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In this paper it is shown that multi-port dynamic thermal networks admit four canonical representations which generalize the four canonical representations of passive lumped RC networks: Foster I and II canonical forms, Cauer I and Cauer II canonical forms. In particular the generalized Foster I canonical form is equivalent to the time-constant representation and the generalized Cauer I canonical form is a passive multi-conductor RC transmission line.

Introduction

Thermal networks are widely used for modeling heat diffusion in components and packages. At first thermal networks have been proposed for modeling static heat diffusion [START_REF] Lasance | A novel approach for the thermal characterization of electronic parts[END_REF]. More recently thermal networks have been proposed also for modeling dynamic heat diffusion [START_REF] Székely | Fine Structure of Heat Flow Path in Semiconductor Devices: a Measurement and Identification Method[END_REF][START_REF] Rencz | Dynamic thermal multi-port modeling of IC packages[END_REF].

The question of determining the canonical forms of one-port dynamic thermal networks has been considered in [START_REF] Székely | Fine Structure of Heat Flow Path in Semiconductor Devices: a Measurement and Identification Method[END_REF][START_REF] Székely | On the Representation of Infinite-Length Distributed RC One-Ports[END_REF][START_REF] Codecasa | Canonical Forms of One-Port Passive Distributed Thermal Networks[END_REF][START_REF] Codecasa | Structure Function Representation of Multi-Directional Heat Flows[END_REF]. It has been shown that passive one-port dynamic thermal networks admit four canonical forms which are the generalizations of Foster I, Foster II, Cauer I and Cauer II canonical forms of passive one-port RC lumped networks. In particular the generalized Foster I canonical form is equivalent to the time-constant representation [START_REF] Székely | On the Representation of Infinite-Length Distributed RC One-Ports[END_REF][START_REF] Codecasa | Canonical Forms of One-Port Passive Distributed Thermal Networks[END_REF], while the Cauer I canonical form is equivalent to the structure function representation [START_REF] Székely | Fine Structure of Heat Flow Path in Semiconductor Devices: a Measurement and Identification Method[END_REF][START_REF] Codecasa | Canonical Forms of One-Port Passive Distributed Thermal Networks[END_REF][START_REF] Codecasa | Structure Function Representation of Multi-Directional Heat Flows[END_REF] The question of determining canonical forms of multi-port dynamic thermal networks has not been tackled in literature yet. In this paper it is shown that all the results proved for passive one-port dynamic thermal networks can be extended to passive multi-port dynamic thermal networks. As a result the Foster I, Cauer I, Foster II and Cauer II representations of passive multiport RC lumped networks are extended one-port to multi-port passive dynamic thermal networks.

In particular the generalized Foster I canonical form is equivalent to the time-constant representation. Besides the generalized Cauer I canonical form is a passive multi-conductor RC transmission line.

It is also shown how all multi-port dynamic thermal networks can be represented by passive multi-port dynamic thermal networks. Thus the four canonical forms of passive multi-port dynamic thermal networks can be applied to all multi-port dynamic thermal networks.

The rest of this paper is organized as follows. In Section 2 multi-port dynamic thermal networks are introduced. In Sections 3, 4, preliminary results on passive multi-port dynamic thermal networks are presented. The four canonical forms are shown in Sections 5, 6 and 8, 9. An application example is presented in Sections 7 and 10.

Multi-Port Dynamic Thermal Networks

In a bounded spatial region Ω, the relation between the power density F (r, t) and the temperature rise u(r, t) with respect to ambient temperature, functions of the position vector r and of the time instant t, is ruled by the heat conduction equation

∇ • (-k(r)∇u(r, t)) + c(r) ∂u ∂t (r, t) = F (r, t), (1) 
in which c(r) is the volumetric heat capacity and k(r) is the thermal conductivity. Eq. ( 1) is completed by conditions on the boundary of Ω, ∂Ω, and by initial condition for the temperature rise u(r, t). The boundary conditions, assumed of Robin's type, are

-k(r) ∂u ∂ν (r, t) = h(r)u(r, t), (2) 
in which h(r) is the heat transfer coefficient and ν(r) is the outward unit vector normal to ∂Ω. Here h(r) is not assumed to be identically zero over ∂Ω, that is pure Neumann's boundary conditions are excluded. The initial condition is assumed to be zero

u(r, 0) = 0. (3) 
This is by no means a limitation. In fact any heat diffusion problem with non-zero initial condition u(r, 0) = U (r)

and power density F (r, t) can be represented by an equivalent heat diffusion problem with zero initial condition and power density

F (r, t) + c(r) U (r) δ(t).
The heat diffusion problem defined by Eqs. ( 1), ( 2), (3), satisfies the following main physical properties:

