . . ,T}: the financial
market model consists of one risk-less asset with price process normalized
to one and d risky assets with price process S = {St = (S1

t , ..., S
d
t )∗, t =

0, ...,T} valued in (0,∞)d. Here the notation ∗ is for the transposition. The
stochastic price process (St)t∈T is defined on a complete probability space
(Ω,F ,P) equipped with the filtration F = {Ft, t ∈ T }, where the σ-field
Ft is generated by the random variables S0, S1, · · · , St. We make the usual
assumption that F0 is trivial and FT = F .

A trading portfolio is a Rd-valued F-adapted process φ = {φt =

(φ1
t , . . . , φ

d
t )∗, t = 0, ...,T − 1}, where φi

t represents the amount of wealth
invested in the i-th risky asset at time t. The R-valued IF-adapted process
C = {Ct, t ∈ T } represents the cumulative consumption process. We as-
sume that C0 = 0 and that C is non-decreasing. We also use the notation
∆St = St − St−1 and ∆Ct = Ct − Ct−1, for t = 1, ...,T.

Given an initial wealth x ∈ R, a trading portfolio φ, and a cumulative
consumption process C, the wealth process Xx,φ,C is governed by :

X
x,φ,C

0
= x,

X
x,φ,C
t = X

x,φ,C

t−1
+ φ∗t−1∆St − ∆Ct, for t = 1, . . . ,T.(1)

The induction equation (1) leads to

X
x,φ,C
t = x +

t
∑

u=1

φ∗u−1∆Su − Ct, t ∈ T .
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The condition C = 0 means that the portfolio φ is self-financed. We now
impose some constraints on the trading portfolios. Let K be a closed convex
cone ofRd with vertex in 0. For any x ∈ [0,∞), we say that a trading strategy
(x, φ,C) is admissible, and we denote (x, φ,C) ∈ A, if for all t = 0, . . . ,T − 1,
φt ∈ K a.s. Such constraints cover in particular the case of incomplete
markets (K = {k ∈ Rd : ki = 0, i = 1, ..., n} : it is impossible to trade in the n
first risky assets) and short-sales constraints (K = [0,∞)d).

Let H be an European contingent claim, i.e., a FT-measurable random
variable. Following Föllmer and Kramkov [11], we introduce the notion of
minimal hedging strategy for H. First, an European H hedging strategy is

a strategy (x, φ,C) ∈ A such that X
x,φ,C

T
≥ H a.s. We will denote byAe

H
the

set of European H hedging strategies. Then, (x̂, φ̂, Ĉ) ∈ Ae
H

is minimal if

for all (x, φ,C) ∈ Ae
H

X
x,φ,C

t ≥ X
x̂,φ̂,Ĉ

t a.s for all t ∈ T . Note that x̂ is then the
so-called super-replication cost pe(H) of H, i.e the minimal initial capital
needed for hedging without risk H:

pe(H) = inf{x ∈ R : ∃ (φ,C) s.t. (x, φ,C) ∈ Ae
H}.

It is straightforward that x̂ ≥ pe(H). Conversely, set x ∈ R such that there

exists (Φ,C) with (x,Φ,C) ∈ Ae
H

, then by minimality of Xx̂,φ̂,Ĉ, x ≥ x̂ and
taking the infimum over such x, we get the reverse inequality.

We now define the same notion for American contingent claim (Ht)t∈T .
An American H hedging strategy is some (x, φ,C) ∈ A such that for all

t ∈ T , X
x,φ,C
t ≥ Ht a.s. We will denote by Aa

H the set of American H

hedging strategies. Then (x̂, φ̂, Ĉ) ∈ Aa
H

is minimal if for all (x, φ,C) ∈ Aa
H

,

X
x,φ,C

t ≥ X
x̂,φ̂,Ĉ

t a.s, for all t ∈ T . Again x̂ is the super-replication cost pa(H)
of H, i.e

pa(H) = inf{x ∈ R : ∃ (φ,C) s.t. (x, φ,C) ∈ Aa
H}.

We now recall the usual notion of No-Arbitrage, which characterization
is meaningful for super-replication theorem 2.2.

Definition 2.1. We say that there is no arbitrage opportunity if, for all
trading strategies Φ such that (0,Φ, 0) ∈ A, we have

X0,Φ,0
T

≥ 0 a.s =⇒ X0,Φ,0
T

= 0 a.s.

