
HAL Id: hal-00171415
https://hal.science/hal-00171415v1

Submitted on 29 Apr 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic 2D Patterns for Shading 3D Scenes
Simon Breslav, Karol Szerszen, Lee Markosian, Pascal Barla, Joëlle Thollot

To cite this version:
Simon Breslav, Karol Szerszen, Lee Markosian, Pascal Barla, Joëlle Thollot. Dynamic 2D
Patterns for Shading 3D Scenes. ACM Transactions on Graphics, 2007, 26 (3), pp.20-20:5.
�10.1145/1276377.1276402�. �hal-00171415�

https://hal.science/hal-00171415v1
https://hal.archives-ouvertes.fr

Dynamic 2D Patterns for Shading 3D Scenes

Simon Breslav, Karol Szerszen, Lee Markosian

University of Michigan

Pascal Barla, Joëlle Thollot

INRIA Grenoble University

Figure 1: A dynamic 2D pattern that scales, rotates and translates in 2D to best match the apparent motion of the underlying 3D shape.

Abstract

We describe a new way to render 3D scenes in a variety of non-
photorealistic styles, based on patterns whose structure and motion
are defined in 2D. In doing so, we sacrifice the ability of patterns
that wrap onto 3D surfaces to convey shape through their structure
and motion. In return, we gain several advantages, chiefly that
2D patterns are more visually abstract – a quality often sought by
artists, which explains their widespread use in hand-drawn images.

Extending such styles to 3D graphics presents a challenge: how
should a 2D pattern move? Our solution is to transform it each
frame by a 2D similarity transform that closely follows the under-
lying 3D shape. The resulting motion is often surprisingly effective,
and has a striking cartoon quality that matches the visual style.

1 Introduction

A variety of methods have been proposed for rendering 3D scenes
in non-photorealistic styles based on patterns of brush strokes or
other 2D marks. These methods are typically designed to produce
images that resemble traditional drawings, prints, and paintings in
a range of styles. Examples include the work of Winkenbach and
Salesin [1994], Meier [1996], Hertzmann and Zorin [2000], Webb
et al. [2002], Freudenberg et al. [2002], and Kalnins et al. [2002].

In nearly all such work to date, the 2D marks are organized to
follow the features of the 3D shapes that make up the scene. This
helps convey a better sense of 3D shape to the viewer [Girshick
et al. 2000]. Indeed, the same strategy is used as well in many

hand-drawn images: strokes are often aligned with features of the
shapes being depicted.

In quite a few cases, however, artists choose a different strategy –
stroke directions appear independent of the underlying 3D shapes
(see for example Figure 2).

Such “2D patterns” of strokes are popular because they provide
greater visual abstraction. Visual abstraction takes many forms, and
is of fundamental importance in non-photorealistic images because
it lets the artist “stress the essential rather than the particular” [Bras-
sard 1998]. Depending on the chosen style, better visualization of
the details of a shape is not always desirable. This is especially true
for less-important objects such as those in the background.

Given the prevalence of 2D patterns in hand-drawn images, it is
natural to consider using them to render animated 3D scenes with
computers. This presents a challenge: how should the patterns
move? A trivial solution is to keep the pattern fixed in the image,
but this leads to a disturbing disconnect between the movement of
the pattern and the underlying object – a condition known as the
“shower door” effect. On the other hand, any motion that exactly
matches the image-space motion of the 3D object will result in
distortions in the shape of the 2D pattern.

Our solution is to compute a shape-preserving 2D “similarity
transform” combining translation, rotation, and uniform scaling to
match as closely as possible the apparent motion of the surface (see
Figure 1 and the accompanying video). The scene can be divided
into separate objects, or patches within an object, with a separate
similarity transform computed for each object or patch.

We describe a working system based on these dynamic 2D patterns
to achieve a variety of styles: multi-color halftoning, hatching
and stippling, and a painterly style. We address LOD transitions
that prevent the 2D pattern from growing too large or small.
The computation of the similarity transform is straightforward and
efficient, and the system leverages programmable GPUs to render
at interactive rates.

