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In this paper we analyze from a geometric point of view the meaningful relations which take place between a belief function and the set of probability functions, in the framework of the geometric approach to the theory of evidence. Starting from the case of binary domains, we identify and study the three major geometric entities that relate a generic belief function to the set of probabilities P: the dual line connecting belief and plausibility functions, the orthogonal complement of P, and the simplex of consistent probabilities. These are in turn associated with different probability measures which depend on the original belief function. We describe in particular geometry and properties of the orthogonal projection of a belief function onto P and the intersection probability, provide their interpretations in terms of degrees of belief, and discuss their behavior with respect to convex closure.

The interplay of belief and Bayesian functions is of course of great interest in the theory of evidence. In particular, many people worked on the problem of finding a probabilistic or possibilistic [START_REF] Dubois | Consonant approximations of belief functions[END_REF] approximation of an arbitrary belief function. A number of papers [START_REF] Yaghlane | Coarsening approximations of belief functions[END_REF], [START_REF] Denoeux | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF], [START_REF] Denoeux | Approximating the combination of belief functions using the fast moebius transform in a coarsened frame[END_REF], [START_REF] Haenni | Resource bounded and anytime approximation of belief function computations[END_REF] have been published on this issue (see [START_REF] Denouex | Inner and outer approximation of belief structures using a hierarchical clustering approach[END_REF], [START_REF] Bauer | Approximation algorithms and decision making in the Dempster-Shafer theory of evidence-an empirical study[END_REF], [START_REF]Approximations for decision making in the Dempster-Shafer theory of evidence[END_REF] for a review), mainly in order to find efficient implementations of the rule of combination aiming to reduce the number of focal elements. Tessem [START_REF] Tessem | Approximations for efficient computation in the theory of evidence[END_REF], for instance, incorporated only the highest-valued focal elements in his m klx approximation; a similar approach inspired the summarization technique formulated by Lowrance et al. [START_REF] Lowrance | A framework for evidential-reasoning systems[END_REF]. The connection between belief functions and probabilities is as well the basement of a popular approach to the theory of evidence, Smets' pignistic model [START_REF] Smets | Belief functions versus probability functions[END_REF], in which beliefs are represented at credal level, while decisions are made by resorting to a Bayesian belief function called pignistic transformation [START_REF] Smets | Decision making in the tbm: the necessity of the pignistic transformation[END_REF]. On his side, in his 1989 paper [START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] F. Voorbraak proposed to adopt the so-called relative plausibility function pl b , the unique probability that, given a belief function b with plausibility pl b , assigns to each singleton its normalized plausibility. He proved that pl b is a perfect representative of b when combined with other probabilities, pl b ⊕ p = b ⊕ p ∀p ∈ P. Cobb and Shenoy [START_REF] Cobb | On transforming belief function models to probability models[END_REF], [START_REF] Cobb | A comparison of bayesian and belief function reasoning[END_REF], [START_REF]A comparison of methods for transforming belief function models to probability models[END_REF] also analyzed the properties of the relative plausibility of singletons [START_REF] Cobb | On the plausibility transformation method for translating belief function models to probability models[END_REF] and discussed its nature of probability function that is equivalent to the original belief function.

The study of the interplay between belief functions and probabilities has also been posed in a geometric setup [START_REF] Ha | Theoretical foundations for abstraction-based probabilistic planning[END_REF], [START_REF] Black | Geometric structure of lower probabilities[END_REF], [START_REF]An examination of belief functions and other monotone capacities[END_REF]. P. Black, in particular, dedicated his doctoral thesis to the study of the geometry of belief functions and other monotone capacities [START_REF]An examination of belief functions and other monotone capacities[END_REF]. An abstract of his results can be found in [START_REF] Black | Geometric structure of lower probabilities[END_REF], where he uses shapes of geometric loci to give a direct visualization of the distinct classes of monotone capacities. In particular a number of results about lengths of edges of convex sets representing monotone capacities are given, together with their size meant as the sum of those lengths.

Another close reference is perhaps a work [START_REF] Ha | Theoretical foundations for abstraction-based probabilistic planning[END_REF] of Ha and Haddawy where they propose an "affine operator" which can be considered a generalization of both belief functions and interval probabilities, and can be used as a tool for constructing convex sets of probability distributions.

Uncertainty is modeled as sets of probabilities represented as "affine trees", while actions (modifications of the uncertain state) are defined as tree manipulators. A small number of properties of the affine operator are also presented. In a later work [START_REF] Ha | Geometric foundations for interval-based probabilities[END_REF] they presented the interval generalization of the probability cross-product operator, called convex-closure (cc) operator. They January 18, 2007 DRAFT analyzed the properties of the cc-operator relative to manipulations of sets of probabilities, and presented interval versions of Bayesian propagation algorithms based on it. Probability intervals were represented in a computationally efficient fashion, by means of a data structure called pcctree, in which branches are annotated with intervals, and nodes with convex sets of probabilities.

On our side, in a series of recent works [START_REF] Cuzzolin | Geometric analysis of belief space and conditional subspaces[END_REF], [START_REF] Cuzzolin | Geometry of upper probabilities[END_REF], [START_REF]Geometrical structure of belief space and conditional subspaces[END_REF] we proposed a geometric interpretation of the theory of evidence in which belief functions are represented as points of a simplex called belief space [START_REF] Cuzzolin | Geometric analysis of belief space and conditional subspaces[END_REF]. As a matter of fact, as a belief function b : 2 Θ → [0, 1] is completely specified by its N . = 2 |Θ| -1 belief values {b(A), A ⊂ Θ, A = ∅}, it can be represented as a point of the Cartesian space R N -1 .

In this framework many different uncertainty descriptions like upper and lower probabilities, belief functions, possibility measures can be studied in an unified fashion.

In this paper we use tools provided by the geometric approach (Section III) to study the interplay of belief and Bayesian functions in the framework of the belief space. We introduce two new probabilities related to a belief function, both of them derived from purely geometric considerations. We thoroughly discuss their interpretation and properties, and their relations with the other known Bayesian approximations of belief functions, i.e. pignistic function and relative plausibility of singletons.

A. Paper outline

More precisely, we first look for an insight by considering the simplest case in which the Section VII will instead be devoted to the study of the orthogonal projection of b onto the probability simplex P. We will show that π[b] always exists and is indeed a probability function.

After precising the condition under which a b.f. b is orthogonal to P we will give two equivalent expressions of the orthogonal projection. We will see that π[b] can be reduced to another probability signaling the distance of b from orthogonality, and that this "orthogonality flag" can be in turn interpreted as the result of a mass redistribution process analogous to that associated with the pignistic transformation. We will prove that, as BetP In Section VIII we will conduct an analytic comparison between the two functions introduced here by comparing their expressions as convex combinations, and formulate the condition under which they coincide. For sake of completeness we will discuss the case of unnormalized belief functions (u.b.f.) and argue that, while p[b] is not defined for a generic u.b.f. b, π[b] exists and retain its properties.

To improve the readability of the paper the proofs of all major results have been moved to an appendix.

II. THE THEORY OF EVIDENCE

The theory of evidence [START_REF] Shafer | A Mathematical Theory of Evidence[END_REF] was introduced in the late Seventies by Glenn Shafer as a way of representing epistemic knowledge, starting from a sequence of seminal works [START_REF] Dempster | Upper and lower probability inferences based on a sample from a finite univariate population[END_REF], [START_REF] Dempster | Upper and lower probabilities generated by a random closed interval[END_REF], [START_REF]Upper and lower probabilities inferences for families of hypothesis with monotone density ratios[END_REF],

of Arthur Dempster. In this formalism the best representation of chance is a belief function (b.f.) rather than a Bayesian mass distribution, assigning probability values to sets of possibilities rather than single events. 

m b (A) = B⊂A (-1) |A-B| b(B) (1) 
so that there is a 1-1 correspondence between the two set functions m b ↔ b. In the theory of evidence a probability function is simply a peculiar belief function assigning non-zero masses to singletons only (Bayesian b.f.):

m b (A) = 0, |A| > 1.
A dual mathematical representation of the evidence encoded by a belief function b is the plausibility function (pl.f.)

pl b : 2 Θ → [0, 1] A → pl b (A)
where the plausibility pl b (A) of an event A is given by

pl b (A) . = 1 -b(A c ) = 1 - B⊂A c m b (B) (2) 
where A c denotes the complement of A in Θ.

