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Abstract
We present various mathematical results (Cauchy prob-

lem, solitary waves) for the Zozulya–Anderson model
which describes the propagation of an optical wave
through a photorefractive medium. This is a joint work
with Jean-Claude Saut.

1 Introduction
Photorefractive media are optical material, highly

anisotropic, with memory effects. They are commonly
used to realize optically induced gratings or for holo-
graphic applications.

The propagation of an optical wave in insulating or
semi-insulating electrooptical crystals induces a charge
transfer. The new distribution of chargesρ induces in turn
an electric fieldE, with∇ · (ε̂E) = ρ. This field derives
from a potentialϕ and produces a variationδn of the re-
fraction index in the main direction of the photovoltaic ef-
fect (which we choose here to bex): δn ∝ ∂xϕ. The main
characteristics of this effect are the following: 1- Sensi-
bility to energy (and not to the electric field). This recalls
the Kerr effect and the cubic nonlinear Schrödinger equa-
tion. 2- Nonlocal effect (charge distributions and the elec-
tric field are not located at the same position). 3- Inertia
(charges need a certain time to move). We will not take
this into account here. 4- Memory and reversibility (in the
dark the space charge, and therefore the index variation,
is persistent but an uniform light redistributes uniformly
all charges — this yields applications to holography). We
will also neglect this effect here, reducing our study to
material where only electrons are moving.

2 Mathematical setting
A complete mesoscopic model for the modeling of

photo-refractive media is the Kukhtarev model [6]. In
the case when the charges that contribute to the photore-
fractive effect are only electrons (insulating media), an
asymptotic study allows to derive a macroscopic model,
the Zozulya–Anderson model. The complete assumptions
and approximations made are precisely described in [2].

The description of the propagation of a laser through
the photorefractive material is given by a Schrödinger

equation using paraxial and envelope approximations.
The propagation axis is chosen to bez and all constants
are taken to be 1, which can be justified rigorously using
dimensionless variables (see [2]). One obtains[

∂z −
i

2
∇2
⊥

]
A = −iA∂xϕ.

If we specify a material (e.g. LiNbO3) and therefore sym-
metries of the tensor̂ε, we can write an equation forϕ
which reads

∇2
⊥ϕ +∇⊥ ln(1 + |A|2) · ∇⊥ϕ = ∂x ln(1 + |A|2).

These are the Zozulya–Anderson equations [10].
If we look at a wider class of materials we may have

different signs for the nonlinearity (in reference to the cu-
bic nonlinear Schr̈odinger equation, the casea = 1 is
classically called the focusing case, anda = −1 the de-
focusing case). Besides mathematicians are more accus-
tomed to uset as the evolution variable. Finally loga-
rithms are difficult to handle in the mathematical analysis
(although natural if we look at 1D solitary waves, see be-
low), we therefore rewrite also the equation forϕ. We
finally impose an initial dataA0 in some convenient (see
below) functional space and obtain the system

(ZA)


i∂tA + ∆A = −aA∂xϕ,

div
(
(1 + |A|2)∇ϕ

)
= ∂x(|A|2),

A(·, 0) = A0.

The main effects take place in thet (propagation) and
thex directions. It is therefore natural to study the equa-
tions with no dependence in they variable. In the one
dimensional case, since we assume furthermore that no
external field is applied, we can immediately infer that
∂xϕ = |A|2/(1 + |A|2). We therefore consider the satu-
rated non linear Schrödinger equation

(SNLS)

 i∂tA + ∆A = −a
|A|2A

1 + |A|2
,

A(x, 0) = A0(x),

wherea = ±1, A = A(x, t) andx ∈ Rd. We have
derived this equation ford = 1, but give here results for a



generald, which also arises in other contexts, such as the
propagation of a laser beam in gas vapors [9].

In the two-dimensional case (ZA) can be viewed
as a saturated version of a Davey–Stewartson system.
Namely, replacing1 + |A|2 by 1 in the left hand-side
of (ZA) we obtain a Davey–Stewartson system of the
elliptic–elliptic type (see Ghidaglia and Saut [4]).

3 The Cauchy problem
3.1 The generalized saturated NLS equation
Theorem 1 (i) Let A0 ∈ L2(Rd). Then there exists a
unique solutionA ∈ C(R;L2(Rd)) of (SNLS) which sat-
isfies furthermoreE(t) = E(0) for all t ∈ R, where

E(t) ≡
∫

Rd

|A(t)|2dx.

(ii) Let A0 ∈ H1(Rd). Then the solution above satisfies
A ∈ C(R;H1(Rd)) andH(t) = H(0) for all t ∈ R,
where

H(t) ≡
∫

Rd

[
|∇A(t)|2dx + a ln(1 + |A(t)|2)

]
dx.

The proof follows the usual steps for nonlinear
Schr̈odinger equations. Contrarily to the context of the
usual nonlinear cubic Schrödinger equation, the solution
is global in time, whatever the sign ofa. Saturation pre-
vents from blowing up.

We would like to mimic this proof to treat (ZA). To this
aim we would like to expressA in terms ofϕ for sayA ∈
L2(R2). With such a dataA, we indeed have a unique
ϕ in some convenient space but no Lipschitz regularity
for the mappingA 7→ ϕ, which is required to perform
some fixed point procedure. To ensure this we will have
to assumeA ∈ H2(R2).

Theorem 2 LetA0 ∈ H2(R2). Then there existsT0 > 0
and a unique solution(A,∇ϕ) of (ZA) such thatA ∈
C([0, T0];H2(R2)) and∇ϕ ∈ C([0, T0];H2(R2)). More-
over for all0 ≤ t ≤ T0

‖A(t)‖L2(R2) = ‖A0‖L2(R2)

and∫
R2

(1 +
1
2
(t)|A|2)|∇ϕ(t)|2dx ≤ 1

2

∫
R2

|A0|2dx.

