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Abstract— The stability analysis of Finite Difference-Time Difference has been already performed by Petropoulos [6] for Maxwell—
(FD-TD) schemes can be reducedia the von Neumann approach to  Debye and Maxwell-Lorentz models, but he used numerical

the study of a sequence of polynomlals with coefﬂuer_lts depending on routines to locate the roots once having chosen some spe-
the physical parameters of the medium and the numerical parameters.

Such computations are very tedious in 3D since the simplest medium in- cific phyS|caI (e'g' relaxation t'me) and numerical (t'me and
volves 9th degree polynomials. A Computer Algebra environment has Space steps) parameters.
been designed to automize such calculations. This technique is demon- The computation of the roots with given parameters is
strated on schemes for Maxwell-Debye and Maxwell-Lorentz systems. however not necessary and our g0a| here is to improve the
method in [6] and derive exact (and simple) stability con-
I. INTRODUCTION ditions, i.e. possible values of the time st#pin terms of
the space step and the physical parameters. The analysis is

The numerical simulation of the propagation of an electrotherefore carried out once and for all for each scheme (and is
magnetic wave through a dispersive medium can be pefalid for any value of the parameters), yielding a simple re-
formed with various techniques, as finite differences, finitéult and allowing to compare the different possible schemes
elements, finite volumes, spectral methods, ... We focd8r @ same model. Calculations are tedious if one wants to
here on finite difference—time domain (FD-TD) approachederive the conditions for all the schemes (more than twenty
and their stability analysis. Examples of such coupled sy#? [10]) and in all dimensions and polarizations. 3D calcula-
tems and associated FD-TD schemes are given in [10] in vaions are almostimpossible to do by hand without mistaking.
ious physical contexts such as non dispersive anisotropic m&/e have therefore automated all calculations in a Computer
dia, cold plasmas, magneto-ionic media, isotropic collisionAlgebra environment based onA¥LE.
less warm plasmas, Debye dielectrics, Lorentz dielectrics, All our schemes derive from Yee scheme [8] for Maxwell
magnetic ferrites. All these media share the characteristic @luations. This scheme uses staggered grids in space and
be described by linear models. time. In 1D, given uniform time and space stepsandJz,

In this paper, examples and results are given for FD-T@ariablesE(z, t) and D(z, t) are discretized at time—space

discretizations of systems coupling Maxwell equations ~ Points(jéz, nét) by E7' andD7', while B(x, t) is discretized
at points((j + 1/2)dx, (n — 1/2)6t) by Bj’:ll/;. Faraday
OB = —cuwlE, 1) and Ampre equations (1)—(2) are then discretized by
oD = curlB/py, (2)
n+1/2 n—1/2 n n
Biijs = Biajs i Ejn — Ef 0 (5)
ot ox ’
_ , o +1/2 +1/2

tr0:D + D = treofoc 0 B + 208, E, C) D(?H -Di 1 B;L+1/2 - B;—1/2 _
+ —0. (6)
ot o ox

wherey is the vacuum permeability, with Debye equation

wheret,. is the relaxation times is the vacuum permittivity,

€00 _is the i.nfinite frgq_qency re!ative permittivity.amj the 1 p=— c0c E (pure Maxwell equations) the stability con-
static relative permittivity; or with Lorentz equation dition is 6t < 62/ ceo, Wheresgeoopioc?, = 1. If variablesP

9 9 9 9 or J used instead aD, they can also be taken at integer or
G D+vOD+wiD = cococ 0y E+ ”50500325E+5053w1§’ half-integer times. This yields for the same physical model
(4) a large class of possible schemes.

where in addition is damping coefficient ana, the res- ', 'gection |1, we describe briefly the principle of von Neu-
onance frequency. For such models it is customary to usgg:

he electri d ic fields 4B . ann stability analysis. Section Il is devoted to the treat-
the electric and magnetic fie (2,t) and B(z, t) as Var- ment of a simple 1D example. Other schemes are cited in
ables in Maxwell equations. The use of the electric di

| D . v h | 4 SSection IV with the associated stability results. In Section V,
placementD(z, ) is only here as an example and SOM&e fina|ly describe the principles that led us for the definition
schemes are derived using the polarization ve@(r,t)