For each event A pl b (A) expresses the amount of evidence not against A. pl b conveys as much information as b, and can be computed from the b.p.a. as

pl b (A) = B∩A =∅ m b (B) ≥ b(A).

III. GEOMETRY OF BELIEF AND PLAUSIBILITY FUNCTIONS

A. Belief space

Motivated by the search for a meaningful probabilistic approximation of belief functions we introduced the notion of belief space ( [START_REF] Cuzzolin | Geometric analysis of belief space and conditional subspaces[END_REF], [START_REF] Cuzzolin | Visions of a generalized probability theory[END_REF], [START_REF]Geometrical structure of belief space and conditional subspaces[END_REF]), as the space of all the belief functions we can define on a given domain 1 . Consider a frame of discernment Θ and introduce in the

Cartesian space R N -1 , N = 2 |Θ| an orthonormal reference frame {X A : A ⊂ Θ, A = ∅} (note that ∅ is not included). Each vector v = A⊂Θ,A =∅ v A X(A) in R N -1 is then potentially a belief
function, in which each component v A measures the belief value of A: v A = b(A). Not every such vector v ∈ R N -1 , however, represents a valid b.f.

Definition 3:

The belief space associated with Θ is the set of points B Θ of R N -1 corresponding to a belief function.

We will assume the domain Θ fixed, and denote the belief space with B. To determine which points of "are" belief functions we can exploit the Moebius inversion lemma (1), by computing the corresponding b.p.a. and checking the axioms m b must obey. It is not difficult to prove (see [START_REF]Geometry of Dempster's rule of combination[END_REF] for the details

) that B is convex. Let us call b A . = b ∈ B s.t. m b (A) = 1, m b (B) = 0 ∀B = A
the unique belief function assigning all the mass to a single subset A of Θ (A-th basis belief function). It can be proved that [START_REF]Geometry of Dempster's rule of combination[END_REF], denoting with E b the list of focal elements of b, Theorem 1: The set of all the belief functions with focal elements in a given collection L is closed and convex in B:

{b

: E b ⊂ L} = Cl(b A : A ∈ L)
where Cl denotes the convex closure operator:

Cl(b 1 , ..., b k ) = b ∈ B : b = α 1 b 1 + • • • + α k b k , i α i = 1, α i ≥ 0 ∀i . ( 3 
)
The following is then just a consequence of Theorem 1.

Corollary 1:

The belief space B coincides with the convex closure of all the basis belief functions b A ,

B = Cl(b A , A ⊂ Θ, A = ∅). (4) 
The convex space delimited by a collection of points is called simplex: 

Corollary 2:

The set P of all the Bayesian belief functions on Θ is a subset of the border of B, precisely the simplex determined by all the basis functions associated with singletons 2 :

P = Cl(b x , x ∈ Θ).
The interpretation of belief functions as convex sets of probabilities also fits in this framework, as the credal sets [START_REF] Zaffalon | Tree-based credal networks for classification[END_REF] {p ∈ P : p(A) ≥ b(A) ∀A ⊂ Θ} are nothing but simplices in P [START_REF]Geometrical structure of belief space and conditional subspaces[END_REF].

B. Plausibility space

As plausibility functions are also completely determined by their N -1 values pl b (A), A ⊂ Θ, A = ∅ on the power set of Θ, they too can be seen as vectors of R N -1 . We can then call plausibility space the region PL of R N -1 whose points correspond to admissible plausibility functions

PL = {v ∈ R N -1 : ∃pl b : 2 Θ → [0, 1] s.t. v A = pl b (A) ∀A ⊂ Θ, A = ∅}.
In [START_REF] Cuzzolin | Geometry of upper probabilities[END_REF] we proved that 2 With a harmless abuse of notation we will denote the basis belief function associated with a singleton x by bx instead of b {x} . Accordingly we will write m b (x), pl b (x) instead of m b ({x}), pl b ({x}). [START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT Proposition 1: PL is a simplex PL = Cl(pl A , A ⊂ Θ, A = ∅), whose vertices are

pl A = - B⊂A (-1) |B| b B . (6) 
The vertex pl A of the plausibility space turns out to be the plausibility vector associated with the basis belief function b A , pl A = pl b A . Again, every plausibility vector pl b can be uniquely expressed as a combination of the basis belief functions b A . We have that3 

pl b = B⊂Θ pl b (B)X B = B⊂Θ pl b (B) • A⊃B b A (-1) |A\B| = A⊂Θ b A B⊂A (-1) |A\B| pl b (B) (since by Moebius transform X B = A⊃B b A • (-1) |A\B| ) which yields pl b = A⊂Θ µ b (A)b A (7) 
where (see [START_REF] Cuzzolin | Geometry of upper probabilities[END_REF]) 

µ b (A) . = B⊂A (-1) |A\B| pl b (B) = (-1) |A|+1 B⊃A m b (B), A = ∅ (8) 

C. Normalized sum functions

It may be confusing to think of belief and plausibility functions as points of the same Cartesian space. However, this is a simple consequence of the fact that both are defined on the same domain, the power set of Θ. As Θ is finite they can both be seen as real-valued vectors with the same number N -1 = 2 |Θ| -1 of components.

Furthermore, as belief and plausibility spaces do not exhaust the whole R N -1 it is natural to wonder whether points "outside" them have any meaningful interpretation in this framework [START_REF]Geometry of Dempster's rule of combination[END_REF]. In fact, following the same principle, each vector

v = [v 1 , ..., v A , ..., v Θ ] ′ ∈ R N -1 can be thought of as a function ς : 2 Θ \ ∅ → R s.t. ς(A) = v A .
As the Moebius transformation is invertible, for each of these functions ς there always exists another function

m ς : 2 Θ \ ∅ → R such that ς(A) = B⊂A m ς (B)
i.e. each vector ς of R N -1 can be thought of as a sum function (see [START_REF] Aigner | Combinatorial Theory[END_REF] for a brief introduction).

However, m ς does not in general meet the positivity constraint m ς (A) ≥ 0 ∀ A ⊂ Θ.

The section {v ∈ R N -1 : v Θ = 1} of R N -1 corresponds to the constraint ς(Θ) = 1, so that all the points of this section are sum functions meeting the normalization axiom,

A⊂Θ m ς (A) = 1
or normalized sum functions (n.s.f.). n.s.f are the natural extensions of belief functions in this geometric framework. Analogously to the case of belief functions, we can call Bayesian normalized sum functions the n.s.f. ς such that

x∈Θ m ς (x) = 1. (9) 

IV. BELIEF AND PROBABILITY IN THE BINARY CASE

It may be helpful to visually render these concepts in a simple example. Figure 2 shows the geometry of belief and plausibility spaces for a binary frame Let us denote with a(v 1 , .., v k ) the affine subspace of some Cartesian space R m generated by

Θ 2 = {x, y}. As |Θ| = 2 b.f. and pl.f. "are" vectors [v x , v y , v Θ ] ′ of a space with N -1 = 2 2 -1 = 3 dimensions.
= [b(x) = m b (x), b(y) = m b (y)] ′ pl b = [pl b (x) = 1 -m b (y), pl b (y) = 1 -m b (x)] ′ respectively. In this case the b.pl.a. of b is µ b (x) = (-1) 2 B⊃x m b (B) = m b (x) + m b (Θ) = pl b (x), µ b (y) = (-1) 2 B⊃y m b (B) = m b (y) + m b (Θ) =
the points v 1 , ..., v k ∈ R m , i.e. the set {v ∈ R m : v = α 1 v 1 + • • • + α k v k , i α i = 1}.
In the binary case the plane R 2 in which B, PL lie is the affine space of the normalized sum functions on Θ 2 . The region P ′ of all the Bayesian n.s.f. is obviously (recalling Equation ( 9)) the line center of mass is well known [START_REF] Chateauneuf | Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion[END_REF], [START_REF] Dubois | New semantics for quantitative possibility theory[END_REF], [START_REF] Cuzzolin | Geometry of upper probabilities[END_REF] to be Smets' pignistic function ( [START_REF] Smets | Constructing the pignistic probability function in a context of uncertainty[END_REF], [START_REF] Smets | The transferable belief model[END_REF], [START_REF] Cobb | On transforming belief function models to probability models[END_REF])

P ′ = {ς ∈ R 2 : m ς (x) + m ς (y) = 1} = a(P) b =[0,0]' Θ pl =[1,1]' Θ b =[0,1]'=pl y p[b]=π[b]=BetP[b] y b =[1,0]'=pl
BetP [b] = x∈Θ b x A⊃x m b (A) |A| = b x • m b (x) + m b (Θ) 2 + b y • m b (y) + m b (Θ) 2 . ( 10 
)
We can notice however that it also coincides with the orthogonal projection π[b] of b onto P, and the intersection p[b] of the line a(b, pl b ) with the Bayesian simplex P:

p[b] = π[b] = BetP [b] = P[b].
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It is worth to notice, incidentally, that the relative plausibility of singletons pl b

pl b (x) . = pl b (x) y∈Θ pl b (y) , (11) 
even though it is consistent with b, does not follow the same scheme. The same can be said of the relative belief of singletons, i.e. the Bayesian function

b(x) . = m b (x) y∈Θ m b (y)
assigning to each singleton x its normalized mass (see Figure 2 again). We will consider their behavior separately in the near future [START_REF] Cuzzolin | The geometry of relative plausibility and belief of singletons[END_REF].

