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Brigitte Bidégaray–Fesquet

Laboratoire de Mod́elisation et de Calcul – CNRS UMR 5523, B.P. 53, F-38041 Grenoble Cedex 9, France
E-mail: Brigitte.Bidegaray@imag.fr

Abstract— The stability analysis of Finite Difference–Time Difference
(FD–TD) schemes can be reducedvia the von Neumann approach to
the study of a sequence of polynomials with coefficients depending on
the physical parameters of the medium and the numerical parameters.
Such computations are very tedious in 3D since the simplest medium in-
volves 9th degree polynomials. A Computer Algebra environment has
been designed to automize such calculations. This technique is demon-
strated on schemes for Maxwell–Debye and Maxwell–Lorentz systems.

I. INTRODUCTION

The numerical simulation of the propagation of an electro-
magnetic wave through a dispersive medium can be per-
formed with various techniques, as finite differences, finite
elements, finite volumes, spectral methods, . . . We focus
here on finite difference–time domain (FD–TD) approaches
and their stability analysis. Examples of such coupled sys-
tems and associated FD–TD schemes are given in [10] in var-
ious physical contexts such as non dispersive anisotropic me-
dia, cold plasmas, magneto-ionic media, isotropic collision-
less warm plasmas, Debye dielectrics, Lorentz dielectrics,
magnetic ferrites. All these media share the characteristic to
be described by linear models.

In this paper, examples and results are given for FD–TD
discretizations of systems coupling Maxwell equations

∂tB = −curlE, (1)

∂tD = curlB/µ0, (2)

whereµ0 is the vacuum permeability, with Debye equation

tr∂tD + D = trε0ε∞∂tE + ε0εsE, (3)

wheretr is the relaxation time,ε0 is the vacuum permittivity,
ε∞ is the infinite frequency relative permittivity andεs the
static relative permittivity; or with Lorentz equation

∂2
t D+ν∂tD+ω2

1D = ε0ε∞∂2
t E +νε0ε∞∂tE +ε0εsω

2
1E,
(4)

where in additionν is damping coefficient andω1 the res-
onance frequency. For such models it is customary to use
the electric and magnetic fieldsE(x, t) andB(x, t) as vari-
ables in Maxwell equations. The use of the electric dis-
placementD(x, t) is only here as an example and some
schemes are derived using the polarization vectorP (x, t)
(D = ε0ε∞E + P ) or the electric current densityJ(x, t)
(J = ∂tP ). The various schemes we cite below use these
different formulations.

A well known result (Lax–Richtmyer theorem) is that a
consistent scheme associated to a well-posed partial differ-
ential equation is convergent if and only if it is stable. We
will only consider consistent schemes and stability is there-
fore the only property needed to ensure convergence. As we
will describe in Section II this reverts to locate the roots of
some polynomial in the unit complex disk. Such an analysis

has been already performed by Petropoulos [6] for Maxwell–
Debye and Maxwell–Lorentz models, but he used numerical
routines to locate the roots once having chosen some spe-
cific physical (e.g. relaxation time) and numerical (time and
space steps) parameters.

The computation of the roots with given parameters is
however not necessary and our goal here is to improve the
method in [6] and derive exact (and simple) stability con-
ditions, i.e. possible values of the time stepδt in terms of
the space step and the physical parameters. The analysis is
therefore carried out once and for all for each scheme (and is
valid for any value of the parameters), yielding a simple re-
sult and allowing to compare the different possible schemes
for a same model. Calculations are tedious if one wants to
derive the conditions for all the schemes (more than twenty
in [10]) and in all dimensions and polarizations. 3D calcula-
tions are almost impossible to do by hand without mistaking.
We have therefore automated all calculations in a Computer
Algebra environment based on MAPLE.

All our schemes derive from Yee scheme [8] for Maxwell
equations. This scheme uses staggered grids in space and
time. In 1D, given uniform time and space stepsδt andδx,
variablesE(x, t) andD(x, t) are discretized at time–space
points(jδx, nδt) byEn

j andDn
j , whileB(x, t) is discretized

at points((j + 1/2)δx, (n − 1/2)δt) by B
n−1/2
j+1/2 . Faraday

and Amp̀ere equations (1)–(2) are then discretized by

B
n+1/2
j+1/2 −B

n−1/2
j+1/2

δt
+

En
j+1 − En

j

δx
= 0, (5)

Dn+1
j −Dn

j

δt
+

1
µ 0

B
n+1/2
j+1/2 −B

n+1/2
j−1/2

δx
= 0. (6)

If D = ε0ε∞E (pure Maxwell equations) the stability con-
dition isδt ≤ δx/c∞, whereε0ε∞µ0c

2
∞ = 1. If variablesP

or J used instead ofD, they can also be taken at integer or
half-integer times. This yields for the same physical model
a large class of possible schemes.