Theorem 1 (Passivity) A non-negative function W (t) exists such that, for each time t 1 ≤ t 2 , W (t 2 ) ≤ W (t 1 ) + t2 t1 dt Ω F (r, t)u(r, t) dr.
Theorem 2 (Reciprocity) Let u 1 (r, s), u 2 (r, s) be the Laplace transforms of the temperature rises due to the power densities whose Laplace transforms are F 1 (r, s), F 2 (r, s) respectively. It results in

Ω F 1 (r, s)u 2 (r, s) dr = Ω F 2 (r, s)u 1 (r, s) dr.
A multi-port dynamic thermal network can be defined from the heat diffusion problem, by introducing the powers and the temperature rises measured at its ports. The powers P i (t), with i = 1, . . . , n, elements of column vector P(t), determine F (r, t) as

F (r, t) = f T (r)P(t) (4) 
in which f (r) is a column vector of shape functions f i (r), with i = 1, . . . , n. The temperature rise T i (t), with i = 1, . . . , n, elements of column vector T(t), are defined by

T(t) = Ω g(r)u(r, t) dr. (5) 
in which g(r) is a column vector of shape functions g i (r), with i = 1, . . . , n.

The multi-port dynamic thermal network defined by Eqs. ( 1)-( 5) in general does not preserve the main physical properties of the heat diffusion problem: reciprocity and passivity. However these physical properties are preserved if

f (r) = g(r). (6) 
In fact in this case it results in As shown in [START_REF] Codecasa | Canonical Forms of One-Port Passive Distributed Thermal Networks[END_REF] limitedly to the case of one-port dynamic thermal networks, only if passivity and reciprocity hold canonical forms of dynamic thermal networks can be given. Thus hereafter it will be assumed that Eq. ( 6) holds or equivalently that the multi-port dynamic thermal network is passive. It can be observed that this is not a limitation. In fact a multi-port dynamic thermal network whose powers are defined by f (r) and whose temperature rises are defined by g(r) has port responses equal to a subset of the port responses of the passive multi-port dynamic thermal network whose shape functions for both powers and temperature rises are all the distinct elements of f (r) and g(r). As a result, a generic n-port dynamic thermal network can always be substituted by a passive N -port dynamic thermal network with n ≤ N ≤ 2n.

Hereafter it is also assumed that the shape functions in f (r) = g(r) are linearly independent. Again this is not a limitation. In fact if f (r) = g(r) are linearly dependent, it results in g(r) = Rĝ(r), in which ĝ(r) is a vector of n < n linearly independent shape functions and R is an n × n rectangular matrix. Thus it results in

T(t) = R T(t) (7) P(t) = R T P(t) (8) 
and

F (r, t) = ĝT (r) P(t) (9) 
T(t) = Ω ĝ(r)u(r, t) dr (10) 
The passive n-port dynamic thermal network is then the connection of a multi-port transformer [START_REF] Newcomb | Linear Multi-port Synthesis[END_REF] defined by Eqs. ( 7), (8) to a passive n-port dynamic thermal network, defined by Eqs. ( 9), (10), with n < n linearly independent shape functions.

3 Solutions of Passive Multi-Ports Dynamic Thermal Networks The solution of Eqs. ( 1), ( 2), ( 3) can be expressed by the series expansion [START_REF] Codecasa | Canonical Forms of One-Port Passive Distributed Thermal Networks[END_REF] 

T (r, t) = ∞ j 1 a j (t)z j (r) (11) 
in which z j (r) are the eigenfunctions of the eigenvalue problem associated to the thermal problem

∇ • (-k(r)∇z j (r)) = λ j c(r)z j (r) r ∈ Ω, (12) 
with boundary conditions

-k(r) ∂z j ∂ν (r) = h(r)z j (r) r ∈ ∂τ. (13) 
The eigenvalues λ j are real, positive and constitute a divergent, monotonically increasing sequence. The eigenfunctions z j (r) are real functions of position satisfying the orthonormality relations

Ω c(r)z j (r)z k (r) dr = δ jk (14)
in which δ jk is Kronecher's delta. Coefficients a j (t) in Eq. ( 11) are solutions of equations

d dt a j (t) + λ j a j (t) = Ω z j (r)G(r, t) dr, (15) 
with zero initial conditions. The solutions to these initial value problems are

a j (t) = e -λj t * Ω z j (r)G(r, t) dr, (16) 
in which * is the convolution operator in the time domain.