In the following we will study each of these geometric entities related to b, in particular the line After remembering that, by definition,

b B (A) =    1 A ⊃ B 0 else (12) 
we can see that these vectors show a rather peculiar symmetry

b y -b x (A) =          1 A ⊃ {y}, A ⊃ {x} 0 A ⊃ {x}, {y} or A ⊃ {x}, {y} -1 A ⊃ {y}, A ⊃ {x} (13) 
that can be usefully exploited.

Lemma 1: [b y -b x ](A c ) = -[b y -b x ](A) ∀A ⊂ Θ.
Proof: Following ( 12) we can appreciate that

[b y -b x ](A) = 1 ⇒ A ⊃ {y}, A ⊃ {x} ⇒ A c ⊃ {x}, A c ⊃ {y} ⇒ [b y -b x ](A c ) = -1 and vice-versa, while [b y -b x ](A) = 0 ⇒ A ⊃ {y}, A ⊃ {x} or A ⊃ {y}, A ⊃ {x}.
In the first case A c ⊃ {x}, {y}, in the second one A c ⊃ {x}, {y}; therefore in both cases Proof: 4 Having denoted with X A the A-th axis of the orthonormal reference frame {X A :

[b y -b x ](A c ) = 0.
A = Θ, ∅} in R N -2
(see Section III), we can write their difference as

pl b -b = A⊂Θ,A =Θ,∅ [pl b (A) -b(A)]X A where [pl b -b](A c ) = pl b (A c ) -b(A c ) = 1 -b(A) -b(A c ) = = 1 -b(A c ) -b(A) = pl b (A) -b(A) = [pl b -b](A). (14) 
The scalar product •, • between the vector pl bb and the basis vectors of a(P) is

pl b -b, b y -b x = A⊂Θ,A =Θ,∅ [pl b -b](A) • [b y -b x ](A)
which by Equation ( 14) becomes

|A|≤⌊|Θ|/2⌋,A =∅ [pl b -b](A) [b y -b x ](A) + [b y -b x ](A c )
whose addenda are all nil by Lemma 1.

B. Intersection with the region of Bayesian normalized sum functions

One might be tempted to conclude that, since a(b, pl b ) and P are always orthogonal, their intersection is the orthogonal projection of b onto P as in the binary case. Unfortunately, this is not the case for in general they do not intersect each other. Formally, for a point on the line a(b, pl b ) to be a probability we need to find a value of α such

that b + α(pl b -b) ∈ P. Its components obviously are b(A) + α[pl b (A) -b(A)] for any subset A ⊂ Θ, A = Θ, ∅ and in particular, when A = {x} is a singleton, b(x) + α[pl b (x) -b(x)] = b(x) + α[1 -b(x c ) -b(x)]. (15) 
A necessary condition for this point to belong to P is the normalization constraint for singletons,

x∈Θ b(x) + α • x∈Θ (1 -b(x c ) -b(x)) = 1 ⇒ α = 1 -x∈Θ b(x) x∈Θ (1 -b(x c ) -b(x)) . = β[b] (16) 
which yields a single candidate value β[b] for the line coordinate of the intersection.

Using the terminology of Section III-C, the candidate projection

ς[b] . = b + β[b](pl b -b) = a(b, pl b ) ∩ P ′ (17) 
(having called P ′ the set of all the Bayesian n.s.f. in R N -2 ) is a Bayesian n.s.f., but is not guaranteed to be a Bayesian belief function. For normalized sum functions, condition x∈Θ m ς (x) = 1 implies |A|>1 m ς (A) = 0, so that P ′ can be written as 

P ′ = ς = A⊂Θ m ς (A)b A ∈ R N -2 : |A|=1 m ς (A) = 1, |A|>1 m ς (A) = 0 . (18) 
m ς[b] (x) = m b (x) + β[b] A⊃x,A =x m b (A) (19) 
where

β[b] = 1 -x∈Θ m b (x) x∈Θ pl b (x) -m b (x) = |B|>1 m b (B) |B|>1 m b (B)|B| . ( 20 
)
Proof: The numerator of Equation ( 16) is trivially |B|>1 m(B). On the other side 

1 -b(x c ) -b(x) = B⊂Θ m b (B) - B⊂x c m b (B) -m b (x) = B⊃x,
m ς[b] (x) = b(x) • |B|=1 m b (B) |B|=1 m B (B)|B| + [pl b -b](x) • |B|>1 m b (B) |B|>1 m b (B)|B| . ( 21 
)
It is easy to prove that the line a(b, pl b ) intersects the probabilistic subspace only for 2-additive belief functions (the proof can be found in the Appendix). 2 . In the general case, instead, the reflection of b through P not only does not coincide with pl b , but it is not even a plausibility function [START_REF]The geometry of relative plausibilities[END_REF].

VI. INTERSECTION PROBABILITY

We have seen that the line a(b, pl b ) is always orthogonal to P, even in the general case. 

A. Interpretations 1) Non-Bayesianity flag and relative plausibility:

A first interpretation of this new probability is immediate after noticing that

β[b] = 1 -x∈Θ m b (x) x∈Θ pl b (x) -x∈Θ m b (x) = 1 -k b k pl b -k b .
where

k b = x∈Θ m b (x) k pl b = x∈Θ pl b (x) = A⊂Θ m b (A)|A|
are the normalization factors for b, pl b respectively, so that p[b] can be rewritten as 

p[b](x) = m b (x) + (1 -k b) pl b (x) -m b (x) k pl b -k b . ( 23 
)
p[b] = k bb + (1 -k b)R[b]. (24) 
R[b](x) = pl b (x) -m b (x) k pl b -k b = pl b (x) k pl b -k b - m b (x) k pl b -k b = pl b (x) k pl b k pl b -k b -b(x) k b k pl b -k b since pl b (x) = pl b (x)/k pl b and b(x) = m b (x)/k b, so that pl b = k b k pl b b + 1 - k b k pl b R[b].

2) Meaning of the ratio β[b] and pignistic function:

To shed more light on p[b] and get an alternative interpretation of this probability it may be useful to compare p[b] as expressed in Equation ( 23) with another classical Bayesian "relative" of b, the pignistic function

BetP [b](x) = A⊃x m b (A) |A| = m b (x) + A⊃x,A =x m b (A) |A| .
We can notice that in BetP 

β[b] = |B|>1 m b (B) |B|>1 m b (B)|B| = n k=2 |B|=k m b (B) n k=2 k • |B|=k m b (B) = Σ 2 + • • • + Σ n 2Σ 2 + • • • + nΣ n (26) 
after defining Σ k . = |B|=k m b (B). 

Proof: p[b] = BetP [b] is equivalent to m b (x) + A⊃x,A =x m b (A)β[b] = m b (x) + A⊃x,A =x m b (A) |A| ≡ A⊃x,A =x m b (A)β[b] = A⊃x,A =x m b (A) |A| but that means β[b] = 1/|A| for all A ⊃ x, A = x.
for i = k, in which case β[b] = Σ k kΣ k = 1/k.
In particular this is true when Σ i = 0, i > 2, i.e. when b is 2-additive. The condition of Theorem 5 is in fact a rather straightforward generalization of the concept of 2-additivity. 

