
HAL Id: hal-00171269
https://hal.science/hal-00171269

Submitted on 12 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finite geometries and diffractive orbits in isospectral
billiards

Olivier Giraud

To cite this version:
Olivier Giraud. Finite geometries and diffractive orbits in isospectral billiards. Journal of
Physics A: Mathematical and General (1975 - 2006), 2005, 38 (27), pp.L477-L483. �10.1088/0305-
4470/38/27/L01�. �hal-00171269�

https://hal.science/hal-00171269
https://hal.archives-ouvertes.fr


LETTER TO THE EDITOR

Finite geometries and diffractive orbits in

isospectral billiards

Olivier Giraud

Laboratoire de Physique Théorique, UMR 5152 du CNRS, Université Paul Sabatier,

31062 Toulouse Cedex 4, France

E-mail: giraud@irsamc.ups-tlse.fr

Abstract. Several examples of pairs of isospectral planar domains have been

produced in the two-dimensional Euclidean space by various methods. We show that

all these examples rely on the symmetry between points and blocks in finite projective

spaces; from the properties of these spaces, one can derive a relation between Green

functions as well as a relation between diffractive orbits in isospectral billiards.

PACS numbers: 02.70.Hm, 03.65.Nk, 03.65.Ge, 05.45.-a

It is almost forty years now that Mark Kac addressed his famous question “Can one hear

the shape of a drum” [1]. The problem was to know whether there exists isospectral

domains, that is non-isometric bounded regions of space for which the sets {En, n ∈ N}

of solutions of the stationary Schrödinger equation (∆ + E)Ψ = 0, with some specified

boundary conditions, would coincide. Instances of isospectral pairs have finally been

found for Riemannian manifolds [2, 3], and more recently for two-dimensional Euclidean

connected compact domains (we will call such planar domains ”billiards”) [4]. The proof

of isospectrality was based on Sunada’s theorem, which allows to construct isospectral

pairs from groups related by a so-called ”almost conjugate” property [5]. The two

billiards given in [4] to illustrate the existence of isospectral billiards are represented

in figure 1a: they are made of 7 copies of a base tile (here a right isosceles triangle)

unfolded with respect to its edges in two different ways. It turns out that in this example,

isospectrality can be proved directly by giving an explicit linear map between the two

domains [6]. Eigenfunctions in one billiard can be expressed as a linear superposition of

eigenfunctions of the other billiard, in such a way that boundary conditions are fulfilled;

isospectrality is ensured by linearity of Schrödinger equation. This ”transplantation”

method allowed to generalize the example of [4] : any triangle can replace the base

triangle of figure 1a, what matters is the way the initial base tile is unfolded (see

figure 1b). Further examples of isospectral billiards were obtained by applying Sunada’s

theorem to reflexion groups in the hyperbolic upper-half plane [9]: examples of billiards

made of 7, 13, 15 or 21 triangular tiles were given. Later on, it was shown that the
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a) b)

Figure 1. a) Two isospectral billiards with a triangular base shape. b) A pair of

isospectral billiards constructed from the same unfolding rules as a).

transplantation method produces exactly the same examples and provides a proof for iso-

length-spectrality of these billiards (i.e. the set of lengths of periodic orbits is identical)

[10]. A similar transplantation technique, together with results on Green functions of

polygonal billiards, was applied to show that there is no such equality of the lengths for

diffractive orbits (that is, the lines joining two vertices); a more involved relation was

found [12].

The purpose of this letter is to show that all known examples of isospectral

pairs, given by [9] or [10], can be obtained by considering finite projective spaces

(FPS): the transplantation map between two isospectral billiards can be taken to be

the incidence matrix of a FPS. This construction from FPSs indicates that the deep

origin of isospectrality in Euclidean spaces is point-block duality. It also leads to a

relation between Green functions, and to a correspondence between diffractive orbits in

isospectral billiards.