. . of an adapted Computer Algebra environment.
(D = epexE + P) or the electric current density(z, ¢) P b 9
(J = 0,P). The various schemes we cite below use these
different formulations. II. PRINCIPLE OF THE STABILITY ANALYSIS
A well known result (Lax—Richtmyer theorem) is that a .
consistent scheme associated to a well-posed partial difféh. Stability

ential equation is convergent if and only if it is stable. Wegjnce we only deal with linear models, we can analyze them

will only consider consistent schemes and stability is thergn e frequency domain. Thus we assume that the scheme

fore the only property needed to ensure convergence. As Wanes a single (vector valued) variablg with spatial de-
will describe in Section Il this reverts to locate the roots o;)
S

o . . endencd/? = U™ exp(i£j). The scheme is then described
some polynomial in the unit complex disk. Such an analys N : L .
asU™™l = QU™ and in our case the amplification matrix

G does not depend on time or én and §t separately but



only on the ratioSx/§t. This ensures thdf™ = G"U° and lll. AN EXAMPLE

stability comes to the boundedness#f. A necessary sta-

bility condition is that the eigenvalues ¢f lie in the unit We give briefly the outline of the proof for one specific
disk. Only eigenvalues on the unit circle can cause instabilscheme due to Joseph et al. [3] for a Debye medium in 1D :

ties and two cases can occur: Equations (5) and (6) are supplemented with

(a) the eigenvalues of modulus 1 are simple and the scheme Ertl _ g Entl oy pn

is stable. Stability analysis is performed on the characteris- €06 00 J I 4+ eoes J J

tic polynomial ofG using the tools described in Section I1.B; ot ‘ 2

(b) some eigenvalues of modulus 1 are multiple and stability D;?“ — D} D;?“ + D}

is obtained if and only if the associated minimal subspaces =t 5t + 9 (7)

are of dimension 1. The analysis of the characteristic poly- . . . .
nomial does not yield any information on the associated Su%_quatlon (7) is the discrete equivalent to the Debye law (3).

spaces. Matrix3 has to be studied. In our study, this corre- HereU;" = t(CooB;-LH//Q , B}, D} [e0e o) and the ampli-
sponds to degenerate cases for which mdirixas always a fication matrix is

very specific form and minimal subspaces are easy to deter- 1 s 0
mine. A toy case to illustrate this are the following matrices = (1+8)e*  (1-n.)—(1+8)oc™ 25
(which share the same characteristic polynomial): - 14-dm, 14dm, 1+fm
g —00
( 10 )n _ ( 10 ) where\ = 6t/ /Eocooptodx, 6 = 0t/2t,, ns = €5/ and
0 1 0 1 o = A(e’® — 1) are dimensionless parameters.

o _ ) ) The associated characteristic polynomjgldoes not de-
which is typical of the stable case (1 is a double eigenvalysend ono but only ong = go* = 42 SmQ(g/Q) (thisis a
and minimal stable subspaces are 1-dimensional) and  generic situation, not specific to this scheme). It reads

1 1\" 1 n bo(Z) = [1"‘5775}23_[3+5778_(1+6)Q]Z2
(0 1) :(o 1) +[3—0ns — (1 = 6)q]Z — [1 = éns.
) _ We also compute
which shows an unstable (sometimes called weakly unsta- )
ble) case (1 is a double eigenvalue and the minimal stable ¢1(2) = 26{2nZ" — [4n; — (s + 1)q|Z
subspace is 2-dimensional). +[217s — (ns — D)ql},
¢2(Z) = 45("75 - 1)‘]{[4775 - (775 - 1)Q}Z
B. Von Neumann analysis —[4ns — (ns + 1)ql}.

To prove case (a) above, we study the characteristic polynBarametes cannot vanish but we detect at once that a sep-
mial ¢, of G. Its roots are the eigenvalues@f If a poly- arate study has to be performed fgr= 1 andg = 0. The
nomial is of high degree or has sophisticated coefficients, ¢asen, = 1 is not physical since taking, = <., decou-
may be difficult to locate its roots. However, there is a wayles the system. It is however interesting to know how the
to split this difficult problem into many simpler ones: vonscheme behaves in this limiting case. The ease0 has ab-
Neumann analysis (which is detailed in e.g. [7]) consists igolutely to be handled singge= 0 if £ = 0[r] and stability
constructing finite sequences of polynomials with decreasirts to be proved for afl € R.

degree which preserve the property to be Schur polynomialsWe do not expect a better result than for the pure Maxwell
or simple von Neumann polynomials, which are defined agase and restrict our study ¢o€ [0,4]. For Egs. (5-7), a
follows: a Schur polynomial has all its roatsnside the unit general case is found, wheges (0,4) andn, > 1 and we

circle (r| < 1); a simple von Neumann polynomial has allconclude thaty, is a Schur polynomial. Simple or double
its rootsr in the unit circle (| < 1), and roots on the unit roots on the unit circle occur in the other cases but lead to an

circle are simple. unbounded>™ sequence only in the cage= 4 andn, = 1.
Let ¢ be written asp(z) = co + 12 + - - + ¢, 2P, where The different sub-cases and their treatment are summarized
o, €1 ...,¢, € Cande, # 0. We define its conjugate in Table I. The main conclusion is thatijf > 1, stability is

polynomialg* by ¢*(2) = ¢, + c;_yz + -+ + cjzP. Given ensured ifand only iff < 4, i.e. §t < §z/cy in dimensional
a polynomialg,, we can define a sequence of polynomials variables.