Transformed patterns can still exhibit sliding, but the method works
surprisingly well for many motions, and the 2D movement has a
striking cartoon quality that can match the visual style.

Figure 2: Left to right: details from drawings by Joe Sacco, Bill Plympton and Richard Sala. Stroke patterns in many hand-drawn images
like these are laid out in image space and do not follow the 3D shapes depicted by them.

2 Related work

The “dynamic canvas” method of Cunzi et al. [2003] addresses
a closely related problem and proposes a similar solution. The
problem is how to reduce the shower door effect by transforming
the background “canvas” texture used for media simulation by
many 3D NPR algorithms. Their solution is to apply a 2D similarity
transform that matches the image-space motion of certain 3D points
in the scene.

The method has two limitations: (1) it works best in the limited case
of a static scene in which all objects lie at roughly the same distance
from the camera; and (2) that distance is a parameter that must be
supplied by the application. In contrast, our method is automatic
and handles both camera and object motion (including animated
objects). It can be applied independently to each object (or part of
an object) in the scene.

Bousseau et al. [2006] and Kaplan and Cohen [2005] also describe
methods for achieving a temporally coherent dynamic canvas.
These methods are automatic and account for camera motion as
well as objects that move independently. Both methods track seed
points on 3D surfaces and use them to generate (each frame) a
canvas texture by joining small pieces of texture that follow the seed
points. These methods work well with small-scale, unstructured
patterns like canvas and paper textures, but cannot preserve regular
or large-scale patterns like hatching and halftone screens. Eissele
et al. [2004] propose a similar strategy for 2D halftone patterns
applied to 3D scenes. Not surprisingly, the method exhibits severe
temporal artifacts, with the halftone screen continually breaking
apart and re-forming.

Coconu et al. [2006] describe a method for applying 2D hatching
patterns to 3D scenes, particularly landscape models containing
trees. Leaves of the trees are clustered into “high level primitives”
and rendered with 2D hatching patterns that are updated each
frame using a 2D similarity transform. This method is similar to
the one we propose, except they compute the similarity transform
by tracking a single 3D sample point and orientation vector each
frame, whereas we use a collection of 3D sample points and
a weighted least-squares optimization to compute the similarity
transform that best matches the observed motion of the 3D points.
We explain the details in the next section.

3 Transforming 2D patterns

We implemented several styles of “dynamic 2D patterns” in
GLSL [Rost 2006]. Our halftone shader uses a previously pub-
lished halftone method [Ostromoukhov 1999; Durand et al. 2001;
Freudenberg et al. 2002] to generate several color layers that fol-
low separate light sources (see for example Figure 1). We also
demonstrate hatching and painterly styles in the accompanying
video. Each style uses image-space texture maps to encode halftone
screens, paper textures ([Kalnins et al. 2002]), or collections of
hatching or paint strokes. These “2D patterns” are typically com-
bined in several color layers to convey shading and highlights.

We transform 2D patterns as follows. In a pre-process we distribute
3D sample points over surfaces in the scene. At run time, we use the
image-space positions of the samples in the current and previous
frame to compute a 2D similarity transform that closely follows
their observed motion. We then apply the transform to the pattern.
We explain the details in the following sections.

3.1 Samples and weights

We generate sample points using the “stratified point sampling”
method of Nehab and Shilane [2004]. This method achieves a rel-
atively uniform distribution of points over each 3D surface, inde-
pendent of triangulation. 3D samples are stored using barycentric
coordinates relative to mesh triangles, so they remain valid when
the mesh is transformed or animated.

To reduce the chance of finding too few sample points in any frame,
we use a moderately dense set of samples for each object or patch
(typically several hundred). Though this is far more than needed to
produce a good solution, the performance cost of using additional
samples is negligible, as the computation of the similarity transform
is linear in the number of samples. The sampling density can be
adjusted by the user, though in practice we found that the default
settings work well.