In Pham and Touzi [22], a characterization of this no-arbitrage condition is
provide and to state it, we introduce the following two sets:

K̂ =
{

x ∈ Rd : φ∗x ≤ 0,∀φ ∈ K
}

.
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P =
{

Q ∼ P :
dQ

dP
∈ L∞, ∆St ∈ L

1(Q)

and EQ[∆St|Ft−1] ∈ K̂, 1 ≤ t ≤ T P − a.s.
}

.

We also need a non-degeneracy assumption. This assumption is essential
to prove Theorem 2.1 below: if it fails to hold, the set of final dominated
payoffs may not be closed, see Brannath [2].

Assumption 2.1. Let t = 1, . . . ,T. Then for all Ft−1-measurable random vari-
ables ϕ valued in K,

ϕ∗∆St(ω) = 0 =⇒ ϕ(ω) = 0 for a.e. ω ∈ Ω .

Models studied in section 4 fulfill the above assumption.

Theorem 2.1. (Pham-Touzi [22]).
Under Assumption 2.1, the no arbitrage condition is equivalent to P , ∅.

Without cone constraints, see also Dalang-Morton-Willinger [8]. Let St,T

be the set of all stopping w.r.t. the filtration F such that t ≤ τ ≤ T.
2.2 Super-replication Theorem

Our starting point to derive closed formulae for super-replication prices
is the dual formulation of the super-replication theorem. It states that the
super-replication cost of an European (resp. American) contingent claim,
H (resp (Ht)t∈T ), is essentially the supremum over any probability measure
Q in given set P (resp. and every stopping time τ less than T) of EQ(H)
(resp EQ(Hτ)): this is given by Theorem 2.2. We give the proof of this non
surprising result, since to our knowledge, it has not been done before in
the American case.

Indeed, Föllmer and Kramkov [11] obtain, via an Optional Decom-
position Theorem, for continuous time asset price process and convex
constrained the super-replication Theorem (this is no longer the expecta-
tion of H but of a modification of H which takes into account the convex
constraints). But to deal with this great generality, they have to assume
first that the wealth process is non negative; second, the strategy φ has

to be chosen so that the set {(
∑t

u=1 φ
∗
u−1
∆Su)t=1...T} is locally bounded from

below: in a discrete setup, with say T = 1, this boundedness Assump-
tion implies to choose φ0 ≥ 0 or S1 bounded, which is rather restrictive.
Kabanov-Ràsonyi-Stricker [16] and Schachermayer [23] derive a general
version of super-replication theorem for European claims, while Schäl [24]
have studied the American context for a L2-setup without constraints on
the strategy.

Our proof is different since the result for American claims is obtained
thanks to that for European ones.
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Theorem 2.2. Suppose that Assumption 2.1 and the no arbitrage condition hold.
Let H be an European contingent claim, assume that

sup
Q∈P

EQ [H] < ∞.

Then, there exists a minimal hedging strategy (x̂, φ̂, Ĉ) ∈ Ae
H

such that

X
x̂,φ̂,Ĉ

t = ess sup
Q∈P

EQ [H | Ft] .

In particular,

pe(H) = x̂ = sup
Q∈P

EQ [H] .

Let (Ht)t∈T be an American contingent claim, assume that,

sup
τ∈S0,T ,Q∈P

EQ [Hτ] < ∞,

Then, there exists a minimal hedging strategy (x̂, φ̂, Ĉ) ∈ Aa
H

such that

X
x̂,φ̂,Ĉ

t = ess sup
τ∈St,T ,Q∈P

EQ [Hτ | Ft] .

In particular,

pa(H) = x̂ = sup
τ∈S0,T ,Q∈P

EQ [Hτ] .

Proof. See Appendix.

3. The main results
Our main objective now is to derive closed formulae for the super-

replication prices in the mathematical background defined above: while
the essential supremum involved in Theorem 2.2 are difficult to be directly
evaluated because of the setP, the prices given by formulae from Theorems
3.1 and 3.2 are simple to compute.

Let us introduce two notations:

• we will denote by µ j(S0, . . .S j−1), the conditional law of S j knowing
F j−1.