In Section II, we describe briefly the principle of von Neu-
mann stability analysis. Section III is devoted to the treat-
ment of a simple 1D example. Other schemes are cited in
Section IV with the associated stability results. In Section V,
we finally describe the principles that led us for the definition
of an adapted Computer Algebra environment.

II. PRINCIPLE OF THE STABILITY ANALYSIS

A. Stability

Since we only deal with linear models, we can analyze them
in the frequency domain. Thus we assume that the scheme
handles a single (vector valued) variableUn

j with spatial de-
pendenceUn

j = Un exp(iξj). The scheme is then described
asUn+1 = GUn and in our case the amplification matrix
G does not depend on time or onδx andδt separately but



only on the ratioδx/δt. This ensures thatUn = GnU0 and
stability comes to the boundedness ofGn. A necessary sta-
bility condition is that the eigenvalues ofG lie in the unit
disk. Only eigenvalues on the unit circle can cause instabili-
ties and two cases can occur:
(a) the eigenvalues of modulus 1 are simple and the scheme
is stable. Stability analysis is performed on the characteris-
tic polynomial ofG using the tools described in Section II.B;
(b) some eigenvalues of modulus 1 are multiple and stability
is obtained if and only if the associated minimal subspaces
are of dimension 1. The analysis of the characteristic poly-
nomial does not yield any information on the associated sub-
spaces. MatrixG has to be studied. In our study, this corre-
sponds to degenerate cases for which matrixG has always a
very specific form and minimal subspaces are easy to deter-
mine. A toy case to illustrate this are the following matrices
(which share the same characteristic polynomial):(

1 0
0 1

)n

=
(

1 0
0 1

)
which is typical of the stable case (1 is a double eigenvalue
and minimal stable subspaces are 1-dimensional) and(

1 1
0 1

)n

=
(

1 n
0 1

)
which shows an unstable (sometimes called weakly unsta-
ble) case (1 is a double eigenvalue and the minimal stable
subspace is 2-dimensional).

B. Von Neumann analysis

To prove case (a) above, we study the characteristic polyno-
mial φ0 of G. Its roots are the eigenvalues ofG. If a poly-
nomial is of high degree or has sophisticated coefficients, it
may be difficult to locate its roots. However, there is a way
to split this difficult problem into many simpler ones: von
Neumann analysis (which is detailed in e.g. [7]) consists in
constructing finite sequences of polynomials with decreasing
degree which preserve the property to be Schur polynomials
or simple von Neumann polynomials, which are defined as
follows: a Schur polynomial has all its rootsr inside the unit
circle (|r| < 1); a simple von Neumann polynomial has all
its rootsr in the unit circle (|r| ≤ 1), and roots on the unit
circle are simple.

Let φ be written asφ(z) = c0 + c1z + · · ·+ cpz
p, where

c0, c1 . . . , cp ∈ C and cp 6= 0. We define its conjugate
polynomialφ∗ by φ∗(z) = c∗p + c∗p−1z + · · ·+ c∗0z

p. Given
a polynomialφ0, we can define a sequence of polynomials

φm+1(z) =
φ∗m(0)φm(z)− φm(0)φ∗m(z)

z
.

Theorem 1 A polynomialφm is a Schur polynomial of exact
degreed if and only ifφm+1 is a Schur polynomial of exact
degreed− 1 and|φm(0)| ≤ |φ∗m(0)|.

Theorem 2 A polynomialφm is a simple von Neumann
polynomial if and only if (i)φm+1 is a simple von Neumann
polynomial and|φm(0)| ≤ |φ∗m(0)|, or (ii) φm+1 is identi-
cally zero andφ′m is a Schur polynomial.

To analyzeφm, at each stepm, conditions should be checked
(leading coefficient is non-zero,|φm(0)| ≤ |φ∗m(0)|, . . . )
until a definitive negative answer arises or the degree is 0.