VII. ORTHOGONAL PROJECTION

We have seen that even though the line a(b, pl b ) is always orthogonal to the probabilistic subspace, its intersection with the region P ′ of the Bayesian n.s.f. is not always in P. 

A. Orthogonality condition

We need to find a necessary and sufficient condition for an arbitrary vector v = A⊂Θ v A X A of to be orthogonal 5 to the probabilistic subspace a(P). If we compute the scalar product v, b yb x between v and the generators b yb x of a(P ) we get

A⊂Θ v A X A , b y -b x = A⊂Θ v A [b y -b x ](A)
that remembering Equation ( 13) becomes

v, b y -b x = A⊃y,A ⊃x v A - A⊃x,A ⊃y v A .
The orthogonal complement a(P) ⊥ of a(P) will then be expressed as

v(P) ⊥ = v : A⊃y,A ⊃x v A = A⊃x,A ⊃y v A ∀y = x .
If the vector v, in particular, is a belief function 

(v A = b(A)) A⊃y,A ⊃x b(A) = A⊃y,A ⊃x B⊂A m b (B) = B⊂{x} c m b (B) • 2 n-1-|B∪{y}| since 2 n-1-
π[b](x) = A⊃x m b (A)2 1-|A| + A⊂Θ m b (A) 1 -|A|2 1-|A| n (28) or π[b](x) = A⊃x m b (A) 1 + |A c |2 1-|A| n + A ⊃x m b (A) 1 -|A|2 1-|A| n . ( 29 
)
From ( 29 

Theorem 7: π[b] = P(1 -k O [b]) + k O [b]O[b]
, where P is the uniform probability and Proof: By definition of plausibility function

O[b](x) = Ō[b](x) k O [b] = A⊃x m b (A)2 1-|A| A⊂Θ m b (A)|A|2 1-|A| = A⊃x m b (A) 2 |A| A⊂Θ m b (A)|A| 2 |A| (30) 
m b (B)2 1-|B| + B⊃y,x m b (B)2 1-|B| = B⊃x,B ⊃y m b (B)2 1-|B| + B⊃y,x m b (B)2 1-|B| ≡ B⊃y m b (B)2 1-|B| = B⊃x m b (B)2 1-|B| ≡ Ō[b](x) = const ≡ O[b](x) = const = P ∀x ∈ Θ.
pl b 2 || (x) = A⊃x m b 2 || (A) = 1 k 2 || A⊃x m b (A) 2 |A| = Ō[b] 2k 2 || , x∈Θ pl b 2 || (x) = 1 k 2 || x∈Θ A⊃x m b (A) 2 |A| = k O [b] 2k 2 || by Equation (38). Hence pl b 2 || (x) = Ō[b]/k O [b] = O[b]. Equivalently, pl b || (x) = A⊃x m b || (A) = 1 k || A⊃x m b (A) |A| = 1 k || BetP [b](x) and since x BetP [b](x) = 1, pl b || (x) = BetP [b](x).
The two functions b || and b 2 || represent two different processes acting on b (see Figure 5). The first one redistributes the mass of each focal element among its singletons (yielding directly a Redistribution processes associated with pignistic transformation and orthogonal projection. In the pignistic transformation (top) the mass of each focal element is distributed among its elements. In the orthogonal projection (bottom), instead (through the orthogonality flag), the mass of each f.e. is divided among its subsets. In both cases, the related relative belief of singletons yields a Bayesian belief function. 

m(x) = 0.1 → m ′ (x) = m ′ (∅) = 0.1/2 = 0.05 m(z) = 0.2 → m ′ (z) = m ′ (∅) = 0.2/2 = 0.1 m({x, y}) = 0.3 → m ′ ({x, y}) = m ′ (x) = m ′ (y) = m ′ (∅) = 0.3/4 = 0.075 m({x, z}) = 0.1 → m ′ ({x, z}) = m ′ (x) = m ′ (z) = m ′ (∅) = 0.1/4 = 0.025 m(Θ) = 0.3 → m ′ (Θ) = m ′ ({x, y}) = m ′ ({x, z}) = m ′ ({y, z}) = = m ′ (x) = m ′ (y) = m ′ (z) = m ′ (∅) = 0.3/8 = 0.0375.

D. Orthogonal projection and convex combination

As a confirmation of this relationship, orthogonal projection and pignistic function both commute with convex combination.

Theorem 9: Orthogonal projection and convex combination commute, i.e.

π[α 1 b 1 + α 2 b 2 ] = α 1 π[b 1 ] + α 2 π[b 2 ]. Proof: By Theorem 7 π[b] = (1 -k O [b]) P + Ō[b] where k O [b] = A⊂Θ m b (A)|A|2 1-|A| and Ō[b](x) = A⊃x m b (A)2 1-|A| . Hence k O [α 1 b 1 + α 2 b 2 ] = A⊂Θ α 1 m b 1 (A) + α 2 m b 2 (A) |A|2 1-|A| = α 1 k O [b 1 ] + α 2 k O [b 2 ], Ō[α 1 b 1 + α 2 b 2 ](x) = A⊃x α 1 m b 1 (A) + α 2 m b 2 (A) 2 1-|A| = α 1 Ō[b 1 ] + α 2 Ō[b 2 ]
January 18, 2007 DRAFT which in turn implies (since

α 1 + α 2 = 1) π[α 1 b 1 + α 2 b 2 ] = (1 -α 1 k O [b 1 ] -α 2 k O [b 2 ]) P + α 1 Ō[b 1 ] + α 2 Ō[b 2 ] = = α 1 (1 -k O [b 1 ]) P + Ō[b 1 ] + α 2 (1 -k O [b 2 ]) P + Ō[b 2 ] = α 1 π[b 1 ] + α 2 π[b 2 ].
This property can be used to find an alternative expression of the orthogonal projection as convex combination of the pignistic functions associated with all the basis belief functions.

Lemma 2: The orthogonal projection of a basis belief function b A is given by π

[b A ] = (1 - |A|2 1-|A| ) P + |A|2 1-|A| PA , where PA = 1 |A| x∈A b
x is the center of mass of all the probabilities with support in A.

Proof: By Equation (30) k O [b A ] = |A|2 1-|A| , so that Ō[b A ](x) =    2 1-|A| x ∈ A 0 x ∈ A ⇒ O[b A ](x) =    1 |A| x ∈ A 0 x ∈ A = 1 |A| x∈A b x = PA .
Theorem 10: The orthogonal projection can be expressed as a convex combination of all the non-informative probabilities with support on a single event A as

π[b] = P 1 - A =Θ α A + A =Θ α A PA , α A . = m b (A)|A|2 1-|A| . (31) 
Proof:

π[b] = π A⊂Θ m b (A)b A = A⊂Θ m b (A)π[b A ]
by Theorem 9, which by Lemma 2 becomes

A⊂Θ m b (A) (1 -|A|2 1-|A| ) P + |A|2 1-|A| PA = 1 - A⊂Θ m b (A)|A|2 1-|A| P+ + A⊂Θ m b (A)|A|2 1-|A| PA = 1 - A⊂Θ m b (A)|A|2 1-|A| P + A =Θ m b (A)|A|2 1-|A| PA + +m b (Θ)|Θ|2 1-|Θ| P
i.e. Equation [START_REF] Zaffalon | Tree-based credal networks for classification[END_REF].

As PA = BetP [b A ], we recognize that

BetP [b] = A⊂Θ m b (A)BetP [b A ], π[b] = A =Θ α A BetP [b A ] + 1 - A =Θ α A BetP [b Θ ] (32) with α A = m b (A)k O [b A ].
Both orthogonal projection and pignistic function are convex combinations of all the basis pignistic functions. However, as

k O [b A ] = |A|2 1-|A| < 1 for |A| > 2,
the orthogonal projection turns out to be closer to the vertices associated with events of lower cardinality (see Figure 6). b z and the orthogonal projection is the barycenter of the simplex Cl( P{x} , P{x,z} , P) (see Figure 7). On the other side, It is then natural to suppose that their difference must be maximal when all the mass is concentrated on a single size-3 event. This is in fact correct:

BetP [b](x) = m b (x) 1 + m b (x,z) 2 + m b (Θ 3 ) 3 = 11 18 , BetP [b](y) = 1 9 , BetP [b](z) = 1 6 + 1 9 = 5
BetP [b] -π[b]
2 is maximal and equal to 1 2 + 1 2 + 1 2 + (-3) 2 = 12 when y i = 1, y j = 0 ∀j = i, i.e. the mass of one among {x, y, z}, {x, y, w}, {x, z, w}, {y, z, w} is one.