• the law of the vector (S0, . . . , S j) will be denoted by IP j.
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First we treat the European case. For a measurable function h from (Rd)T+1

into R, we define a sequence of operator, based on kinds of concave en-
velops, by

Γ
e
Th(x0, . . . , xT) = h(x0, . . . , xT)(2)

Γ
e
jh(x0, . . . , x j) = ess inf

(α,β)∈R×K
{ f
Γe

j+1
h

α,β
}(x0, . . . , x j) 0 ≤ j ≤ T − 1(3)

where, for u from (Rd) j+2 into R, one has
(4)

f u
α,β(x0, . . . , x j) =

{

α + β∗x j if µ j+1(x0, . . . , x j)
{

z : α + β∗z < u(x0, . . . , x j, z)
}

= 0

+∞ otherwise.

The essential infimum in (3) is related to the measure IP j. Note that the def-
inition of the operator Γe

j
h is related to a dynamic programming principle:

at each time j, Γe
j
h is somehow the minimal value of any strategy which

almost everywhere super hedge Γe
j+1

h. Then, the following theorem holds.

Theorem 3.1. Assume Assumption 2.1 and the no arbitrage condition.
Let H = h(S0, . . . , ST) be an European contingent claim, for some measurable
function h from (Rd)T+1 into R. Assume that

sup
Q∈P

EQ [H] < ∞.

Then, there exists a minimal hedging strategy (x̂, φ̂, Ĉ) ∈ Ae
H

and its value at time
t ≤ T is

X
x̂,φ̂,Ĉ
t = Γ

e
th(S0, . . . , St) IPt − a.s.

In particular,

pe(H) = Γe
0h(S0).

We now turn to the American case, by considering (ht)t∈T a family of
measurable functions such that for t ∈ T , ht maps (Rd)t+1 intoR. We define
a new sequence of operator Γa replacing the equations (2) and (3) by

Γ
a
Th(x0, . . . , xT) = hT(x0, . . . , xT)(5)

Γ
a
jh(x0, . . . , x j) =

(

ess inf
(α,β)∈R×K

{ f
Γ

a
j+1

h

α,β
} ∨ h j

)

(x0, . . . , x j) 0 ≤ j ≤ T − 1.(6)

Then we get
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Theorem 3.2. Assume Assumption 2.1 and the no arbitrage condition.
Let H = (Ht)t∈T be an American contingent claim, such that

sup
τ∈S0,T ,Q∈P

EQ [Hτ] < ∞.

For t ∈ T , we denote by ht a measurable function from (Rd)t+1 into [0,∞) such
that Ht = ht(S0, . . . , St) a.s.. Then, there exists a minimal hedging strategy
(x̂, φ̂, Ĉ) ∈ Aa

H
and its value at time t ≤ T is

X
x̂,φ̂,Ĉ

t = Γ
a
t h(S0, . . . , St) a.s.(7)

In particular,

pa(H) = Γa
0h(S0).

Theorem 2.2 proves the existence of an optimal strategy and thus, from
Theorems 3.1 and 3.2, we can easily deduce that the essential infima, in-
volved in the definition of operators Γe and Γa, are attained. It turns that
the optimal portfolio is the optimal β from (3) and (6), which is easy to
compute in the practical examples (see section 4).

Proof of Theorems 3.1 and 3.2. We only give the proof for American
contingent claims, since the European case is very similar. In the following
we will denote
(8)
Iu(x0, . . . , x j) = {(α, β) ∈ R×K | µ j+1(x0, . . . , x j){z | α+β

∗z < u(x0, . . . , x j, z)} = 0}.

First, it is easy to check that the measurability of u implies that of the
functions f u

α,β. Thus, recursively, by definition of the essential infimum and

remembering that each ht is measurable, we can prove that each Γa
t h is also

measurable.
First step: Xx̂,Φ̂,Ĉ

t ≤ Γa
t h(S0, · · ·St) IPt − a.s.

Conditionally on FT−1, let (α, β) ∈ IhT
(S0, . . . , ST−1); then, by (8)

hT(S0, . . . , ST−1, z) ≤ α + β∗z , µT(S0, . . . , ST−1) − a.e.