III. AN EXAMPLE

We give briefly the outline of the proof for one specific
scheme due to Joseph et al. [3] for a Debye medium in 1D :
Equations (5) and (6) are supplemented with

trε0ε∞
En+1

j − En
j

δt
+ ε0εs

En+1
j + En

j

2

= tr
Dn+1

j −Dn
j

δt
+

Dn+1
j + Dn

j

2
.(7)

Equation (7) is the discrete equivalent to the Debye law (3).
HereUn

j = t(c∞B
n−1/2
j+1/2 , En

j , Dn
j /ε0ε∞) and the ampli-

fication matrix is

G =

 1 −σ 0
(1+δ)σ∗

1+δηs

(1−δηs)−(1+δ)σσ∗

1+δηs

2δ
1+δηs

σ∗ −σσ∗ 1


whereλ = δt/

√
ε0ε∞µ0δx, δ = δt/2tr, ηs = εs/ε∞ and

σ = λ(eiξ − 1) are dimensionless parameters.
The associated characteristic polynomialφ0 does not de-

pend onσ but only onq ≡ σσ∗ = 4λ2 sin2(ξ/2) (this is a
generic situation, not specific to this scheme). It reads

φ0(Z) = [1 + δηs]Z3 − [3 + δηs − (1 + δ)q]Z2

+[3− δηs − (1− δ)q]Z − [1− δηs].

We also compute

φ1(Z) = 2δ{2ηsZ
2 − [4ηs − (ηs + 1)q]Z

+[2ηs − (ηs − 1)q]},
φ2(Z) = 4δ(ηs − 1)q{[4ηs − (ηs − 1)q]Z

−[4ηs − (ηs + 1)q]}.
Parameterδ cannot vanish but we detect at once that a sep-
arate study has to be performed forηs = 1 andq = 0. The
caseηs = 1 is not physical since takingεs = ε∞ decou-
ples the system. It is however interesting to know how the
scheme behaves in this limiting case. The caseq = 0 has ab-
solutely to be handled sinceq = 0 if ξ = 0[π] and stability
has to be proved for allξ ∈ R.

We do not expect a better result than for the pure Maxwell
case and restrict our study toq ∈ [0, 4]. For Eqs. (5–7), a
general case is found, whereq ∈ (0, 4) andηs > 1 and we
conclude thatφ0 is a Schur polynomial. Simple or double
roots on the unit circle occur in the other cases but lead to an
unboundedGn sequence only in the caseq = 4 andηs = 1.
The different sub-cases and their treatment are summarized
in Table I. The main conclusion is that ifηs > 1, stability is
ensured if and only ifq ≤ 4, i.e. δt ≤ δx/c∞ in dimensional
variables.

IV. OTHER SCHEMES FOR MAXWELL–DEBYE AND
MAXWELL-LORENTZ EQUATIONS — RESULTS

One of the characteristics of Yee scheme and its coupling
with e.g. (7) is to be order two. We do not prove this here but
this is due to the space and time centering of the discretiza-
tion of all terms in the equations. The possible centered for-
mulations are directly linked to the time at which variables
are discretized. To automate the process, we had to clas-
sify these choices and (5)–(7) is in our language a “BED”
scheme, which means thatB, E andD are chosen as vari-
ables,B being discretized at half time steps,E and D at
integer time steps.

Below, schemes are only described and stability results
given. The detailed 1D analysis can be found in [1, 2].



TABLE I. SPECIFIC CASES FOR THE VONNEUMANN STABILITY ANAL -
YSIS OF EQUATIONS(6)–(7)

Case Method and result
q ∈ (0, 4), ηs > 1 Theorem 1⇒ stable
q ∈ (0, 4), ηs = 1 Theorem 2⇒ stable
q = 0, ηs ≥ 1 Analysis onG

Minimal subspaces of dimension 1
⇒ stable

q = 4, ηs > 1 Theorem 2⇒ stable
q = 4, ηs = 1 Analysis onG

Minimal subspace of dimension 2
⇒ unstable

A. Debye media

We have dealt with two other schemes than (7) for Debye
media. In [9], Young derives a “BPE” scheme:

tr
P

n+1/2
j − P

n−1/2
j

δt

= −
P

n+1/2
j + P

n−1/2
j

2
+ ε0(εs − ε∞)En

j ,

trJ
n+1/2
j = −P

n+1/2
j + ε0(εs − ε∞)

En+1
j + En

j

2
.