bia (z) = Zm(0Om(z) = 6m(0)7, (2) IV. OTHER SCHEMES FOR MAXWELL-DEBYE AND
m z ’ MAXWELL-LORENTZ EQUATIONS — RESULTS

Theorem 1 A polynomiak,, is a Schur polynomial of exact One of the characteristics of Yee scheme and its coupling

degreed if and only if ¢,,, 1 is @ Schur polynomial of exact with e.g. (7) is to be order two. We do not prove this here but

degreed — 1 and|¢,,(0)| < [¢5,(0)]. this is due to the space and time centering of the discretiza-
tion of all terms in the equations. The possible centered for-

Theorem 2 A polynomial ¢,,, is a simple von Neumann mulations are directly linked to the time at which variables

polynomial if and only if (i), +1 is a simple von Neumann are discretized. To automate the process, we had to clas-

polynomial and|¢,,, (0)| < |¢5,(0)], or (ii) ¢m41 is identi-  sify these choices and (5)—(7) is in our language aEB’

cally zero andp/,, is a Schur polynomial. scheme, which means th&t, £ and D are chosen as vari-
ables, B being discretized at half time stepg, and D at

To analyzep,,, at each step:, conditions should be checked integer time steps.

(leading coefficient is non-zerdg.,(0)] < |¢%,(0)], ...) Below, schemes are only described and stability results

m

until a definitive negative answer arises or the degree is 0. given. The detailed 1D analysis can be found in [1, 2].



TABLE |. SPECIFIC CASES FOR THE VONNEUMANN STABILITY ANAL - @ Joseph et al. scheme
YSIS OF EQUATIONS(6)—(7)

n+1 n—1 n+1 n—1
Dyt —2pr 4+ D Dyt — D

Case Method and result v

+

q € (0,4), 1, > 1 | Theorem = stable nflﬁ - nzft R
q € (0,4),ns =1 | Theorem 2= stable n wQM . BT 2B} + EY
q=0,ns>1 Analysis onGG 1 D) = €000 52

Minimal subspaces of dimension 1 E;L+1 _ E;"l ZE;,,H + E;L‘l

= stable + VepEao et — + egesw? — .
qg=4,n,>1 Theorem 2= stable
¢=4nm =1 fﬂ?lili%ilss%%ipace of dimension 2 is coupled with Equation (6)D}“1 is cancelled from the

= unstable equations because of redundancy,E;jt’1 is kept. In some

sense it is a “BEED” scheme and there are four variables in
1D as for the following schemes.
e Young scheme

A. Debye media
n+l1/2 J1;L71/2

We have dealt with two other schemes than (7) for Debye “J J
media. In [9], Young derives a “BE"” scheme: ot
J’7+1/2+J’?_1/2
prE _prl/ = vt eo(es — coo )l B} — Wi P},
128
ot
pri2 g proi/2 Pt — pn
=__1 J — n [ A — Jn+1/2
9 + 50(55 EOC)EJ ) St n
prtl | pn has to be coupled with a “BE” version of Equation (6) but
g gntl/2 _ _ pntl/2 +o(es — £oc) i TE this time no redundancy is induced by the choice of vari-
" J c 2 ' ables.

In some sense Debye equation is discretized twice. This tkashiwa etal. scheme
coupled with a “BJE” equivalent of Equation (6) and vari-

. R . n+1 n n+1 n
ableJ is then cancelled, which avoids redundancy. S = _ _VJj +J;
In [4], Kashiwa et al. derive a “HEP” scheme: ot 2
ET 4+ En prtl 4 pn
prt—pr prttgpr EPTt 4+ ET +e0(es — €00 )wi—2 L — Wi L,
tp—2 L =- ! teo(es—€oo)—Lt——L 2 2
ot 2 2 ’
which has to be coupled with a “BP” equivalent of Equa- Pyt —pp gty
tion (6). ot N 2

We have to notice that the “BE” and “B_PE” schemes . — _ i
lead to the same characteristic polynomial. With the sanft&S to be coupled with a “EEP” version of Equation (6).

proof outline as in Section IlI, we obtain results displayed in Once more we apply the von Neumann analysis to obtain
Table Il in dimensional variables and fgf > 1. the results displayed in Table Ill in dimensional variables,

forns, > 1 andv > 0.

