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Abstract 

Numerical simulations of static conduction and low-frequency noise are carried out in N-channel 

polysilicon thin film transistors. The Meyer-Neldel effect associated with the drain current is related 

to trapping/detrapping processes of carriers from dangling bonds located at the interface. Low-

frequency noise is simulated by generation-recombination processes. The sources responsible of 

noise in the thin film transistors are mainly located close to the interface. The microscopic 

parameter deduced from numerical simulation is lower than the macroscopic one deduced from 

noise measurements. The ratio of these two parameters is considered as a factor of merit to qualify 

thin film transistor technology. 

 

1. Introduction 

Polysilicon thin-film transistors (TFTs) are key elements for large area electronics because of 

their high potential usefulness in driving circuits and in addressing pixels. Some improvements 

remain because electrical properties are strongly affected by defects in polysilicon. A well 

understood of transport characteristic in TFTs is necessary to improve device modelling and 

TFT technologies. In this paper we study, the impact of the defects, in terms of nature 

(strained or dangling bonds) and spatial localization within the active layer, on the electrical 

behaviour of TFTs biased from weak to strong inversion, and operating in the linear mode. 
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2. Simulated devices 

The simulated device cross section of the TFTs is shown in the insert of the figure 1. The 

doped and undoped polycrystalline regions are 150nm thick. The oxide thickness tox is 60nm, 

the length and width of the channel are 20µm and 50µm respectively. The polycrystalline 

silicon in the channel is described by equally spaced grain boundaries (GBs) perpendicular to 

the direction of carrier propagation from drain to source. The grain boundary is depicted as 

thin amorphous silicon with a width of 2 nm. The grain size is 300nm. Geometrical 

dimensions of each part of the structure correspond to those of processed TFTs (see ref [1]). 

 

3. Physical models for simulations 

Simulations of carrier transport, distribution of traps, and low-frequency noise were made by 

using the DESSIS-ISE multi-dimensional simulator of ISE-TCAD software [2]. 

 

A- Carrier transport 

In simulations we used a Drift-Diffusion (DD) model. The governing equations for charge 

transport are the Poisson equation and the carrier continuity equations.  

 

B- Trap state distributions  

Band tail state distributions associated with strained bond-type defects are described by: 

   sdv
d
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a
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and trap state distributions associated with dangling bonds are given by: 
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Indexes a and d refer respectively to the acceptor-like and the donor-like states. da
N

,

max
 and Esa,d 

are the characteristic parameters of the band tail states distribution. d,a

db
N  stands for the 
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maximum density of deep trap states at the energy bandgap level ED and db is the 

characteristic energy. 

 

C- Low frequency noise  

The noise simulation in ISE-TCAD simulator is based on the impedance field method (IFM) 

of Shockley. A numerically efficient Green function approach to the Langevin equation-based 

simulation of the IFM is the basis for the implementation in ISE simulator. The complex 

Green functions G describe the propagation of perturbations inside the device to the contacts. 

The noise voltage spectral density was calculated from integration over all noise sources: 
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where K
GR

, K
fGR

 and  represent respectively, the Generation-Recombination (GR) and the 

flicker GR local noise sources and the device volume. The GR noise source model is 

expressed as a tensor: 
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Jn is the local current density, n the local carrier density, gr the equivalent GR lifetime, gr a 

constant which represents the quasi Poissonian character of the carrier number (N) fluctuations 

( NN
gr
 var ), and  the angular frequency. The 1/f noise source is represented as the sum of 

GR noises produced by sub bands of impurities or defects, with a continuous distribution of 

relaxation times between 1 and 2: 1

12
))/(ln()(


 g . The flicker GR local noise source is 

given by a tensor: 
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H is the microscopic Hooge noise parameter associated with the local source of noise. 
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4. Results and discussion 

4.1 Electrical conduction 

Simulated transfer characteristics were fitted with experimental data issued from Si-poly TFTs 

(see figure 1) considering strained bonds at the interface with defect distribution parameters 

given as reference values: a
N max

=2.2×10
14

 cm
-2

 eV
-1

, Esa=0.085 eV, d
N max

=5×10
17

 cm
-2

 eV
-1

. 

Moreover, the experimental drain current follows the Meyer-Neldel (MN) rule [3,4]: 
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with EA the activation energy decreasing with the gate voltage, EMN the MN characteristic 

energy, and 0(VDS) the transconductance. MN effect is related to multiple-trapping transport 

[5], and EMN (0.045 eV) is related to process fabrication parameters [6]. The analysis of the 

MN effect on the drain current is associated with the study of the EA/EMN ratio with trap state 

distribution parameters. Subsequently we analyze the MN effect by numerical simulation and 

results are presented at VGS= 1V. 