Let Q ∈ P; since Q is in particular equivalent to P on FT−1, one gets

IEQ [hT(S0, . . . , ST) | FT−1] ≤ IEQ[α + β∗ST | FT−1]

≤ α + β∗ST−1 IPT−1 − a.s.

using that EQ[∆St|Ft−1] ∈ K̂. By (4), it follows that

IEQ [hT(S0, . . . , ST) | FT−1] ≤ f hT

α,β
(S0, . . . , ST−1) IPT−1−a.s. ∀ α, β ∈ R×K.
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and thus,

IEQ [hT(S0, . . . , ST) | FT−1] ≤ ess inf
(α,β)∈R×K

{ f hT

α,β
}(S0, . . . , ST−1) IPT−1 − a.s.

≤ Γa
T−1h(S0, . . . , ST−1) IPT−1 − a.s. .(9)

Let τ ∈ St,T . Writing Hτ = Hτ1τ≤T−1 +HT1τ>T−1, it follows from (6) and (9),
that IPT−1 a.s. one has

IEQ [Hτ | FT−1] ≤ 1τ≤T−1Γ
a
τh(S0, . . . , Sτ) + 1τ>T−1Γ

a
T−1h(S0, . . . , ST−1)

≤ Γa
(T−1)∧τh(S0, . . . , S(T−1)∧τ).

Recursively, repeating the same kinds of arguments with Γa
T−1

h, · · · , Γa
t+1

h,
we get

IEQ[Hτ | Ft] ≤ Γ
a
t∧τh(S0, . . . , St∧τ) = Γ

a
t h(S0, . . . , St) IPt a.s. .

Now, take the essential supremum on Q ∈ P and τ ∈ St,T, and re-

call that by Theorem 2.2, there exists (x̂, φ̂, Ĉ) ∈ Aa
H

such that X
x̂,φ̂,Ĉ

t =

ess sup
τ∈St,T ,Q∈P

EQ [Hτ | Ft]: the first inequality is completed.

Second step: Xx,Φ,C
t ≥ Γa

t h(S0, · · ·St) IPt − a.s., for any (x,Φ,C) ∈ Aa
H

.

Let (x,Φ,C) ∈ Aa
H

. Put ᾱ = x+
T−1
∑

i=1
Φ∗

i−1
∆Si−Φ

∗
T−1

ST−1 and β̄ = ΦT−1: remark

that conditionally on FT−1, (ᾱ, β̄) belongs to IhT
(S0, . . . , ST−1). Thus, one has

IPT−1 − a.s.

Xx,Φ,C
T−1

≥ x +

T−1
∑

i=1

Φ
∗
i−1∆Si = ᾱ + β̄

∗ST−1 = f hT

ᾱ,β̄
(S0, . . . , ST−1)

≥ ess inf
(α,β)∈R×K

{ f hT

α,β
}(S0, . . . , ST−1),

and by definition of a H hedging portfolio of an American contingent claim,
we conclude

Xx,Φ,C
T−1

≥ Γa
T−1h(S0, . . . , ST−1) IPT−1 − a.s. .

Repeating this process, one gets the result for the second step. In particular,
this holds true for the minimal strategy and Theorem 3.2 is proved.

4. Application: some super-replication prices
4.1 Specification of the models

The explicit prices given in the sequel are available if for each j ∈
{1, ...,T}, the measure µ j(S0, ..., S j−1) is equivalent to the Lebesgue measure



October 2, 2006 19:5 Proceedings Trim Size: 9in x 6in CarassusGobetTemam

10

on (0,∞)d. In that case, it is easy to check that there is no arbitrage op-
portunity. Note also that all the measures involved in the essential infima
can be taken as the Lebesgue measure. Actually, the existence of a posi-
tive density for the corresponding law is very often satisfied: we list some
examples, illustrating by the way that the results cover a wide class of
financial models. Note that tree models do not satisfy this condition of
existence of a density w.r.t. the Lebesgue measure (however, up to very
tedious computations, it is possible to get super-replication prices for bi-
nomial and trinomial models). In the following, W is a q-dimensional
Brownian motion.

• The well-known stochastic differential equation of Black-Scholes in
its multidimensional version:

dSi
t

Si
t

= µidt +

q
∑

j=1

σi, jdW
j
t .

If σσ∗ is invertible, it is clear that this process satisfies the required
condition.

• A non Markovian generalized version of the model above:

dSi
t

Si
t

= µi(t, (Ss)0≤s≤t)dt +

q
∑

j=1

σi, j(t, (Ss)0≤s≤t)dW
j
t ,

with the non degeneracy condition [σσ∗](., .) ≥ σ2
0

Id for some σ0 , 0.
For the existence of the positive density, see Kusuoka-Stroock [18].