In some sense Debye equation is discretized twice. This is
coupled with a “BJE” equivalent of Equation (6) and vari-
ableJ is then cancelled, which avoids redundancy.
In [4], Kashiwa et al. derive a “BEP” scheme:

tr
Pn+1

j − Pn
j

δt
= −

Pn+1
j + Pn

j

2
+ε0(εs−ε∞)

En+1
j + En

j

2
,

which has to be coupled with a “BEP” equivalent of Equa-
tion (6).

We have to notice that the “BPE” and “B PE” schemes
lead to the same characteristic polynomial. With the same
proof outline as in Section III, we obtain results displayed in
Table II in dimensional variables and forηs > 1.

TABLE II. 1D STABILITY CONDITIONS FOR DEBYE MEDIA

Scheme 1D stability condition
Joseph et al. δt ≤ δx/c∞
Young δt ≤ min(δx/c∞, 2tr)
Kashiwa et al. δt ≤ min(δx/c∞, 2tr)

Results in 2D and 3D are essentially the same. To com-
pare schemes we have to compare2tr andδx/c∞ in real-
istic contexts. Debye laws are usually valid with centimet-
ric waves, which roughly corresponds toδx/c∞ . 10−11s.
This exactly the order of2tr for water [11]. The choice of
the scheme is therefore an important issue for water. But, for
a 0.25-dB loaded foam [5],2tr ' 10−9s and all the schemes
are equivalent from the stability point of view.

B. Lorentz media

For Lorentz media you can find “BED”, “BJ EP” and
“B EPJ” in [3], [9] and [4] respectively.

• Joseph et al. scheme

Dn+1
j − 2Dn

j + Dn−1
j

δt2
+ ν

Dn+1
j −Dn−1

j

2δt

+ ω2
1

Dn+1
j + Dn−1

j

2
= ε0ε∞

En+1
j − 2En

j + En−1
j

δt2

+ νε0ε∞
En+1

j − En−1
j

2δt
+ ε0εsω

2
1

En+1
j + En−1

j

2

is coupled with Equation (6).Dn−1
j is cancelled from the

equations because of redundancy, butEn−1
j is kept. In some

sense it is a “BEED” scheme and there are four variables in
1D as for the following schemes.
• Young scheme

J
n+1/2
j − J

n−1/2
j

δt

= −ν
J

n+1/2
j + J

n−1/2
j

2
+ ε0(εs − ε∞)ω2

1En
j − ω2

1Pn
j ,

Pn+1
j − Pn

j

δt
= Jn+1/2

n

has to be coupled with a “BJE” version of Equation (6) but
this time no redundancy is induced by the choice of vari-
ables.
• Kashiwa et al. scheme

Jn+1
j − Jn

j

δt
= −ν

Jn+1
j + Jn

j

2

+ ε0(εs − ε∞)ω2
1

En+1
j + En

j

2
− ω2

1

Pn+1
j + Pn

j

2
,

Pn+1
j − Pn

j

δt
=

Jn+1
j + Jn

j

2

has to be coupled with a “BEP” version of Equation (6).
Once more we apply the von Neumann analysis to obtain

the results displayed in Table III in dimensional variables,
for ηs > 1 andν > 0.

TABLE III. 1D STABILITY CONDITIONS FOR LORENTZ MEDIA

Scheme 1D stability condition

Joseph et al. δt ≤ δx/
√

2c∞
Young δt ≤ min(δx/

√
2c∞, 2/ω1

√
2ηs − 1)

Kashiwa et al. δt ≤ δx/c∞

Similar results are valid for multidimensional equations or
media with multiple resonant frequencies. The typical wave
range for the Lorentz model is micrometric waves. However
very different media can be found in the literature. In [6],
ε∞ = 1, εs = 2.25 andω1 = 4 1016rad s−1. In this case
δt ≤ 2/ω1

√
2ηs − 1 is a very restrictive condition which

rules out Young scheme. A totally different material is used
in [9] with ε∞ = 1.5, εs = 3 andω1 = 2π 5 1010rad s−1.
Thenδt ≤ 2/ω1

√
2ηs − 1 is a weak condition compared to

δt ≤ δx/c∞ and any of the three schemes can be used, with
a slight advance for Kashiwa et al. scheme, as far as stability
is concerned.