Each sample is assigned a weight each frame based on approxi-
mately how much of the visible image is taken up by the bit of sur-
face associated with the sample. To achieve this, we compute the
image-space area of a disk that lies tangent to the surface at the sam-
ple location, with diameter equal to the sample spacing. We set the
weight equal to this value times a “fuzzy” visibility measure of the
sample, as in the “blurred depth test” of Luft and Deussen [2006],
which we implemented using an “ID image” [Kalnins et al. 2002]
instead of a depth-buffer. We compare this weighting scheme to a
simpler one in the accomanying video and Section 4.

We handle multiple objects (or patches within an object) by con-
sidering the sample points of each object (or patch) independently.
When multiple patches are used, patterns can be overlapped and
blended across patch boundaries to hide the discontinuities, as ex-
plained in Section 3.6.

3.2 Least-squares solution

We use Horn’s method [Horn 1987] to compute the 2D similarity
transform (combining translation, rotation, and uniform scaling)
that best maps the sample locations in the previous frame to the
current one. Horn’s paper provides in-depth derivations, but note
that our 2D case is simpler than the 3D case addressed by Horn.

Below, wi denotes the weight assigned to sample i in the current
frame (see Section 3.1), but we use wi = 0 when the weight assigned
in the previous frame was 0. This way, we only consider samples
that are visible in both the current and previous frames.

Let c̄ and p̄ denote the weighted centroids of the image-space loca-
tions of the samples in the current and previous frames, respectively
(both using weights wi). The translation is then simply c̄− p̄.

Let ci denote the image-space location of sample i in the current
frame minus c̄. Define pi similarly as the location of sample i in the
previous frame minus p̄.

We seek the combination of 2D rotation and uniform scaling that
best maps pi to ci, taking into account weights wi. Note that
any 2D point or vector can be viewed as a complex number – the
notations x+ iy and (x,y) are equivalent – and that complex number

multiplication achieves 2D rotation and uniform scaling.1 We can
thus formulate the problem as a weighted least squares optimization
seeking the complex number z that minimizes the error:

E = ∑
i

wi|zpi − ci|
2.

The least-squares solution is found by taking partial derivatives
with respect to the two unknown components of z, setting equal
to 0, and solving. This yields:

z =

(

∑
i

wipi · ci, ∑
i

wipi× ci

)

/∑
i

wi|pi|
2

(Here, “×” denotes the “2D cross product.”)

As Horn [1987] explains, the above formulation is not symmetric,
in the sense that the computed transform from ci to pi is not the
inverse of the transform from pi to ci — in general, the two rotations
are inverses, but the two scale factors are not. We thus adopt
the “symmetric” formulation described by Horn: we multiply z as
computed above by the following scale factor s:

s = |z|−1

(

∑i wi|ci|
2

∑i wi|pi|2

)

1
2

Without this correction, repeated zooming in and out can gradually
shrink the pattern, which may be undesirable. In any case, when the
cumulative scaling applied to the pattern grows too large (or small),
we initiate a transition to a less-scaled version of the pattern, as
explained in Section 3.4.

1Multiplication by a complex number z has a geometric interpretation: it

scales by |z| and rotates by the angle between (1,0) and z (hence i2 =−1).

3.3 Computing texture coordinates

The texture maps used by our shaders are defined in a canonical uv-
space. By convention, the texture fills the unit square [0,1]x[0,1],
and we assume it tiles seamlessly to fill all of uv-space. For
each separately moving pattern we store an image-space point o
corresponding to the origin in uv-space, and image-space vectors u
and v that correspond to uv vectors (1,0) and (0,1), respectively.
In other words, o locates the lower left corner of the pattern in the
image, and u and v determine its horizontal and vertical edges.

In each frame we compute p̄, c̄ and z as explained in Section 3.2,
then update o, u and v as follows:

o ← c̄+ z(o− p̄)

u ← zu

v ← zv

In the fragment shader, uv-coordinates are computed from the
fragment location q using: ((q−o) ·u/|u|2,(q−o) ·v/|v|2). These
coordinates can be used with any 2D pattern, to make it track the
apparent motion of the object in image-space.