Isospectral billiards. All known isospectral billiards can be obtained by unfolding

triangle-shaped tiles [9, 10]. The way the tiles are unfolded can be specified by three

permutation matrices M (µ), 1 ≤ µ ≤ 3, associated to the three sides of the triangle:

M
(µ)
ij = 1 if tiles i and j are glued by their side µ (and M

(µ)
ii = 1 if the side µ of tile i is

the boundary of the billiard), and 0 otherwise [10, 11, 12]. Following [10], one can sum

up the action of the M (µ) in a graph with coloured edges: each copy of the base tile is

associated to a vertex, and vertices i and j, i 6= j, are linked by an edge of colour µ if

and only if M
(µ)
ij = 1 (see figure 2). In the same way, in the second member of the pair,

the tiles are unfolded according to permutation matrices N (µ), 1 ≤ µ ≤ 3. Two billiards

are said to be transplantable if there exists an invertible matrix T (the transplantation

matrix) such that ∀µ TM (µ) = N (µ)T . One can show that transplantability implies

isospectrality (if the matrix T is not merely a permutation matrix, in which case the

two domains would just have the same shape). The underlying idea is that if ψ(1) is an

eigenfunction of the first billiard and ψ
(1)
i its restriction to triangle i, then one can build

an eigenfunction ψ(2) of the second billiard by taking ψ
(2)
i =

∑
j Tijψ

(1)
j . Obviously ψ(2)

verifies Schrödinger equation; it can be checked from the commutation relations that
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Figure 2. The graphs corresponding to a pair of isospectral billiards: if we label the

sides of the triangle by µ = 1, 2, 3, the unfolding rule by symmetry with respect to side

µ can be represented by edges made of µ braids in the graph. From a given pair of

graphs, one can construct infinitely many pairs of isospectral billiards by applying the

unfolding rules to any triangle. Note that a different labeling of the tiles would just

induce a permutation of the labelings of points and blocks in the Fano plane.

the function is smooth at all edges of the triangles, and that boundary conditions at the

boundary of the billiard are fulfilled [10].

Suppose we want to construct a pair of isospectral billiards, starting from any

polygonal base shape. Our idea is to start from the transplantation matrix, and choose

it in such a way that the existence of commutation relations TM (µ) = N (µ)T for some

permutation matrices M (µ), N (µ) will be known a priori. As we will see, this is the case

if T is taken to be the incidence matrix of a FPS; the matrices M (µ) and N (µ) are then

permutations on the points and the hyperplanes of the FPS.

Finite projective spaces. For n ≥ 2 and q = ph a power of a prime number, consider

the (n + 1)-dimensional vector space F
n+1
q , where Fq is the finite field of order q. The

finite projective space PG(n, q) of dimension n and order q is the set of subspaces

of F
n+1
q : the points of PG(n, q) are the 1-dimensional subspaces of F

n+1
q , the lines of

PG(n, q) are the 2-dimensional subspaces of F
n+1
q , and more generally (d+1)-dimensional

subspaces of F
n+1
q are called d-spaces of PG(n, q); the (n − 1)-spaces of PG(n, q) are

called hyperplanes or blocks. A d-space of PG(n, q) contains (qd+1 − 1)/(q − 1) points.

In particular, PG(n, q) has (qn+1−1)/(q−1) points. It also has (qn+1−1)/(q−1) blocks

[8]. As an example, figure 3 shows the finite projective plane (FPP) of order q = 2, or

Fano plane, PG(2, 2).

A (N, k, λ)−symmetric balanced incomplete block design (SBIBD) is a set of N

points, belonging to N subsets (or blocks); each block contains k points, in such a

way that any two points belong to exactly λ blocks, and each point is contained

in k different blocks [13]. One can show that PG(n, q) is a (N, k, λ)-SBIBD with

N = (qn+1 − 1)/(q − 1), k = (qn − 1)/(q − 1) and λ = (qn−1 − 1)/(q − 1)). For

example, the Fano plane is a (7, 3, 1)−SBIBD. The points and the blocks can be labeled

from 0 to N − 1. For any (N, k, λ)−SBIBD one can define an N ×N incidence matrix

T describing to which block each point belongs. The entries Tij of the matrix are
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Figure 3. The Fano plane PG(2, 2) and its corresponding incidence matrix T . The

Fano plane has (q3 − 1)/(q − 1) = 7 points and 7 lines; each line contains q + 1 = 3

points and each point belongs to 3 lines. Any pair of points belongs to one and only

one line.