VIII. A BRIEF DISCUSSION

In this paper we introduced two novel probabilistic approximations of a belief function b, the intuition for both of them provided by the geometric analysis of the interplay between belief and probability spaces in the context of the geometric approach to the theory of evidence. Both 24)

π[b] = k O [b]O[b] + P(1 -k O [b]) p[b] = k bb + (1 -k b)R[b]
we can appreciate that they can both be written as convex combinations, which depend on the flag probabilities associated with them, namely the orthogonality and non-Bayesianity flag respectively: Proof: We just need to compare expressions ( 19) and [START_REF]Upper and lower probabilities inferences for families of hypothesis with monotone density ratios[END_REF] to see that the two quantities are the same iff

π[b] ↔ p[b] O[b] ↔ R[b].
   1+|A c |2 1-|A| n = β[b] A ⊃ x, A = x m b (A) = 0 A ⊃ x, |A| > 2.
The second condition is true as 

(A) = 0 for |A| = k for some k ∈ [2, ..., n], with 1 + |A c |2 1-|A| n = 1 + (n -k)2 1-k n = β[b] = 1 k (using the form (26) of β[b]). As the resulting equation n = k(1 + (n -k)2 1-k ) is met by k = 2
only we have as desired.

Theorem 11 gives just "pointwise" information on the relationship between intersection probability and orthogonal projection. It would definitively be worth conducting a study of the distance between all the Bayesian functions we now know, BetP, π, p, pl b , b as b varies in B, in order to understand how they are influenced by the basic probability assignment. We started to do this for the pair BetP [b], π[b] in the case of binary frames (Section VII-D.2), getting some interesting results. We reserve to explore this direction thoroughly in the near future.

B. Unnormalized belief functions

We may also want to add a remark on the validity of the results presented in this paper.

They have been in fact obtained for "classical" belief functions, for which the mass assigned A new set of basis u.b.f. can then be defined

{b A ∈ R N , ∅ ⊆ A ⊆ Θ} this time including a vector b ∅ . = [1 0 • • • 0] ′ . Note also that in this case b Θ = [0 • • • 0 1] ′ .
It is natural to wonder whether the above discussion, and in particular definition and properties 

∅ = [1, 0, 0, 0] ′ pl ∅ = [0, 0, 0, 0] ′ b x = [0, 1, 0, 1] ′ pl x = [0, 1, 0, 1] ′ = b x b y = [0, 0, 1, 1] ′ pl y = [0, 0, 1, 1] ′ = b y b Θ = [0, 0, 0, 1] ′ pl Θ = [0, 1, 1, 1] ′ .
A striking difference with the "classical" case is that b(Θ) = 1m b (∅) = pl b (Θ) which implies that both belief and plausibility spaces are not in general subsets of the section v Θ = 1 of R N .

In other words, u.b.f. and u.pl.f. are not normalized sum functions (Section III-C).

More precisely, b, pl b are n.s.f. iff b(∅) = 0. As a consequence, the line a(b, pl b ) is not guaranteed to intersect the affine space P ′ of the Bayesian n.s.f..

Consider for instance the line connecting b ∅ and pl ∅ in the binary case:

αb ∅ + (1 -α)pl ∅ = α[1, 0, 0, 0] ′ , α ∈ R. As P ′ = {[a, b, (1 -b), -a] ′ , a, b ∈ R} there clearly is no value α ∈ R s.t. α • [1, 0, 0, 0] ′ ∈ P ′ .
Simple calculations show that in fact a(b, pl b ) ∩ P ′ = ∅ iff b(∅) = 0 (i.e. b is "classical") or (trivially) b ∈ P. This is true in the general case. given by Equations ( 28), [START_REF] Cuzzolin | Visions of a generalized probability theory[END_REF] where this time the summations on the right hand side include the empty set too:

π[b](x) = A⊃x m b (A)2 1-|A| + ∅⊆A⊂Θ m b (A) 1 -|A|2 1-|A| n π[b](x) = A⊃x m b (A) 1 + |A c |2 1-|A| n + ∅⊆A ⊃x m b (A) 1 -|A|2 1-|A| n .

IX. CONCLUSIONS

In this paper we used the geometric approach to the theory of evidence to introduce two [START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] do not fit in the same scheme. In the near future we will show that p[b] turns out to be the best Bayesian approximation of a belief function in the framework of Dempster's combination rule, and investigate the dual geometry of relative plausibility and belief of singletons [START_REF] Cuzzolin | The geometry of relative plausibility and belief of singletons[END_REF]. Naturally enough the geometric approach can be adopted to study the problem of approximating a belief function with a possibility measure (consonant b.f.).

To complete the study we started in this paper we would need to depict a complete picture 

  frame of discernment has only two elements (Section IV). It turns out that each belief function b is associated with three different geometric entities, namely the line (b, pl b ) joining b with the related plausibility function pl b , the orthogonal complement P ⊥ of the probabilistic subspace P, and the simplex of consistent probabilities P[b] = {p ∈ P : p(A) ≥ b(A) ∀A ⊂ Θ}. These in turn determine three different probabilities associated with b, i.e. the orthogonal projection π[b] of b onto P, the barycenter of P[b] or pignistic function BetP [b], and the intersection probability p[b]. In the binary case all those Bayesian functions coincide. In Section V we prove that, even though the line (b, pl b ) is always orthogonal to P, it does not intersect in general the Bayesian region. However, it does intersect the region of Bayesian normalized sum functions (n.s.f.), i.e. the natural generalizations of belief functions obtained by relaxing the positivity constraint for b.p.a.s: This intersection yields a Bayesian n.s.f. ς[b]. January 18, 2007 DRAFT In Section VI we will see that ς[b] is in turn naturally associated with a Bayesian belief function p[b], which we call intersection probability. We will give two different interpretations of the way in which this probability distributes the masses of the focal elements on b to the elements of Θ, both depending on the difference between plausibility and belief of singletons. We will also compare the combinatorial and geometric behavior of p[b] with those of pignistic function and relative plausibility of singletons.

  [b] does, π[b] commutes with the convex combination operator, and can therefore be expressed as a convex combination of basis pignistic functions, confirming the strict relation between π[b] and BetP [b].

Definition 1 :Definition 2 :

 12 A basic probability assignment (b.p.a.) over a finite set (frame of discernment[START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT[START_REF] Shafer | A Mathematical Theory of Evidence[END_REF]) Θ is a function m : 2 Θ → [0, 1] on its power set2 Θ = {A ⊂ Θ} such that m(∅) = 0, A⊂Θ m(A) = 1, m(A) ≥ 0 ∀A ⊂ Θ.Subsets of Θ associated with non-zero values of m are called focal elements. The belief function b : 2 Θ → [0, 1] associated with a basic probability assignment m on Θ is defined as: b(A) = B⊂A m(B). Conversely, the unique basic probability assignment m b associated with a given belief function b can be recovered by means of the Moebius inversion formula

Figure 1 Fig. 1 .

 11 Fig.1. Simplicial structure of the belief space B: its vertices are all the basis belief functions bA represented as vectors of R N -1 . The probabilistic subspace is just a subset Cl(bx, x ∈ Θ) of its border.

(

  µ b (∅) = 0) is the Moebius inverse of the plausibility function, called basic plausibility assignment (b.pl.a.). The Bayesian region P = Cl(b x , x ∈ Θ) is part of the border of both belief and plausibility spaces.

  However, since b(Θ) = pl b (Θ) = 1 for all b, we can neglect the component v Θ ≡ 1 and represent belief and plausibility vectors as points of a plane with coordinates b

  pl b (y) and pl b = pl b (x)b x + pl b (y)b y . We can notice that the two simplices are symmetric with respect to the Bayesian region P. Furthermore, each pair of functions (b, pl b ) determines a line which is orthogonal to P, where b and pl b lie on symmetric positions on the two sides of the Bayesian region.

Fig. 2 .