The influence of strained bond-type defects located at the interface was first analyzed. As IDS 

is strongly controlled by Esa parameter whereas other parameters have a rather slight effect [6], 

then da
N

,
max and Esd were fixed (reference values) and we studied the effect of Esa on EA/EMN 

ratio (see figure 2 (a)). The significant increase of this ratio with Esa shows that the MN effect 

is related to strained bond-type defects located at the interface. The influence of Esa is 

predominant for deep trap states in the bandgap (see insert fig. 2 (a)) and thus it is more 

convenient to consider dangling bonds at the interface. Then, band tails states parameters were 

fixed according to reference values, and we deduced the variations of EA/EMN versus 

0db
N = a

0dbN = d
0dbN  (figure 2 (b)). The high rate of increase of EMN/EA with 

0db
N  shows the 
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strong influence of transitions of carriers from deep states induced by dangling bonds located 

at the interface on the MN effect. 

Next, we analyzed the influence of the traps within the grain boundaries. Band tail trap 

distribution parameters at the interface are fixed (reference values), and first we defined band 

tail traps at the grain boundaries according to typical experimental values [3,7] with a 

symmetric distribution: Nmaxa=Nmaxd=Nmax and Esa=Esd=Es. The corresponding variations of 

EA/EMN versus Es are plotted in the figure 3 (a). No increase is observed suggesting no 

influence of tails states on MN effect. Next, band tail state distribution parameters at grain 

boundaries were fixed (Nmax=10
20

 cm
-3

 eV
-1

 Es=0.11eV) and we analyzed the effect of the 

dangling bonds. Variations of EA/EMN versus Ndb0 plotted in the figure 3 (b) do not display 

significant increase. Thus, MN effect is not related to dangling bonds at the grain boundaries. 

 

4. 2 Low frequency noise 

In noise simulation, we kept the distribution of tail state at the interface with reference values. 

The calculation of the noise spectral density requires knowledge of the local noise source K. 

We defined the flicker GR local noise sources K
fGR

 within the active layer with H assumed 

identical for all sources. A 1/f noise spectrum is obtained in the studied frequency band (1Hz-

10
3
Hz) with the relaxation times 1 and 2 fixed at 10

-7
s and 10

4
s, respectively. For spectrums 

which contain a Lorentzian we introduced a GR local noise source K
GR

. A good fit of 

experimental with numerical noise spectra was obtained (see figure 4), and the microscopic 

noise parameter H associated with K
fGR

 was deduced. Values of H versus effective voltage 

(VGS-V0), with V0 the flatband voltage, are reported in figure 5 (a). Plots of macroscopic 

apparent noise parameter app, deduced from measurements according to the Hooge formula 

SIDS/I
2

DS= app/(fN), is also reported. H and app exhibit the same variations: it increases from 

weak to moderate inversion and then it decreases from moderate to strong inversion. This 

singular behaviour, previously reported for app [4], suggests that H and app are related. 
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Higher values of app are explained by the current crowding in the device due to defects within 

the active layer inducing non conducting spots [8]. For homogeneous materials =H/app~1 

whereas for disordered materials =H/app<<1. For polycrystalline resistors it can be 

considered as a factor of quality [8]. In our case ~0.17.  

We give in the figure 5 (b) the 2D spatial distribution in the structure of the simulated local 

noise voltage spectral density (LNVSD). Noise level is higher close to the interface suggesting 

a high contribution of the local sources of noise in this region. Although sources were defined 

within the active layer, but owing to the previous results and to those obtained in §4.1, we can 

suspect the preponderant role of dangling bonds at the interface on the 1/f noise level in the 

TFTs.  

 

5. Conclusions 

Numerical simulations of carrier transport in poly-Si TFT reveal that the MN effect is strongly 

controlled by trap state distribution rather associated with dangling bonds located at the 

interface. It suggests that drain current can be described by multiple trapping processes of 

carriers along the interface. Low frequency noise in TFTs can be simulated by GR processes 

of carriers, and results show that the noise level is higher close to the interface. Therefore, 

because of the high density of defects located in this region, 1/f noise can be explained by 

carrier fluctuation due to trapping/detrapping of carriers from these defects, ruling out the 

theory of the mobility fluctuations proposed in homogeneous sample of high crystal quality. In 

addition, defects in the device are responsible of overestimation of the measured 1/f noise 

parameter.  
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Figure captions 

 

 

Figure 1: Simulated and experimental transfer characteristics (VDS=0.3V) versus temperature. 

Insert: schematic cross-section of devices for 2D simulation of TFT. 

Figure 2: Variations of EA/EMN versus trap state distribution parameters for defects located at 

the interface. Effect of:  

(a) strained bonds (insert: corresponding interface state distributions),  

(b) dangling bonds (insert: corresponding interface state distributions). 

 

Figure 3: Variations of EA/EMN versus grain boundary trap state distribution parameters. Effect 

of: 

(a) strained bonds at the grain boundaries (insert: corresponding trap state distributions with 

Nmax=10
20

 cm
-2

 eV
-1

, Es=0.11eV),  

(b) dangling bonds at the grain boundaries (insert: corresponding trap state distributions with 

ED=0.7eV and db=0.05eV). 

Figure 4: Experimental and simulated noise current spectra in TFT at different gate voltages. 

Figure 5: (a) Noise parameters versus effective gate voltage, (b) two dimensional spatial 

distribution of local noise voltage spectral density (LNVSD) in the structure. 
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