TABLE Il. 1D STABILITY CONDITIONS FORDEBYE MEDIA

SCheme ‘ 1D Stablllty Condition TABLE Ill. 1D STABILITY CONDITIONS FORLORENTZ MEDIA

Joseph et al. 3t < 07 /e Scheme | 1D stability condition

Young ot < min(0z/coo, 2t,) Joseph et al. 5t < 0x/v2¢o0

Kashiwa et al.| 6t < min(dz/coo, 2t,) Young 6t < min(0z/v/2¢s0, 2/wiv/2ns — 1)
Kashiwa et al. ot < 0x/cxo

Results in 2D and 3D are essentially the same. To com-

pare schemes we have to compatg anddz/co inreal-  gimjjar results are valid for multidimensional equations or
istic contexts. Debye laws are usually valid with centimety,adia with multiple resonant frequencies. The typical wave

ric waves, which roughly correspondsde/co, < 107''s.  range for the Lorentz model is micrometric waves. However
This exactly the order of¢, for water [11]. The choice of yery different media can be found in the literature. In [6],
the scheme is therefore an important issue for water. But, for “_ 1 . "— 9 95 andw, = 4 10'%rad s'!. In this case

a 0.25-dB loaded foam [52¢, ~ 10~%s and all the schemes 6t < 2/wi\/21, — 1 is a very restrictive condition which

are equivalent from the stability point of view. rules out Young scheme. A totally different material is used
in [9] with e, = 1.5, e, = 3andw; = 27 5 10%rad s7!.
B. Lorentz media Thendt < 2/wi+/2n, — 1 is a weak condition compared to

0t < dz/c and any of the three schemes can be used, with
For Lorentz media you can find “BED”, “BJ_EP” and a slight advance for Kashiwa et al. scheme, as far as stability
“B_EPJ”in [3], [9] and [4] respectively. is concerned.



V. AUTOMATION VIAA COMPUTER ALGEBRA VI. CONCLUSION
ENVIRONMENT

We have developed, and tested on schemes for Maxwell—
For a 3D Lorentz mediumy, is typically a 12th degree poly- Debye and Maxwell-Lorentz equations, an efficient way to
nomial with polynomial coefficients of degree 6 in the differ-study the stability of Yee based FD-TD numerical schemes.
ent parameters. The above procedure becomes awful if maieComputer Algebra environment makes this procedure
by hand. In the cases we treated, the 3D polynomials can B@ctable for 3D schemes. Some of these scheme have the
divided twice by the corresponding 1D polynomials and théame stability condition as for the Yee scheme for pure
remaining roots are easy to study. This makes the study ed4axwell equations, but some other schemes do not and we
ier but you have to able to compute the 3D polynomial tdind more restrictive conditions on the time step, which have
have a chance to notice this. to be taken into account for certain materials.

A Computer Algebra environment based omRLE has Possible developments of this study needing modifications
been developed with the specific aim to automate all tH¥ €nlargements of our Computer Algebra environment, but
computational steps which may be source of errors. A sarfiot too much work are (&) non Yee-based schemes, (b) other
ple of programme using this environment is given below. Physical contexts, e.g. collisionless warm plasmas. The

The schemes are defined by four parameters: 1- the spR&N€ type of toolbox can also be written for fluid dynam-
dimension (1, 2 or 3), 2- the polarization (TE or TM in di-'CS; for example. The key point is that the model is linear

mension 2), 3- the physical model (e.g. Debye) and 4- tH¥ linearized. The von Neumann analysis tools do not have

variables used (e.@®.ED). to be modified. Some more work is needed to enlarge the
Maxwell equations have been written once and for all an rary of Class'cal FD-TD d|scretlzqtlons for t_he new equa-
lons and to define changes of variables which lead to di-

have just to be “called”. For our applications, in the othe ionl iabl Thi . d knowled f
equations space is only a parameter. Such equations are wWiE'SION'ESS variables. [1his requires a good knowledge o

ten once with no spatial dependence and propagated to all ﬁﬂ‘& specific application but no skill in computation by hand.
useful coordinates with the right indexes on the staggered
grid, according to the space dimension and polarization. REFERENCES

Then change of variables are automatically performed to
have dimensionless variables (specific to the model), no réll B. Bidégaray-Fesquet, "Stability of FD-TD schemes for
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vonNeumann(phi, Z, nbeq);

fact := Facteurs(phi, Z, nbeq);

rest := Restes(phi, facts, Z, nbeq);

SignCheck(phi, Z, nbeq, [0 < delta, 1 < etas, 0 < g, q < 4]);