• A stochastic volatility model:

dSi
t

Si
t

= µidt +

q
∑

j=1

σi, j,tdW
j
t

where (σtσ
∗
t)t≥0 is a matrix-valued continuous time process, which

we assume to be positive definite and independent of the Brownian
motion W. It is easy to check the existence of the positive density.

• Merton’s model with jumps [19]: this is a generalization of Black-
Scholes model including Poisson type jumps. It may be defined by

Si
t = Si

0



















Ni
t

∏

j=1

( f (Yi
j) + 1)



















e
∑q

j=1
σi, jW

j
t+(µi−

∑q

j=1
σ2

i, j
/2)t
,
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where ( f (Yi
j
))1≤i≤d, j≥1 are i.i.d. random variables, strictly greater than

−1, (Ni
t; 1 ≤ i ≤ d) are Poisson processes with arrival rate λi. All pro-

cesses and random variables defining this multidimensional model
are independent. For this homogeneous Markov process, it is easy
to prove the existence of a positive density w.r.t. Lebesgue measure
on (0,∞)d assuming that σσ∗ is invertible.

4.2 Computation of the prices in dimension one
Here, we restrict to one risky asset (d = 1) starting with the uncon-

strained case (K = R). We sketch the proofs of some results of table 1:
it somehow reduces to compute iterative concave envelops (w.r.t. the
Lebesgue measure on (0,∞)), which is easy for the usual options.

4.2.1 Vanilla Options.

0 K x

xT−1

h(x) = (x − K)+

Γe
T−1

h(x0, . . . , xT−1)
= xT−1

Figure 1. Computation of concave envelops for the Call option.

We first consider the case of an European Call option whose pay-
off is h(x0, . . . , xT) = (xT − K)+. Applying formulae (3), one first gets
Γe

T−1
h(x0, . . . , xT−1) = xT−1 (see figure 1); by a straightforward iteration, it fol-

lows that Γe
j
h(x0, . . . , x j) = x j, and thus pe(H) = Γe

0h(S0) = S0. Analogously,

for the European Put h(x0, . . . , xT) = (K − xT)+, one gets Γe
j
h(x0, . . . , x j) = K,

and thus pe(H) = K. These results have already been obtained by Patry
(2001).

For the American style options, analogous computations provide the
same prices as above.
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0 K U x

xT−1

h(x0, . . . , xT−1, x)

= 1x0<U,··· ,XT−1<U,x<U(x − K)+

Γe
T−1

h(x0, . . . , xT−1)

= 1x0<U,··· ,XT−1<UxT−1(1 − K/U)
U − K

Figure 2. Computation of concave envelops for the Up and Out Call option.

4.2.2 Barrier Options.
Let us consider, for example, the case of an European Up and Out

Call whose payoff is h(x0, . . . , xT) =
T
∏

i=0
1xi<U(xT − K)+, assuming S0 < U

and K < U. For given x0, . . . , xT−1 less than U, the concave envelop of
the function (xT − K)+1xT<U is given by the function x 7→ (x ∧U)(1 − K/U);

hence, one has Γe
T−1

h(x0, . . . , xT−1) =
T−1
∏

i=0
1xi<UxT−1(1−K/U) (see figure 2). For

the associated American claim for which h j(x0, . . . , x j) =
j

∏

i=0
1xi<U(x j − K)+,

one also gets Γa
T−1

h(x0, . . . , xT−1) =
T−1
∏

i=0
1xi<UxT−1(1 − K/U). Iteratively, one

obtains Γe
j
h(x0, . . . , x j) = Γ

a
j
h(x0, . . . , x j) =

j
∏

i=0
1xi<Ux j(1 − K/U). Finally, this

proves pe(H) = pa(H) = S0(1 − K/U).
4.2.3 Extension.