3.4 LOD transitions

When patterns are scaled very large or small they lose their original
appearance. We support a kind of “level of detail” (LOD) whereby
patterns are restored to nearly their original size when the cumula-
tive scale factor falls outside of a given range. We set two scaling
thresholds 1 < s0 < s1 < 2. (In our examples, we used s0 = 1.3
and s1 = 1.7.) As cumulative scaling increases from 1 to s0, the
pattern grows larger. As scaling increases from s0 to s1, the pat-
tern continues growing but fades out, while a half-size copy of the
pattern fades in. We thus transition from a somewhat too-large pat-
tern at scale factor s0 to a somewhat too-small pattern at scale fac-
tor s1 (since the scale factor is applied to a half-sized pattern). As
the underlying scale factor continues to increase from s1 to 2, the
pattern grows back to its normal size. We combine hatching and
painterly patterns by alpha blending to achieve a cross-fade; for
halftone patterns we blend between halftone screens, causing the
pattern to morph instead of fade.

3.5 Tone correction

The blended halftone screens used for LOD transitions generally
don’t reproduce tones exactly as the original (scaled or unscaled)
screen, so to avoid tone fluctuations during LOD transitions, we
use a tone correction method like the one described by Durand
et al. [2001]. The idea is to take into account how tones will be
altered by the halftone process when using a given screen, and
compensate by adjusting the input tone in order to produce the
desired output tone. In the case addressed by Durand et al., the
tone alteration function took a known analytical form that could be
inverted. In our case we do not have an analytic expression for the
way tones are altered by the given halftone screen, so we tabulate
it in a pre-process by applying the halftone screen to each possible
input tone value and measuring the result, a strategy like the one
used by Salisbury et al. [1997] for a similar purpose.

The inverse of the tone alteration function for each halftone screen
can be stored as a 1D texture (size 256x1) that is used in the frag-
ment shader to remap tone values before using them in the halftone
process with that screen. For LOD transitions, we compute these
1D textures at regular samples of the LOD transition parameter (we
use 16 samples), resulting in a 2D texture (size 256x16) needed for
each halftone screen.

Figure 3: Left: detail of several patches from the cow model.
Middle: visualization of blending weights over patch 1-rings.
Right: hatching textures blended across patch boundaries.

3.6 Multiple patches

Our method greatly reduces the shower door effect compared to
patterns that remain fixed in the image, but for some combinations
of object shape and camera motions, significant sliding can still
occur. To reduce sliding, the user can divide a given mesh into
multiple patches, each to be rendered separately, using a similarity
transform computed with samples restricted to that patch. This can
reduce sliding significantly, as demonstrated in the video.

This introduces a visible discontinuity in the appearance and motion
of patterns on either side of the boundary. We address that problem
using a simple method for blending patterns across boundaries that
effectively hides these discontinuities in many cases – especially
for irregular patterns that use alpha blending, such as hatching and
painterly styles. (See Figures 3 and 5.)

We blend patterns near patch boundaries using a set of blending
weights – at each vertex we store one weight per patch. Weights
are initially set to 1 within a patch, and to 1/k at boundary vertices,
where k is the number of adjacent patches. To render a patch, we
render all of its triangles plus those in the 1-ring outside the patch.
The “strength” of the pattern is determined by the blending weight
at each vertex – a low weight results in a faintly rendered pattern.

With weights initialized as described above, each pattern is drawn
at half strength along its boundary, with strength falling to 0 over
the outer 1-ring of the patch boundary and rising to 1 over the inner
1-ring. Where two or more patches abut, their patterns cross-fade
over the 1-ring of the patch boundaries. Depending on the mesh
resolution, we might want to blend patterns across wider regions.
We thus let the user specify (via a slider in our GUI) the value n of
the n-ring size used in patch blending. We use an iterative process
to compute smoothly varying weights, as follows.

For n− 1 iterations, we visit each vertex and, for each patch, set
its weight at that vertex equal to the average of its weights over
the neighboring vertices. (We compute all the new weights first,
then assign them.) At each iteration, once all patch weights are
computed, they are normalized so the sum of the weights stored
at each vertex is 1. With this scheme, patch weights remain near
0.5 along patch boundaries, but smoothly fall to zero near the outer
n-ring of the patch boundary.