The solution of the passive multi-port dynamic thermal network can then be expressed as follows. From Eqs. ( 4), ( 16) it results in

a j (t) = e -λj t * Γ T j P(t). ( 17 
)
in which

Γ j = Ω z j (r)g(r) dr. (18) 
From Eqs. ( 5), (11), it results in

T(t) = ∞ j 1 Γ j a j (t). (19) 
Thus substituting Eq. ( 17) into Eq. ( 19), it follows

T(t) = Z(t) * P (t)
in which

Z(t) = ∞ j 1 Γ j Γ T j e -λj t (20)
is the power impulse thermal response matrix of the passive multi-port dynamic thermal network. Taking the Laplace transform of Eq. ( 20) it also follows

T(s) = Z(s)P(s)
in which

Z(s) = ∞ j 1 Γ j Γ T j s + λ j (21)
is the thermal impedance matrix of the multi-port dynamic thermal network.

Preliminary Results on Passive Multi-Port Dynamic

Thermal Networks Passive multi-port dynamic thermal networks are a generalization of passive multi-port lumped RC networks. In fact their impedance matrices satisfy properties common to passive multiport lumped RC networks.

Theorem 5

1. Impedance matrix Z(s) with s = σ + iω is symmetric and positive real [START_REF] Newcomb | Linear Multi-port Synthesis[END_REF]. That is, for σ > 0,

Z(s) is analytic, Z(s) = Z(s), Re Z(s) is positive definite,
in which the bar indicates the complex conjugate operator.

2. Poles of Z(s) are simple, real, negative and form a divergent, monotonically decreasing sequence -λ 1 , -λ 2 , . . . .

3.

The residues at the poles of Z(s) are real, symmetric, positive semi-definite.

4. On the positive real axis -Z ′ (σ) is symmetric, positive definite.

Since the shape functions defining the passive multi-port dynamic thermal network are linearly independent, an admittance matrix Y(s), inverse of Z(s), exists. Such admittance matrix satisfies the following properties common to that of passive multi-port lumped RC networks.

Theorem 6

1. Matrix Y(s) is symmetric and positive real [START_REF] Newcomb | Linear Multi-port Synthesis[END_REF]. That is for σ > 0

Y(s) is analytic, Y(s) = Ȳ(s), Re Y(s) is positive definite.
2. Poles of Y(s) are simple, real, negative and form a divergent, monotonically decreasing sequence -µ 1 , -µ 2 , . . . .

3.

The residues at the poles of Y(s)/s are real, symmetric, positive semi-definite.

On the positive real axis

Y ′ (σ) is symmetric, positive defi- nite.
As a consequence of Theorems 5 and 6, a multi-port passive distributed thermal network can be approximated at s → 0 by the parallel connection of a passive resistive multi-port and a passive capacitive multi-port and at s → ∞ by a passive capacitive multi-port, as stated in the following Theorem 7 At s → 0, the Z(s) impedance matrix converges to the impedance of the parallel connection of a passive resistive multi-port of resistance matrix R 0 and of a passive capacitive multi-port of capacitance matrix C 0 , being

R 0 = Z(0), ( 22 
) C 0 = Y ′ (0). ( 23 
)
Theorem 8 For s → ∞ with σ > 0, the Y(s) admittance converges to the admittance of a passive capacitive multi-port of capacitance matrix

C ∞ = lim s→∞ Y(s) s = lim s→∞ Y ′ (s). (24) 
The R 0 matrix, the C 0 matrix and the inverse of C ∞ matrix are hereafter referred to respectively as total resistance matrix, total capacitance matrix and total elastance matrix of the passive multi-port dynamic thermal network.

Generalized Foster I Canonical Form

As a consequence of Theorem 5 Theorem 9

Z(s) = ∞ j 1 r j 1 + s/λ j = ∞ j 1 e j s + λ j (25)
in which r j = e j /λ j are real, symmetric, positive semi-definite matrices.

Eq. ( 25) defines an infinite network composed of ideal transformers, passive resistors and passive capacitors which generalizes the Foster I canonical form of a passive multi-port lumped RC network [START_REF] Newcomb | Linear Multi-port Synthesis[END_REF]. The resistance matrix of the series connections of the passive resistive multi-ports having r j resistance matrices is the total resistance matrix R 0 . Thus the generalized Foster I canonical form defines partial resistance matrices of R 0 . Similarly the elastance matrix of the series connections of the passive capacitive multi-ports having e j elastance matrices is the total elastance matrix, inverse of C ∞ . Thus the generalized Foster I canonical form defines partial elastance matrices of the inverse of C ∞ . The Foster I canonical form can be defined by the cumulative resistance matrix

R(λ) = ∞ j 1 r j H(λ -λ j ),
H(•) being Heaviside's step function, equivalent to the timeconstant representation [START_REF] Székely | On the Representation of Infinite-Length Distributed RC One-Ports[END_REF] or by the cumulative elastance matrix

E(λ) = ∞ j 1
e j H(λ -λ j ).