V. AUTOMATION VIA A COMPUTER ALGEBRA
ENVIRONMENT

For a 3D Lorentz medium,φ0 is typically a 12th degree poly-
nomial with polynomial coefficients of degree 6 in the differ-
ent parameters. The above procedure becomes awful if made
by hand. In the cases we treated, the 3D polynomials can be
divided twice by the corresponding 1D polynomials and the
remaining roots are easy to study. This makes the study eas-
ier but you have to able to compute the 3D polynomial to
have a chance to notice this.

A Computer Algebra environment based on MAPLE has
been developed with the specific aim to automate all the
computational steps which may be source of errors. A sam-
ple of programme using this environment is given below.

The schemes are defined by four parameters: 1- the space
dimension (1, 2 or 3), 2- the polarization (TE or TM in di-
mension 2), 3- the physical model (e.g. Debye) and 4- the
variables used (e.g.B ED).

Maxwell equations have been written once and for all and
have just to be “called”. For our applications, in the other
equations space is only a parameter. Such equations are writ-
ten once with no spatial dependence and propagated to all the
useful coordinates with the right indexes on the staggered
grid, according to the space dimension and polarization.

Then change of variables are automatically performed to
have dimensionless variables (specific to the model), no re-
dundant variables (specific to the scheme) and an explicit
scheme in the frequency domain. This yields the amplifica-
tion matrix G. The computation of polynomialφ0 is then
performed as well as the computational part of the von Neu-
mann analysis: computation of the sequence of polynomials
and factorizations. On these forms the user of the toolbox
can easily see which are the specific cases to consider sepa-
rately.

The comparisons|φm(0)| ≤ |φ∗m(0)| are the real difficult
point from the computer algebra point of view. It comes to
evaluate the sign of a polynomial in many variables (4 for
a Lorentz medium) and of total degree of order say 6 for
φ0, about 10 forφ1, . . . knowing some variables are posi-
tive (like ηs − 1 or δ) and other lie within an interval (like
q). This is also automated but sometimes MAPLE does not
yield a totally explicit answer. This might lead us to migrate
the whole toolbox in a C code to make use of some exist-
ing softwares specific for the solving of interval arithmetic
problems.

Finally tools are defined to compare the dimension of min-
imal subspaces and the multiplicity of eigenvalues in the de-
generate cases.

with(linalg);
read Maxwell; read ChVar;
read vonNeumann;
Dim := 1; Polar := "";
Formula := "B_EP"; Model := "MD";
Eq[1] := Faraday1D;
Eq[2] := Ampere1D_BEP;
Eq[3] := tau*(P[n+1]-P[n])/dt+1/2*P[n+1]
-1/2*eps0*(epss-epsinfty)*(E[n+1]+E[n]);
nbeq := 3;
Var := CalcVar(Dim,Polar,Formula,Model);
G := Amplif(Eq, nbeq, Var);
phi[0] := Ampli2Poly(G, Z);
vonNeumann(phi, Z, nbeq);
fact := Facteurs(phi, Z, nbeq);
rest := Restes(phi, facts, Z, nbeq);
SignCheck(phi, Z, nbeq, [0 < delta, 1 < etas, 0 < q, q < 4]);

VI. CONCLUSION

We have developed, and tested on schemes for Maxwell–
Debye and Maxwell–Lorentz equations, an efficient way to
study the stability of Yee based FD–TD numerical schemes.
A Computer Algebra environment makes this procedure
tractable for 3D schemes. Some of these scheme have the
same stability condition as for the Yee scheme for pure
Maxwell equations, but some other schemes do not and we
find more restrictive conditions on the time step, which have
to be taken into account for certain materials.

Possible developments of this study needing modifications
or enlargements of our Computer Algebra environment, but
not too much work are (a) non Yee-based schemes, (b) other
physical contexts, e.g. collisionless warm plasmas. The
same type of toolbox can also be written for fluid dynam-
ics, for example. The key point is that the model is linear
or linearized. The von Neumann analysis tools do not have
to be modified. Some more work is needed to enlarge the
library of classical FD–TD discretizations for the new equa-
tions and to define changes of variables which lead to di-
mensionless variables. This requires a good knowledge of
the specific application but no skill in computation by hand.
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