 2 Fig. 2. In a binary frame Θ2 = {x, y} both belief B and plausibility space PL are simplices with vertices {bΘ = [0, 0] ′ , bx = [1, 0] ′ , by = [0, 1] ′ } and {plΘ = [1, 1] ′ , plx = bx, ply = by} respectively. A belief function b and the corresponding plausibility function pl b are always located in symmetric positions with respect to the set P of probabilities on Θ. The associated relative plausibility pl b and belief b of singletons are shown as the intersections of the probabilistic subspace with the line joining pl b and bΘ = [0, 0] ′ and the line passing through b and bΘ respectively. The other Bayesian functions related to b all coincide with the center of the segment of consistent probabilities P[b].

  a(b, pl b ), and the orthogonal complement of P. We will provide a unified picture of the geometric interplay of belief and probability by studying the properties of two Bayesian functions derived from geometrical considerations, the orthogonal projection π[b] and the intersection probability p[b]. We will compare them with both the pignistic function and the relative plausibility of singletons, and with each other. We will provide interpretations of π[b], p[b] in terms of degrees of belief, and discuss (in the case of the orthogonal projection) their behavior with respect to convex combination.V. GEOMETRY OF THE DUAL LINELet us then first study the dual line connecting a pair of belief and plausibility measures supporting the same evidence. As a matter of fact, orthogonality turns out to be a general feature of a(b, pl b ). As we just saw in the binary case b(Θ) = pl b (Θ) = 1 ∀b, so that we can consider b, pl b as points of R N -2 .A. OrthogonalityLet us consider the affine subspace a(P) = a(b x , x ∈ Θ) generated by the simplex of Bayesian belief functions. This can be written as the translated version of a vector space a(P) = b x + span(b yb x , ∀y ∈ Θ, y = x), January 18, 2007 DRAFT where span(b yb x ) denotes the vector space generated by the n -1 vectors b yb x (n = |Θ|).

Theorem 2 :

 2 The line connecting pl b and b in R N -2 is orthogonal to the affine space generated by the probabilistic simplex, i.e. bpl b ⊥a(P).

  As a matter of fact b and pl b belong to a N -2 = (2 n -2)-dimensional Euclidean space, while the dimension of P is only n -1. If n = 2, n -1 = 1 and 2 n -2 = 2 so that a(P) divides the plane into two half-planes with b on one side and pl b on the other side (see Figure2 again).

Theorem 3 :

 3 The coordinates of ς[b] with respect to the basis Bayesian belief functions {b x , x ∈ Θ} can be expressed in terms of the basic probability assignment m b of b as follows:

  B =x m b (B) so that the denominator of β[b] becomes y∈Θ [pl b (y)b(y)] = y∈Θ (1b(y c )b(y)) = y∈Θ B⊂Θ m b (B) -B⊂y c m b (B) -B⊂y m b (B) = = y∈Θ B⊃y,B =y m b (B) = |B|>1 m b (B)|B|. Equation (19) ensures that m ς[b] (x) is positive for each x ∈ Θ. Its symmetric version can be obtained after realizing that È |B|=1 m b (B) È |B|=1 m b (B)|B| = 1, so that we can write

Theorem 4 :

 4 ς[b] ∈ P iff b is 2-additive, i.e. m b (A) = 0 |A| > 2, and in this case pl b is the reflection of b through P. In other words, for 2-additive belief functions ς[b] is nothing but the mean probability function b+pl b

Fig. 3 .

 3 Fig. 3. The geometry of the line a(b, pl b ) and the relative locations of p[b], ς[b] and π[b]. Each b.f. b and the related pl.f. pl b lie on opposite sides of the hyperplane P ′ of the Bayesian n.s.f. which divides R N -2 into two parts. The line a(b, pl b ) connecting them always intersects P ′ , but not necessarily a(P) (vertical line). This intersection ς[b] is naturally associated with a probability p[b] (in general distinct from the orthogonal projection π[b] of b onto P), having the same components in the base {bx, x ∈ Θ} of a(P). P is a simplex (a segment in the figure) in a(P): π[b] and p[b] are both "true" probabilities.

  When b is Bayesian, pl b (x)m b (x) = 0 ∀x ∈ Θ. If b is not Bayesian, there exists at least a singleton x such that pl b (x)m b (x) > 0. The Bayesian belief function R[b](x) . = A⊃x,A =x m b (A) |A|>1 m b (A)|A| = pl b (x)m b (x) y∈Θ pl b (y)m b (y) measures then the relative contribution of each singleton x to the non-Bayesianity of b. Equation (23) shows in fact that the non-Bayesian mass 1k b is assigned by p[b] to each singleton according to its relative contribution R[b](x) to the non-Bayesianity of b. The flag probability R[b] also relates the intersection probability p[b] to other two classical Bayesian approximations, the relative plausibility pl b and belief b of singletons, as (23) reads as

Geometrically, since k

  b = x∈Θ m b (x) ≤ 1, p[b] belongs to the segment linking R[b] with the relative belief of singletons b, with convex coordinate the total mass of singletons k b. On the other side, the relative plausibility function can also be written in terms of b and R[b] as, by definition,

  This means that both pl b also belongs Cl(R[b], b). However, as k pl b . = A⊂Θ m b (A)|A| ≥ 1, k b/k pl b ≤ k b which in turn implies that p[b] is closer to R[b] than the relative plausibility function pl b (see Figure 4). The convex coordinate of pl b in Cl(R[b], b) measures the ratio between total mass and plausibility of singletons. Obviously when k b = 0 ( b does not exists) p[b] = pl b = R[b]by Equation[START_REF] Cuzzolin | Geometric analysis of belief space and conditional subspaces[END_REF].

4 .

 4 Geometric location of p[b] and relative plausibility of singletons with respect to the non-Bayesianity flag. They both lie on the segment joining R[b] with the relative belief of singletons b, but pl b is closer to b than p[b].

1 |A|

 1 [b] the mass of each event A, |A| > 1 is considered separately, and its mass m b (A) is equally shared among the elements of A. In p[b], instead, it is the total mass |A|>1 m b (A) = 1k b of non-singletons which is considered, and this total mass is distributed proportionally to their non-Bayesian contribution to each element of Θ. How should β[b] be interpreted then? If we write p[b](x) as p[b](x) = m b (x) + β[b](pl b (x)m b (x)) (25) we can observe that a fraction measured by β[b] of its non-Bayesian contribution pl b (x)m b (x) is uniformly assigned to each singleton. This leads to another parallelism between p[b] and BetP [b]. It suffices to note that, if |A| > 1, β[b A ] = |B|>1 m b (B) |B|>1 m b (B)|B| = so that both p[b](x) and BetP [b](x) assume the form m b (x) + A⊃x,A =x m b (A)β A , where β A = const = β[b] for p[b], while β A = β[b A ] in case of the pignistic function. January 18, 2007 DRAFT Under which condition p[b] and pignistic function coincide? A necessary and sufficient condition can be achieved by decomposing β[b] as

Theorem 5 :

 5 p[b] and pignistic function coincide iff ∃ k ∈ [2, ..., n] such that Σ i = 0 ∀ i = k, i.e. the focal elements of b have size 1 or k only.

  Since β[b] does not depend on |A|, this can be true only if ∃ k : m b (A) = 0 for |A| = k, and β[b] = 1/k. But this is equivalent to Σ i = 0

3 ) 7 .

 37 Example: Let us see a simple example to briefly discuss the two interpretations of p[b] introduced above. Consider then a ternary frame Θ = {x, y, z}, and a belief function b with b.p.a. m b (x) = 0.1, m b (y) = 0, m b (z) = 0.2, m b ({x, y}) = 0.3, m b ({x, z}) = 0.1, m b ({y, z}) = 0, m b (Θ) = 0.3.Recalling Equation (23) the total mass of singletons is k b = 0.1 + 0 + 0.2 = 0.3, while the non-Bayesian contributions of x, y, z are respectivelypl b (x)m b (x) = m b (Θ) + m b ({x, y}) + m b ({x, z}) = 0.7, pl b (y)m b (y) = m b ({x, y}) + m b (Θ) = 0.6, pl b (z)m b (z) = m b ({x, z}) + m b (Θ) =0.4 so that the non-Bayesian flag is R(x) = 0.7/1.7, R(y) = 0.6/1.7, R(z) = 0.4/1.For each singleton then the original b.p.a. m b (x) is increased by a share of the mass of non singletons 1k b = 0.7 proportional to the value of R(x), p[b](x) = m b (x) + (1k b)R(x) = 0.1 + 0.7 * 0.7/1.7 = 0.388, p[b](y) = m b (y) + (1k b)R(y) = 0 + 0.7 * 0.6/1.7 = 0.247, p[b](z) = m b (z) + (1k b)R(z) = 0.2 + 0.7 * 0.4/1.7 = 0.365. January 18, 2007 DRAFT Equivalently, the line coordinate β[b] of p[b] is equal to β[b] = 1k b m b ({x, y})|{x, y}| + m b ({x, z})|{x, z}| + m b (share of pl b (x)m b (x) assigned to each singleton: p[b](x) = m b (x) + β[b](pl b (x)m b (x)) = 0.1 + 0.7/1.7 * 0.7, p[b](y) = m b (y) + β[b](pl b (y)m b (y)) = 0 + 0.7/1.7 * 0.6, p[b](z) = m b (z) + β[b](pl b (z)m b (z)) = 0.2 + 0.7/1.7 * 0.4.