Assume that the contingent claim H = h(S0, · · · , ST) can be trade at some
extra dates. Then, the definition of the super-replication price should imply
more rebalancing dates. But, it is easy to prove, in our context of condi-
tional laws equivalent to the Lebesgue measure, that the super-replication
prices are unchanged. For example, consider a monthly monitored barrier
option with expiration date equal to one year: if we are allowed to hedge
each month, or each day, or even each hour, the super-replication price will
be the same.
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Name Payoff European American
Price Price

Call (ST − K)+ S0 S0

Put (K − ST)+ K K

Asian Call

(

T
∑

i=1
aiSi − K

)

+

S0

(

T
∑

i=1
ai

) (

T−1
∑

i=2

1
i +

2
T

)

S0

(Fixed strike) 0 ≤ ai (ai = 1/T)

Asian Call

(

T
∑

i=1
aiSi − ST

)

+

S0

(

T−1
∑

i=1
ai

) (

T
∑

i=2

1
i

)

S0

(Floating Strike) 0 ≤ ai ≤ 1 (ai = 1/T)

Asian Put

(

K −
T
∑

i=1
aiSi

)

+

K K

(Fixed strike) 0 ≤ ai

Asian Put

(

ST −
T
∑

i=1
aiSi

)

+

S0(1 − aT) S0(1 − aT)

(Floating Strike) 0 ≤ ai ≤ 1
Partial (ST − λmin(S1, . . . , ST))+ S0 S0

Lookback Call λ ∈ [0, 1]
Call on maximum (max(S1, . . . , ST) − K)+ T S0 T S0

Barrier Up and
∏

1Si<U(ST − K)+ S0(1 − K/U) S0(1 − K/U)
Out Call (K < U, S0 < U)
Barrier Up and

∏

1Si<U(K − ST)+ K K
Out Put (S0 < U)
Barrier Up 1∃i/Si>U(ST − K)+ S0 S0

and In Call
Barrier Up 1∃i/Si>U(K − ST)+ S0K/U S0K/U
and In Put (S0 < U)
Barrier Down

∏

1Si>L(ST − K)+ S0 S0

and Out Call (S0 > L)
Barrier Down

∏

1Si>L(K − ST)+ K − L K − L
and Out Put (S0 > L,K > L)
Barrier Down 1∃i/Si<L(ST − K)+ L1L<K L1L<K

and In Call (S0 > L) +S01L>K +S01L>K

Barrier Down 1∃i/Si<L(K − ST)+ K K
and In Put (S0 > L)

Table 1 Explicit super-replication prices of some options
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Remark that in dimension 1, the only relevant cones areR+ and R−. In
the first case, the prices given in table 1 are unchanged. In the second one,
for bounded payoffs, results still hold: otherwise, prices become infinite.
4.3 Some prices in a multidimensional setting

We may consider an option written on d assets with payoff equal to

H =















d
∑

i=1

aiS
i
T + a0















+

,

for some real numbers (ai)0≤i≤d: it includes exchange options with pay-
off equal to (S1

T − KS2
T)+, or Call options on index with payoff equal to

(
∑d

i=1 piS
i
T
− K)+ (with pi ≥ 0 and

∑d
i=1 pi = 1). It is not hard to check that

without cone constraints, the super-replication price is given by

pe(H) = (a0)+ +

d
∑

i=1

(ai)+Si
0.

The optimal strategy is again static and equals φ∗t = ((a1)+, · · · , (ad)+).
If there is a cone constraint defined by K, we can easily see that the price

is unchanged if K contains any vector ei (the i-th element of the canonical
base of Rd) for which ai > 0. Otherwise, one has pe(H) = +∞.

5. Conclusion
Taking mainly advantage of the primal formulation, we give a recursive

formula to compute the super-replication price and the optimal strategy
for European and American contingent claims. For this, we have assumed
that mild conditions on the underlying assets hold (Assumption 2.1), and
that the trading is discrete and constrained to lie in a closed convex cone.
When the conditional law of the asset process is equivalent to the Lebesgue
measure, we perform explicit computations for the usual options. What
clearly happens is that the super-replication prices are somehow very high.
It is already known that in the context of imperfect continuous financial
markets, the super-replication price of an European call is equal to S0.
Our results show that this feature of high prices remains true for a large
class of financial products and models, when only discrete time strategies
are allowed. It reinforces the necessity to turn to other concepts to price
options such as minimization of shortfall risk or prices based on utility
functions (see Föllmer-Leukert [12], and Hodges-Neuberger [13] among
others).

Appendix: Proof of theorem 2.2
The proof of the European case is standard (see Pham [21], Kabanov-

Ràsonyi-Stricker [16] and Schachermayer [23]).
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For the American case, let (Ht)t∈T be an American payoff such that

(10) sup
Q∈P,τ∈S0,T

IEQ[Hτ] < ∞.