Even with weights that sum to 1 at each vertex, the final tone
conveyed by overlapping patterns can be altered in regions where
patches are blended. (E.g., in a dark region requiring 100% ink
application, using two halftone patterns that each outputs 50% ink
will not achieve 100% ink coverage due to overlap in the patterns.)

We thus provide an additional control through which the user
can increase or decrease the strength of the pattern around its
boundaries. In the pixel shader, before the weight is used, it is
raised to a power specified by the user – e.g., using a power of 0.5
increases the strength of the pattern moderately within the n-ring of
the boundary. We often used this value in practice.

This method of computing weights and using them to blend be-
tween patches where they overlap effectively hides discontinu-
ities between patches in many cases, and lets the user control the
width of the overlap region. A drawback is that it depends on the
mesh having a reasonably regular triangulation. More sophisticated
schemes could be tried when that is not the case.

4 Results and discussion

The accompanying video shows our method in action. The results
appear quite natural for camera or object motions that are well-
approximated by a series of 2D similarity transforms. Such mo-
tions include camera pan or zoom, or camera rotation around the
camera’s forward line of sight.

The method produces mixed results for a single object rotating
in front of the camera. For a compact object like a sphere, the
2D translation produced by the method is reasonable, since visible
surfaces largely appear to translate in a consistent direction in 2D.
The worst case (for static scenes) is when an elongated object
rotates around an axis that is parallel to the film plane (see Figure 4).
Looking straight on from the side, opposite ends of the object
appear to move toward the center line. No 2D similarity transform
well-approximates the apparent motion in this case.

We observed that while sliding can be a considerable problem
for close examination of a single elongated shape, the problem is
reduced when multiple objects are arranged in a scene (such as the
landscape with cows, or the row of skulls shown in the video).
Apparently the reason is that when navigating around several
objects placed side by side, it is natural to move more slowly and
gradually, compared to navigating around a single object. Sliding
still occurs, but when sufficiently slowed, it is less noticeable.

Our method of weighting samples is designed to give higher
priority to portions of surface that occupy more of the image. For
comparison, we also implemented a simpler “unweighted” scheme
that assigns weight = 1 if the sample is in the view frustum and
front-facing, 0 otherwise. The results are generally similar, but
the weighted scheme can be noticeably better, as in the case of
the table shown in the video. In that example, the table top and
support occupy little space in the image, and so are assigned small
weights by the weighted scheme. That results in a better transform,

Figure 4: Worst case scenario: an elongated object rotating
around an axis parallel to the film plane. Opposite ends move
toward the center line. Our method works poorly in this case since
no 2D similarity transform well-approximates the apparent motion.

Figure 5: A painterly style applied to an animated model of a hand
that has been divided into patches.

because those surfaces move differently than the side of the table
cloth, which fills most of the image and has a consistent motion.

We also observed a case when the weighted scheme seems worse
than the unweighted one. The landscape model shown in the video
has a large featureless foreground and a few hills on the horizon.
The unweighted scheme assigns more importance to the distant
hills, while the weighted scheme favors the foreground. Since the
foreground lacks clear features, the viewer is less aware of sliding
there, while the hills have a clearly perceived location, and any
sliding of the pattern across them is quite noticeable. An interesting
avenue for future work is thus to investigate weighting schemes that
take into account more perceptual aspects of the scene.

A benefit of using 2D patterns is that they require no tedious surface
parameterization, which might save time for artists. Artists are
more free to design any pattern they want since patterns are ensured
not to be deformed. Designs can easily be transferred to new
objects. 2D patterns may also be better suitable for integration in
hand-drawn animations.

We don’t claim that 2D patterns should always be used in place
of patterns that are mapped onto surfaces in 3D, especially in the
case of foreground objects at the center of attention. Rather, we
argue that 2D patterns will be attractive to designers and animators
because they are easy to create, they perform well for many
motions, and they provide a greater degree of visual abstraction.
We envision interactive applications and animations that combine
dynamic 2D patterns with other rendering techniques to produce
both 2D and 3D effects with a unified artistic style.