  Nevertheless, an orthogonal projection π[b] of b onto a(P) is obviously guaranteed to exist no matter the behavior of a(b, pl b ), as a(P) is nothing but a linear subspace in the space of all the normalized sum functions (such as b). An explicit calculation of π[b], however, requires a description of the orthogonal complement of a(P) in R N -2 . Let us denote with n = |Θ| the cardinality of Θ.

Theorem 6 :

 6 |B∪{y}| is the number of subsets A of {x} c containing both B and y, and the orthogonality condition becomes B⊂{x} c m b (B)2 n-1-|B∪{y}| = B⊂{y} c m b (B)2 n-1-|B∪{x}| ∀y = x. Now, sets B ⊂ {x, y} c appear in both summations, with the same coefficient (since |B ∪ {x}| = |B ∪ {y}| = |B| + 1) and the equation reduces to, after erasing the common factor 2 n-2 , B⊃y,B ⊃x m b (B)2 1-|B| = B⊃x,B ⊃y m b (B)2 1-|B| ∀y = x (27) which expresses the desired orthogonality condition. The orthogonal projection π[b] of b onto a(P) can be expressed in terms of the b.p.a. m b of b as

  ) we can see that π[b] is indeed a probability, since both 1 + |A c |2 1-|A| ≥ 0 and 1 -|A|2 1-|A| ≥ 0 ∀|A| = 1, ..., n. This is not at all trivial, as π[b] is the projection of b onto the affine space a(P), and could have in principle assigned negative masses to one or more singletons. π[b] is hence another valid candidate to the role of probabilistic approximation of the b.f. b. B. Orthogonality flag Theorem 6 does not apparently provide any intuition about the meaning of π[b] in terms of degrees of belief. Nevertheless, if we process Equation (29) we can reduce π to a new Bayesian function strictly related to the pignistic function.

  Bayesian belief function. As 0 ≤ |A|2 1-|A| ≤ 1 for all A ⊂ Θ, k O [b] assumes values in the interval [0, 1]. Theorem 7 then implies that the orthogonal projection is always located on the line segment joining the uniform, non-informative probability and the Bayesian function O[b]. By Equation (30) it turns out that π[b] = P iff O[b] = P (since k O [b] > 0). The meaning to attribute to O[b] becomes clear when we notice that the condition (27) under which a b.f. b is orthogonal to a(P) can be rewritten as B⊃y,B ⊃x

1 k 2

 12 Therefore π[b] = P if and only if b⊥a(P), and O -P measures the non-orthogonality of b with respect to P. O[b] deserves then the name of orthogonality flag. C. Interpretation in terms of plausibilities, redistribution processes A compelling link can be drawn between orthogonal projection and pignistic function by means of the orthogonality flag O[b]. Let us define the two belief functions b || . = 1 k || A⊂Θ m b (A) |A| b A , b 2 || . = || A⊂Θ m b (A) 2 |A| b A where k || and k 2 || are the normalization factors needed to make them two admissible b.f. Theorem 8: O[b] is the relative plausibility of singletons of b 2 || ; BetP [b] is the relative plausibility of singletons of b || .

  Fig. 5.Redistribution processes associated with pignistic transformation and orthogonal projection. In the pignistic

1 )

 1 Example: Let us consider again as an example the belief function b on the ternary frame m b (x) = 0.1, m b (y) = 0, m b (z) = 0.2, m b ({x, y}) = 0.3, m b ({x, z}) = 0.1, m b ({y, z}) = 0, m b (Θ) = 0.3 seen in Section VI-A.3. To get the orthogonality flag O[b] we need to apply the redistribution process of Figure 5 to each focal element of b. In this case their masses are divided among their January 18, 2007 DRAFT subsets as follows:

  By summing the contributions related to singletons on the right hand side we get m b U (x) = 0.05 + 0.075 + 0.025 + 0.0375 = 0.1875, m b U (y) = 0.075 + 0.0375 = 0.1125, m b U (z) = 0.1 + 0.025 + 0.0375 = 0.1625 whose sum is the normalization factor k O [b] = m b U (x) + m b U (y) + m b U (z) = 0.4625 and by normalizing O[b] = [0.405 0.243 0.351] ′ . The orthogonal projection π[b] is finally the convex combination of O[b] and P = [1/3 1/3 1/3] ′ with coordinate k O [b]: π[b] = P(1k O [b]) + k O [b]O[b] = [1/3 1/3 1/3] ′ • (1 -0.4625) + 0.4625 • [0.405 0.243 0.351] ′ = [0.366 0.291 0.342] ′ .

Fig. 6 . 3 . 1 - 1 / 3 - 1 / 3 )

 6311313 Fig. 6. Orthogonal projection π[b] and pignistic function BetP [b] are both located on the simplex whose vertices are all the basis pignistic functions, i.e. the uniform probabilities associated with each single event A. However, the convex coordinates of π[b] are weighted by a factor kO[bA] = |A|2 1-|A| , yielding a point which is closer to vertices related to lower size events.
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 18 .e. BetP [b] = π[b]. This is true for each belief function b ∈ B 3 , since for Equation (32) when |Θ| = 3 α A = m b (A) for |A| ≤ 2, and 1 -A α A = 1 -A =Θ m b (A) = m b (Θ).

2 )

 2 Distance between BetP and π in the quaternary case: To get a hint of the relationship between orthogonal projection and pignistic function in the general case let us compare their expressions in the simplest case in which they are distinct: a frame Θ = {x, y, z, w} of size 4. by imposing ∂ ∂y i BetP [b](y)π[b](y) 2 = 0 subject to y 1 + y 2 + y 3 + y 4 = 1. The unique solution turns out to be y = [1/4 1/4 1/4 1/4] ′ which corresponds to (after replacing this solution into (33)) BetP [b] = π[b] = P where P = [1/4 1/4 1/4 1/4] ′ is the uniform probability on Θ. In other words, the distance between pignistic function and orthogonal projection is minimal (zero) when all size 3 subsets have the same mass.

  intersection probability and orthogonal projection are related to the notion of orthogonality: the orthogonality of the dual line and that of π[b]b with respect to P. Nevertheless they possess different interpretations in terms of mass assignment, and relate in significant but distinct ways with the pignistic transformation. An interesting parallel between p[b] and π[b] comes from their geometric description as points of a segment. Recalling Theorem 7 and Equation (

Theorem 11 :

 11 It is then worth to study the condition under which p[b] and orthogonal projection π[b] are the same probability. A. Analytic comparison A trivial consequence of Theorem 4 is that when b is 2-additive, π[b] = p[b] = ς[b]. The inverse implication is also true. The orthogonal projection π[b] and p[b] coincide iff b is 2-additive, i.e. m b (A) = 0 ∀A : |A| > 2.

  to the empty set is 0: b(∅) = m b (∅) = 0. However, it makes sense in certain situations to work with unnormalized belief functions (u.b.f.)[START_REF] Smets | The nature of the unnormalized beliefs encountered in the transferable belief model[END_REF], i.e. belief functions admitting non-zero support m b (∅) = 0 for the empty set [40]. m b (∅) is an indicator of the amount of conflict in the evidence carried by a belief function b, but can also be interpreted as the possibility that the existing frame of discernment does not exhaust all the possible outcomes of the problem. Unnormalized b.f. January 18, 2007 DRAFT are naturally associated with vectors with N = 2 |Θ| coordinates.