By analogy with the usual dynamic programming equation, we introduce
the process Yt defined by

YT = HT

Yt = Ht ∨ ess sup
Q∈P

IEQ [Yt+1 | Ft] for t = 0, . . . ,T − 1.

Set At = {Ht ≥ ess sup
Q∈P

IEQ [Yt+1 | Ft]} and

τT = T

τt = t1At
+ τt+11Ac

t
.

Note that eachτt belongs toSt,T: τ0 will play the role of an optimal stopping
time. Actually, the proof of the American part of Theorem 2.2 follows from
the following lemma.

Lemma 5.1. With the above notation and Assumption 10, there exists a minimal
strategy (Y0, φ̂, Ĉ) ∈ Aa

H
such that

X
Y0,φ̂,Ĉ
t = Yt = ess sup

Q∈P

IEQ[Hτt
| Ft] = ess sup

Q∈P,τ∈St,T

IEQ[Hτ | Ft].

We now turn to its proof.

Step 1: X
x,φ,C

t ≥ ess sup
Q∈P,τ∈St,T

IEQ[Hτ | Ft] for any (x, φ,C) ∈ Aa
H

. The result

is clear using the admissibility of the American strategy and the super-
martingale property of Xx,φ,C under any Q ∈ P.
Step 2: ess sup

Q∈P

IEQ[Hτt
| Ft] ≥ Yt. We proceed by induction. Clearly, the

property holds when t = T. Assume now that it holds for t + 1, and let
denote by (pe(Hτt+1

), φ̃t+1, C̃t+1) the minimal strategy for the European claim
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Hτt+1
, using Theorem 2.2. Thus, one deduces from the definition of Yt that

Yt = 1At
Ht + 1Ac

t
ess sup

Q∈P

IEQ[Yt+1 | Ft]

≤ 1At
Ht + 1Ac

t
ess sup

Q∈P

IEQ[ess sup
Q∈P

IEQ[Hτt+1
| Ft+1] | Ft] by induction

≤ 1At
Ht + 1Ac

t
ess sup

Q∈P

IEQ[X
pe(Hτt+1

),φ̃t+1,C̃t+1

t+1
| Ft]

≤ 1At
Ht + 1Ac

t
X

pe(Hτt+1
),φ̃t+1,C̃t+1

t using the super-martingale property

≤ 1At
Ht + 1Ac

t
ess sup

Q∈P

IEQ[Hτt+1
| Ft] = ess sup

Q∈P

IEQ[Hτt
| Ft].

Step 3: there exists a strategy (Y0, φ̂, Ĉ) ∈ Aa
H

such that X
Y0,φ̂,Ĉ

t = Yt. Let
(xt, φ

t,Ct) be the minimal strategy associated to the European contingent

claim Yt: we can take φt
u = ∆Ct

u+1
= 0 for u ≥ t, so that X

xt,φ
t,Ct

t = X
xt,φ

t,Ct

T
≥

Yt. Set

φ̂t = φ
t+1
t for t = 0, . . . ,T − 1

∆Ĉt = Yt−1 − Yt + φ
t
t−1
∗
∆St for t = 1, . . . ,T.

We first prove that ∆Ĉt is non negative. Theorem 2.2 for the European
claim Yt yields

∆Ĉt ≥ −X
xt,φ

t,Ct

t−1
+ Yt−1 + ∆Ct

t = −ess sup
Q∈P

IEQ[Yt | Ft−1] + Yt−1 + ∆Ct
t

which is non negative by definition of Yt−1. This proves that (Y0, φ̂, Ĉ) ∈ A.

We now show by induction that X
Y0,φ̂,Ĉ

t = Yt: this will also complete the

proof of (Y0, φ̂, Ĉ) ∈ Aa
H

. For t = 0, this is obvious. If the property holds
true at time t, we deduce that

X
Y0,φ̂,Ĉ

t+1
= X

Y0,φ̂,Ĉ

t + φ̂∗t∆St+1 − ∆Ĉt+1 = Yt + φ̂
t+1
t
∗
∆St+1 − ∆Ĉt+1 = Yt+1,

by definition of the consumption ∆Ĉt+1.

The combination of the three steps leads to the equality of Lemma
5.1; taking into account Step 1, we prove the minimality of the strategy

(Y0, φ̂, Ĉ).
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