References

BOUSSEAU, A., KAPLAN, M., THOLLOT, J., AND SILLION, F.
2006. Interactive watercolor rendering with temporal coherence
and abstraction. In NPAR 2006, 141–149.

BRASSARD, L. 1998. The Perception of the Image World. PhD
thesis, Simon Fraser University.

COCONU, L., DEUSSEN, O., AND HEGE, H.-C. 2006. Real-time
pen-and-ink illustration of landscapes. In NPAR 2006, 27–35.

CUNZI, M., THOLLOT, J., PARIS, S., DEBUNNE, G., GASCUEL,
J.-D., AND DURAND, F. 2003. Dynamic canvas for immersive
non-photorealistic walkthroughs. In Proc. Graphics Interface.

DURAND, F., OSTROMOUKHOV, V., MILLER, M., DURANLEAU,
F., AND DORSEY, J. 2001. Decoupling strokes and high-
level attributes for interactive traditional drawing. In 12th
Eurographics Workshop on Rendering, 71–82.

EISSELE, M., WEISKOPF, D., AND ERTL, T. 2004. Frame-to-
Frame Coherent Halftoning in Image Space. In Proceedings of
Theory and Practice of Computer Graphics 2004, 188–195.

FREUDENBERG, B., MASUCH, M., AND STROTHOTTE, T. 2002.
Real-time halftoning: a primitive for non-photorealistic shading.
In 13th Eurographics Workshop on Rendering, 227–232.

GIRSHICK, A., INTERRANTE, V., HAKER, S., AND LEMOINE,
T. 2000. Line direction matters: An argument for the use of
principal directions in 3D line drawings. In NPAR 2000, 43–52.

HERTZMANN, A., AND ZORIN, D. 2000. Illustrating smooth
surfaces. In SIGGRAPH 2000, 517–526.

HORN, B. K. P. 1987. Closed-form solution of absolute orientation
using unit quaternions. Journal of the Optical Society of America
4, 4 (April), 629–642.

KALNINS, R. D., MARKOSIAN, L., MEIER, B. J., KOWALSKI,
M. A., LEE, J. C., DAVIDSON, P. L., WEBB, M., HUGHES,
J. F., AND FINKELSTEIN, A. 2002. WYSIWYG NPR: Drawing
strokes directly on 3D models. ACM Transactions on Graphics
21, 3, 755–762.

KAPLAN, M., AND COHEN, E. 2005. A generative model
for dynamic canvas motion. In Proceedings of Computational
Aesthetics in Graphics, Visualization and Imaging, 49–56.

LUFT, T., AND DEUSSEN, O. 2006. Real-time watercolor
illustrations of plants using a blurred depth test. In NPAR 2006,
11–20.

MEIER, B. J. 1996. Painterly rendering for animation. In
SIGGRAPH 96, 477–484.

NEHAB, D., AND SHILANE, P. 2004. Stratified point sampling
of 3D models. In Eurographics Symposium on Point-Based
Graphics, 49–56.

OSTROMOUKHOV, V. 1999. Digital facial engraving. In SIG-
GRAPH 99, 417–424.

ROST, R. J. 2006. OpenGL Shading Language, Second Edition.
Addison Wesley Professional.

SALISBURY, M. P., WONG, M. T., HUGHES, J. F., AND

SALESIN, D. H. 1997. Orientable textures for image-based
pen-and-ink illustration. In SIGGRAPH 97, 401–406.

WEBB, M., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H.
2002. Fine tone control in hardware hatching. In NPAR 2002,
53–58.

WINKENBACH, G., AND SALESIN, D. H. 1994. Computer-
generated pen-and-ink illustration. In SIGGRAPH 94, 91–100.

Acknowledgements

We thank Joe Sacco, Bill Plympton, and Richard Sala for permis-
sion to use details from their drawings in Figure 2, Igor Guskov for
helpful advice in the early stages of this project, Haixiong Wang,
Mike Cook and Rob Martinez for coding support, and the review-
ers at INRIA and anonymous reviewers whose advice helped im-
prove the paper. This research was supported in part by the NSF
(CCF-0447883).