Tij = 1 if point j belongs to line i, 0 otherwise. The matrix T verifies the relation

TT t = λJ + (N − k)λ/(k − 1)I, where J is the N ×N matrix with all entries equal to

1 and I the N ×N identity matrix [13]. In particular, the incidence matrix of PG(n, q)

verifies

TT t = λJ + (k − λ)I (1)

with k and λ as given above. For example, the incidence matrix of the Fano plane given

in figure 3 corresponds to a labeling of the lines such that line 0 contains points 0,1,3,

and line 1 contains points 1,2,4, etc.

A collineation of a FPS is a bijection that preserves incidence, that is a permutation

of the points that takes d-spaces to d-spaces (in particular, it takes blocks to blocks).

Any permutation σ on the points can be written as a N × N permutation matrix M

defined by Miσ(i) = 1 and the other entries equal to zero. If M is a permutation matrix

associated to a collineation, then there exists a permutation matrix N such that

TM = NT. (2)

In words, (2) means that permuting the columns of T (i.e. the blocks of the space) under

M is equivalent to permuting the rows of T (i.e. the points of the space) under N . The

commutation relation (2) is a related to an important feature of projective geometry, the

so-called ”principle of duality” [8]. This principle states that for any theorem which is

true in a FPS, the dual theorem obtained by exchanging the words ”point” and ”block”

is also true. As we will see now, this symmetry between points and blocks in FPSs is

the central reason which accounts for known pairs of isospectral billiards.

Let us consider a FPS P with incidence matrix T . To each block in P we associate

a tile in the first billiard, and to each point in P we associate a tile in the second billiard.

If we choose permutations M (µ) in the collineation group of P, then the commutation

relation (2) will ensure that there exist permutations N (µ) verifying TM (µ) = N (µ)T .

These commutation relations imply transplantability, and thus isospectrality, of the

billiards constructed from the graphs corresponding to M (µ) and N (µ).

If the base tile has r sides, we need to choose r elements M (µ), 1 ≤ µ ≤ r, in

the collineation group of P. This choice is constrained by several factors. Since M (µ)
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represents the reflexion of a tile with respect to one of its sides, it has to be of order 2

(i.e. an involution). In order that the billiards be connected, no point should be left out

by the matrices M (µ) (in other words, the graph associated to the matrices M (µ) should

be connected). Finally, if we want the base tile to be of any shape, there should be no

loop in the graph. We now need to characterize collineations of order 2.

Collineations of finite projective spaces. Let q = ph be a power of a prime number.

Each point P of PG(n, q) is a 1-dimensional subspace of F
n+1
q , spanned by some vector

v. We write P = P (v).

An automorphism is a bijection of the points P (vi) of PG(n, q) obtained by

the action of an automorphism of Fq on the coordinates of the vi. If q = ph, the

automorphisms of Fq are t 7→ tp
i

, 0 ≤ i ≤ h− 1.

A projectivity is a bijection of the points P (vi) of PG(n, q) obtained by the action

of a linear map L on the vi. There are q − 1 matrices tL, with t ∈ Fq \ {0} and

L ∈ GLn+1(Fq) (the group of (n + 1) × (n + 1) invertible matrices with coefficients in

Fq), yielding the same projectivity P (vi) 7→ P (Lvi).

The Fundamental theorem of projective geometry states that any collineation of

PG(n, q) can be written as the composition of a projectivity by an automorphism [8].

The converse is obviously true since projectivities and automorphisms are collineations.

Therefore the set of all collineations is obtained by taking the composition of all the

non-singular (n+1)×(n+1) matrices with coefficients in Fq by all the h automorphisms

of Fq.