The proof of this result necessitates many steps.
Uniqueness results follows from simple energy estimates.
Then we derive aH2 a priori estimate of the solu-
tion of (ZA). We introduced an approximate system for

which the well-posedness stems from classical fixed point
arguments and the convergence towards (ZA) is first
obtained inL∞(0, T ;H2(R2)) using the Aubin–Lions
compactness lemma [7]. The final existence result in
C([0, T ];H2(R2)) follows from the Bona–Smith approx-
imation [3]. We do not have any hint on whether this local
solution is global or not.

4 Solitary waves
4.1 First integrals for 1D solitary waves

1D bright solitary waves are sought for in the form
A(x, t) = eiωtu(x) (see [8]), whereA is a solution to
(SNLS). The functionu is supposed to have a maximum
at x = 0 (u(0) = um > 0 andu′(0) = 0). We further-
more want that forx → ∞, u(x) → 0 andu′(x) → 0.
This yields a unique possible frequency for the solitary
wave, namely

ω = a

(
1− ln(1 + u2

m)
u2

m

)
and imposesa = 1 (focusing case). The bright solitary
wave is solution to the first order equation

u′(x) = −sign(x)

√
ln(1 + u2)− u2

u2
m

ln(1 + u2
m).

4.2 Non existence of solitary waves for (SNLS) and (ZA)
Consider now the (bright) solitary wave solutions of

(SNLS) of the typeA(x, t) = eiωtU(x), whereU ∈
H1(Rd). It is solution to the elliptic equation

−∆U + ωU = a
|U |2U

1 + |U |2
, U ∈ H1(Rd).

Proposition 3 No non-trivial (U 6≡ 0) solitary wave of
(SNLS) exists when
(i) a = −1 (defocusing case), forω ≥ 0. (ii) a = 1 (fo-
cusing case) andω ≥ 1. (iii) a = ±1 if ω < 0 provided
|U |2/(1 + |U |2) = O(1/|x|1+ε), ε > 0 as|x| → +∞.

We now look for solitary wave solutions of (ZA), that
is solutions of the form(eiωtU(x), φ(x)) with x ∈ Rd,
ω ∈ R, U ∈ H1(Rd) andφ ∈ H. Thus(U, φ) should
satisfy the system

(RSW)

{
−∆U + ωU = aU∂xφ,

div((1 + |U |2)∇φ) = ∂x(|U |2).

The existence of non-trivial solutions of (SW) is an open
problem. Note that (SW) does not seem to be the Euler–
Lagrange equation associated to a variational problem.
We have however:



Proposition 4 (i) Let a = −1 (defocusing case). Then
no non-trivial solution of (SW) exists forω ≥ 0.
(ii) Let a = 1 (focusing case). No non-trivial solution of
(SW) exists forω ≥ 1.
(iii) Let a = ±1. No non-trivial solution of (SW) exists
if ω < 0 provided∂xφ = O(1/|x|1+ε), ε > 0 as |x| →
+∞.

In both propositions, (i) and (ii) follow from simple en-
ergy estimates and (iii) from the classical result of Kato
[5] on the absence of embedded eigenvalues.

4.3 Existence of solitary waves for (SNLS)
We now turn to the existence of non-trivialH2 solu-

tions of

−∆U + ωU =
|U |2U

1 + |U |2
when0 < ω < 1. We will look for real radial solutions
U(x) = u(|x|) ≡ u(r) and thus consider the ODE prob-
lem

(RSW)

 −u′′ − d− 1
r

u′ + ωu =
u3

1 + u2
,

u ∈ H2(]0,∞[), u′(0) = 0.

Theorem 5 If a = 1 and0 < ω < 1, there exists a non-
trivial positive solution of (RSW).

This a consequence of a classical result of Berestycki,
Lions and Peletier [1].

5 Conclusion
We have derived from the Kukhtarev equations an

asymptotic model for the propagation of light in a pho-
torefractive medium.

The 1D asymptotic model is a saturated nonlinear
Schr̈odinger equation the Cauchy problem of which is
studied (in any space dimension) inL2 andH1. We also
prove the existence of solitary waves in 1 and higher di-
mensions. An interesting and open issue would be to
study the transverse stability of the 1D solitary waves in
the framework of the asymptotic model.

For the 2D asymptotic model (the Zozulya–Anderson
model) we also have studied the Cauchy problem and the
non-existence of solitary waves. The question of impos-
ing other boundary conditions, not vanishing in one space
direction, should also be addressed to treat a wider range
of experimental applications. We are already able to find
first integrals of (dark) solitary waves in this context.

Memory effects also certainly lead to interesting equa-
tions from the mathematical point of view. This neces-
sitates however a new full derivation, which is a difficult
and tedious task.
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1969.

[8] A.V. Mamaev, M. Saffman, and A.A. Zozulya,
“Break-up of two-dimensional bright spatial soli-
tons due to transverse modulational instability”, Eu-
rophysics Letters, vol. 35, pp. 25-30, 1996.

[9] V. Tikhonenko, J. Christou, and B. Luther-Davies,
“Three-dimensional bright spatial soliton collision
and fusion in a saturable nonlinear medium”, Physi-
cal Review Letters, vol. 76, pp. 2698-2701, 1996.

[10] A.A. Zozulya and D.Z. Anderson, “Propagation of
an optical beam in a photorefractive medium in the
presence of a photogalvanic nonlinearity or an exter-
nally applied electric field”, Physics Review A, vol.
51, pp. 1520-1531, 1995.