  of p[b] and π[b], retains their validity. Let us consider again the binary case. We now have to use four coordinates, associated with all the events in Θ: ∅, {x}, {y}, and Θ. Remember that in the case of u.b.f. b(A) = ∅ B⊆A m b (B) A = ∅ i.e. the contribution of the empty set is not considered when computing the belief value of an event A = ∅ 6 . The corresponding basis belief and plausibility functions are then b

Proposition 2 :

 2 p[b], β[b] are well defined for classical belief functions only.It is interesting to note that, however, the orthogonality results of Section V-A are still valid since Lemma 1 does not involve the empty set, while the proof of Theorem 2 is valid for thecomponent A = ∅, Θ too (as b yb x (A) = 0 for A = ∅, Θ).Proposition 3: a(b, pl b ) is orthogonal to P for each u.b.f. b, even though ς[b] = a(b, pl b )∩P ′ = ∅ iff b is a b.f. Analogously, the orthogonality condition (27) does not concern the mass of the empty set. The orthogonal projection π[b] of a u.b.f. b is well defined (check Theorem 6's proof), and it is still

  new probabilities related to a belief function, both of them derived from purely geometric considerations. They are indeed associated with two different geometric loci: the dual line passing through b and pl b in the belief space, and the orthogonal complement of the probability subspace.After proving that the line a(b, pl b ) is always orthogonal to P and intersects the region of the Bayesian n.s.f. P ′ , we introduced the probability p[b] associated with this intersection and discussed two interpretations of p[b] in terms of non-Bayesian contributions of singletons.On the other side, after precising the condition under which a b.f. b is orthogonal to P we gave two equivalent expressions of the orthogonal projection of b onto P. We saw that π[b] can be reduced to another probability signaling the distance of b from orthogonality, and that this "orthogonality flag" can be in turn interpreted as the result of a mass redistribution process analogous to that associated with the pignistic transformation. We proved that π[b] commutes with the convex combination operator, and can therefore be expressed as a convex combination of basis pignistic functions, confirming the strict relation between π[b] and BetP [b]. We finally studied the difference between p[b] and π[b], and discussed which results retain their validity for unnormalized belief functions. We have seen when discussing the binary case that, while BetP [b], p[b] and π[b] belong to the same "family" of Bayesian relatives of b (as they coincide under 2-additivity), relative plausibility p[b] and belief b of singletons

34 ) 2 . 1 into

 3421 of the conditions under which all the different Bayesian relatives of b coincide. Furthermore, a contribution to understanding their semantics could come from the study of the convex geometric loci {b ∈ B : Bayes[b] = const} of all the belief functions for which a certain Bayesian approximation (say BetP [b], p[b] or π[b]) is constant. APPENDIX: PROOFS Proof of Theorem 4 By definition (17) ς[b] can be written in terms of the reference frame {b A , A ⊂ Θ} as A⊂Θ m b(A)b A + β[b] • A⊂Θ µ b (A)b A -A⊂Θ m b (A)b A = A⊂Θ b A m b (A) + β[b](µ b (A)m b (A))since µ b (.) is the Moebius inverse of pl b (.). For ς[b] to be a Bayesian belief function, accordingly, all the components related to non-singleton subsets need to be zero,m b (A) + β[b](µ b (A)m b (A)) = 0 ∀A : |A| > 1.This condition in turn reduces to (recalling expression[START_REF] Black | Geometric structure of lower probabilities[END_REF] of β[b]) µ b (A) |B|>1 m b (B) + m b (A) |B|>1 m b (B)|B| -|B|>1 m b (B) = 0 ∀A : |A| > 1 ≡ µ b (A) |B|>1 m b (B) + m b (A) |B|>1 m b (B)(|B| -1) = 0. (But now |B|>1 m b (B)(|B| -1) = |B|>1 m b (B) + |B|>2 m b (B)(|B| -2) so that expression (34) becomes [µ b (A) + m b (A)] |B|>1 m b (B) + m b (A) |B|>2 m b (B)(|B| -2) = 0 ∀A : |A| > 1 ≡ [m b (A) + µ b (A)] • M 1 [b] + m b (A) • M 2 [b] = 0 (35) January 18, 2007 DRAFT after defining M 1 [b] . = |B|>1 m b (B) and M 2 [b] . = |B|>2 m b (B)(|B| -2) respectively.Now, it is easy to note thatM 1 [b] = 0 ⇔ m b (B) = 0 ∀B : |B| > 1 ⇔ b ∈ P M 2 [b] = 0 ⇔ m b (B) = 0 ∀B : |B| > 2as all the terms inside the summations are non-negative by definition of basic probability assignment. We can distinguish three cases:M 1 = 0 = M 2 (b ∈ P), M 1 = 0 but M 2 = 0, and finally M 1 = 0 = M 2 . If M 1 = M 2 = 0 then b is a probability (trivially), while if M 1 = 0 = M 2 then Equation (35) implies m b (A) = µ b (A) = 0, |A| > 1 i.e. b ∈ P, which is a contradiction.The only non-trivial case is then M 2 = 0, in which condition[START_REF] Smets | Constructing the pignistic probability function in a context of uncertainty[END_REF] becomesM 1 [b] • [m b (A) + µ b (A)] = 0, ∀A : |A| > 1. But in this case if |A| > 2 then m b (A) = µ b (A) = 0 (since M 2 = 0) and the constraint is met.If |A| = 2, instead, µ b (A) = (-1) |A|+1 B⊃A m b (B) = (-1) 2+1 m b (A) = -m b (A) (since m b (B) = 0 ∀B ⊃ A, |B| > 2) so that µ b (A) + m b (A) =0 and the constraint is again met. Finally, as the coordinate β[b] of ς[b] on the line a(b, pl b ) can then be rewritten asβ[b] = M 1 [b] M 2 [b] + 2M 1 [b] ,(36)if M 2 = 0 then β[b] = 1/2 and ς[b] = b+pl b Proof of Theorem 6 Finding the orthogonal projection π[b] of b onto a(P) is equivalent to imposing the condition π[b]b, b yb x = 0 ∀y = x. Replacing the masses of πb    π(x)m b (x), x ∈ Θ -m b (A), |A| > Equation (27) yields, after extracting the singletons x the summation, the system  ) = π(x) + A⊃y,A ⊃x,|A|>1 m b (A)2 1-|A| + m b (y)m b (x) -A⊃x,A ⊃y,|A|>1 m b (A)2 1-|A| ∀y = x y∈Θ π(y) = 1.

  1-|A|2 1-|A| ∀A : |A| = 1, 2. But now, as β[b] does not depend on the size |A| of A, the first condition requires m b

n = 0

Several notations in this paper have been changed with respect to other previous works, in order to adopt a more standard symbology for belief and plausibility functions.January 18, 
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Note that pl b (∅) = 0 so that the expression is well defined even though X ∅ does not exist.[START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT

[START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT

In fact the proof is valid for A = Θ, ∅ too.[START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT

In fact the proof is again valid for A = Θ, ∅ too, see Section VIII-B.[START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT

Notice that in the unnormalized case the notation b is usually used for implicability functions, while belief functions are denoted by Bel[START_REF] Smets | Decision making in the tbm: the necessity of the pignistic transformation[END_REF].[START_REF] Voorbraak | A computationally efficient approximation of Dempster-Shafer theory[END_REF] DRAFT

They are very similar to each other: basically the difference is that π[b] counts also the masses of focal elements in {x} c (with a small contribution), while BetP [b] by definition does not.

If we compute their difference After replacing the first n -1 equations into the normalization constraint we get

which is equivalent to

But now

as all the A's not containing x do contain some y = x, and they are counted |A| times (i.e. one time for each element they contain). Instead

for n -|A| = 0 when A = Θ. Hence, π(x) is equal to

We then just need to note that -y∈Θ m b (y) = -|A|=1 m b (A)|A|2 1-|A| , so that the orthogonal projection can be finally expressed as

i.e. Equation [START_REF]Upper and lower probabilities inferences for families of hypothesis with monotone density ratios[END_REF], and since

we get the second form [START_REF] Cuzzolin | Visions of a generalized probability theory[END_REF].

January 18, 2007 DRAFT

Proof of Theorem 7

By Equation ( 29) we can write