Generalized Foster II Canonical Form

As a consequence of Theorem 6, the admittance matrix Y(s), can be represented as follows Theorem 10

Y(s) = sC ∞ + R -1 0 + ∞ j 1 sc j 1 + s/µ j ( 26 
)
in which c j are symmetric positive semi-definite.

Eq. ( 26) defines an infinite network composed of ideal transformers passive resistors and passive capacitors which generalizes the Foster II canonical form of a passive multi-port lumped RC network. The resistance matrix of the passive resistive multi-port is R 0 . The capacitance matrix of the passive capacitive multi-port is C ∞ . The capacitance matrix of the parallel connections of the capacitive multi-ports having C ∞ and c j capacitance matrices is the total capacitance matrix C 0 . Thus the generalized Foster II canonical form defines partial capacitances of the total capacitance matrix C 0 . The Foster II canonical form can be defined by the cumulative capacitance matrix

C(λ) = C ∞ + ∞ j 1 c j H(λ -µ j ).
and by R 0 .

Application Example: Part I

A cylinder Ω of length L, area A, thermal conductivity k and heat capacity c is considered. The powers P 1 (t), P 2 (t) are uniformly generated within the lower and upper halves of the cylinder respectively. On the lower and upper face of the boundary ∂Ω the temperature is set equal to the ambient temperature. On the rest of the boundary ∂Ω the thermal flux is set to zero. According to Eq. ( 6), the mean temperature rises in the lower and upper halves of the cylinder are the T 1 (t) and T 2 (t) temperature rise of a passive 2-port dynamic thermal network.

The thermal impedance matrix is

Z(s) = L kA K L 2 c k s (27)
in which

K(p) = 1 p   f √ p 4 + f √ p 2 f √ p 4 -f √ p 2 f √ p 4 -f √ p 2 f √ p 4 + f √ p 2   and 
f (q) = 1 - tanh q q .
Thus from Eq. ( 27) and Eqs. ( 22), ( 23), ( 24) it results in

R 0 = L kA 5 48 1 16 1 16 5 48 , C 0 = LAc 3 5 0 0 3 5 , C ∞ = LAc 1 2 0 0 1 2 .
The generalized Foster I and II canonical forms of this thermal network can be determined analytically in closed form. Determining the Mittag-Leffler's partial fractions expansion of K(p), the Foster I canonical form follows

λ j =                    k L 2 c π 2 (4k + 1) 2 j = 3k + 1, k L 2 c π 2 (4k + 2) 2 j = 3k + 2, k L 2 c π 2 (4k + 3) 2 j = 3k + 3, r j = e j λ j =                          L kA 64 π 4 (4k + 1) 4 1 1 1 1 j = 3k + 1, L kA 64 π 4 (4k + 2) 4 1 1 1 1 j = 3k + 2, L kA 256 π 4 (4k + 3) 4 1 -1 -1 1 j = 3k + 3,
k being any natural number. The R(λ) cumulative resistance matrix defining the Foster I canonical form is shown in Fig. 1. The admittance matrix Y(s) is in which

L 2 c k λ kA L R 11 = kA L R 22 kA L R 12 = kA L R 21
Y(s) = kA L H L 2 c k s (28) 
L 2 c k λ 1 LAc C 11 = 1 LAc C 22 1 LAc C 12 = 1 LAc C 21
H(p) = p 4       1 f √ p 2 + 1 f √ p 4 1 f √ p 2 - 1 f √ p 4 1 f √ p 2 - 1 f √ p 4 1 f √ p 2 + 1 f √ p 4      
Determining the Mittag-Leffler's partial fractions expansion of H(p), the Foster II canonical form follows

µ j =                    k L 2 c (2ξ 2k+1 ) 2 j = 3k + 1, k L 2 c (2ξ 2k+2 ) 2 j = 3k + 2, k L 2 c (4ξ k+1 ) 2 j = 3k + 3, , c j =                          LAc 1 ξ 2 2k+1 1 1 1 1 j = 3k + 1, LAc 1 ξ 2 2k+2 1 1 1 1 j = 3k + 2, LAc 1 ξ 2 k+1 1 -1 -1 1 j = 3k + 3,
, k being any natural number and ξ j being the j-th positive root of the equation tan ξ j = ξ j .

The C(λ) cumulative capacitance matrix defining the Foster II canonical form is shown in Fig. 2.

Generalized Cauer I Canonical Form

Let us consider a passive multi-conductor RC transmission line of length x in the x dimension described at a complex frequency s by equations

∂V ∂x (x, s) = -r(x)I(x, s) (29) e(x) ∂I ∂x (x, s) = -sV(x, s) (30) 
in which V(x, s), I(x, s) are the Laplace transforms of the voltage and current n × 1 vectors at x and r(x), e(x) are symmetric, positive semi-definite n × n matrices representing the resistance matrix density and the elastance matrix density of the line at x. By introducing the impedance matrix Z(x, s) at each x along the line, Eqs. ( 29), (30) can be reduced to the single Riccati-type matrix equation

∂Z ∂x (x, s) + r(x) = sZ(x, s)e + (x)Z(x, s), (31) 
in which + is the pseudo-inverse operator. Thus, if the output port of the line is short-circuited, the impedance matrix Z(x, s) and, in particular, the input impedance matrix

Z(s) = Z(0, s) (32) 
can be determined by solving Eq. ( 31) with boundary condition

Z(x, s) = 0. (33) 
The inverse problem can also be considered. By assigning the input impedance matrix Z(s) when the output port of the line is short-circuited, a passive multi-conductor RC transmission line can be determined, by solving Eqs. (31), (32), (33) for r(x) and e(x). In this way, as a consequence of Theorem 5, the following result can be proved Theorem 11 The Z(s) impedance matrix of a passive multiport dynamic thermal network is the short-circuit input impedance matrix of a passive multi-conductor RC transmission line ruled by Eqs. ( 29), (30).

Thus passive multi-port dynamic thermal networks can be represented by passive multi-conductor RC transmission lines with short-circuited output ports. This is the generalization of Cauer I canonical form of passive multi-port lumped RC networks to passive multi-port dynamic thermal networks.

As shown in [START_REF] Codecasa | Canonical Forms of One-Port Passive Distributed Thermal Networks[END_REF], with passive one-port dynamic thermal networks, the RC transmission line is not uniquely determined. Similarly with passive multi-port dynamic thermal networks, the multi-conductor RC transmission line is not uniquely determined.

Such passive RC multi-conductor transmission line defines partial resistance matrices of the R 0 total resistance matrix and can be decomposed into the shunt connection of a passive capacitive multi-port of capacitance matrix C ∞ and a second passive multi-conductor RC transmission line.

Generalized Cauer II Canonical Form

As a consequence of Theorem 6, it can be proved that a continued fraction expansion can be performed for the impedance matrix Z(s) of a passive multi-port dynamic thermal network, exactly as when determining the Cauer II canonical form of a passive multi-port lumped RC network [START_REF] Newcomb | Linear Multi-port Synthesis[END_REF].

Theorem 12 Given the impedance matrix Z(s) of a passive multi-port dynamic thermal network, it results in This expansion defines an infinite network composed of passive resistive multi-ports of resistance matrices r 1 , r 2 , . . . and of passive capacitive multi-ports of elastance matrices e 1 , e 2 , . . . which generalizes the Cauer II canonical form of a passive multi-port dynamic thermal network. The first resistance matrix r 1 is the total resistance matrix R 0 , the first elastance matrix e 1 is the inverse of the total capacitance matrix C 0 . The elastance matrix of the series connections of the passive capacitive multi-ports of elastance matrices e 1 , e 2 , . . . is the inverse of matrix C ∞ . Thus the Cauer II canonical form of a passive multi-port dynamic thermal networks defines partial elastance matrices of the inverse of matrix C ∞ . 

Z(s) =   r + 1 + e 1 s +

Conclusions

In this paper four canonical forms have been introduced for multi-port dynamic thermal networks, which generalize the four canonical forms of passive multi-port lumped RC networks. In particular it has been shown that the generalized Foster I canonical form is equivalent to the time-constant representation and that the generalized Cauer I canonical form is a passive multiconductor RC transmission line.
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 2 Figure 2: C(λ) cumulative capacitance matrix defining Foster II canonical form.
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 1 Application Example: Part II From Eqs. (31), (32), (33), a generalized Cauer I canonical form of the passive multi-port dynamic thermal network of section 7Fig.3.The Cauer II canonical form can be determined by performing a continued fraction expansion of Z(s). The first resistance matrices are being R 0 . The first elastance matrices are e 1 = 1 LAc

e 1

 1 being the inverse of C 0 .
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 3 Figure 3: Resistance matrix of the Cauer I canonical form.

  in which r 1 , r 2 , . . . and e 1 , e 2 , . . . are symmetric, positive semi-definite.

	r + 2 +	e 2 s	+. . .	+ + +	 	+	(34)