The collineation group of PG(n, q) has [h
∏n

k=0(q
n+1−qk)]/(q−1) elements, among

which we only want to consider elements of order 2. In the case of FPPs (n = 2),

there are various known properties characterizing collineations of order 2. A central

collineation, or perspectivity, is a collineation fixing each line through a point C (called

the centre). By ”fixing” we mean that the line is invariant but the points can be

permuted within the line. One can show that the fixed points of a non-identical

perspectivity are the centre itself and all points on a line (called the axis), while the

fixed lines are the axis and all lines through the centre. If the centre lies off the axis

a perspectivity is called a homology (and has q + 2 fixed points), whereas if the centre

lies on the axis it is called an elation (and has q + 1 fixed points). Perspectivities in

dimension n = 2 have following properties [14]:

Proposition 1. A perspectivity of order two of a FPP of order q is an elation or

a homology according to whether q is even or odd.

Proposition 2. A collineation of order two of a FPP of order q is a perspectivity

if q is not a square; it is a collineation fixing all points and lines in a subplane if q is a

square (a subplane is a subset of points having all the properties of a FPP).

When the order of the FPP is a square, there is the following result [8]:

Proposition 3. PG(2, q2) can be partitioned into q2 − q + 1 subplanes PG(2, q).
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Generating isospectral pairs. Let us assume we are looking for a pair of isospectral

billiards with N = (q3−1)/(q−1) copies of a base tile having the shape of a r-gon, r ≥ 3.

We need to find r collineations of order 2 such that the associated graph is connected

and without loop. Such a graph connects N vertices and thus requires N − 1 edges.

From propositions 1-3, we can deduce the number s of fixed points of a collineation of

order 2 for any FPP. Since a collineation is a permutation, it has a cycle decomposition

as a product of transpositions. For permutations of order 2 with s fixed points, there

are (N − s)/2 independent transpositions in this decomposition. Each transposition is

represented by an edge in the graph. As a consequence, q, r and s have to fulfill the

following condition: r(q2 + q + 1 − s)/2 = q2 + q. Let us examine the various cases.

If q is even and not a square, propositions 1 and 2 imply that any collineation

of order 2 is an elation and therefore has q + 1 fixed points. Therefore, q and r are

constrained by the relation rq2/2 = q2 + q. The only integer solution with r ≥ 3 and

q ≥ 2 is (r = 3, q = 2). These isospectral billiards correspond to PG(2, 2) and will be

made of N = 7 copies of a base triangle.

If q is odd and not a square, propositions 1 and 2 imply that any collineation of

order 2 is a homology and therefore has q + 2 fixed points. Therefore, q and r are

constrained by the relation r(q2 − 1)/2 = q2 + q. The only integer solution with r ≥ 3

and q ≥ 2 is (r = 3, q = 3). These isospectral billiards correspond to PG(2, 3) and will

be made of N = 13 copies of a base triangle.

If q = p2 is a square, propositions 2 and 3 imply that any collineation of order 2 fixes

all points in a subplane PG(2, p) and therefore has p2 + p+ 1 fixed points. Therefore, p

and r are constrained by the relation r(p4 − p)/2 = p4 + p2. There is no integer solution

with r ≥ 3 and q ≥ 2. However, one can look for isospectral billiards with loops: this

will require the base tile to have a shape such that the loop does not make the copies

of the tiles come on top of each other when unfolded. If we tolerate one loop in the

graph describing the isospectral billiards, then there are N edges in the graph instead

of N − 1 and the equation for p and r becomes r(p4 − p)/2 = p4 + p2 + 1, which has the

only integer solution (r = 3, p = 2). These isospectral billiards correspond to PG(2, 4)

and will be made of N = 21 copies of a base triangle.

We can now generate all possible pairs of isospectral billiards whose transplanta-

tion matrix is the incidence matrix of PG(2, q), with r and q restricted by the previous

analysis. All pairs must have a triangular base shape (r = 3). PG(2, 2) provides 3 pairs

(made of 7 tiles), PG(2, 3) provides 9 pairs (made of 13 tiles), PG(2, 4) provides 1 pair

(made of 21 tiles). It turns out that the pairs obtained here are exactly those obtained

by [9] and [10] by other methods. Let us now consider spaces PG(n, q) of higher di-

mensions. The smallest one is PG(3, 2), which contains 15 points. Since the base field

for PG(3, 2) is F2, the Fundamental Theorem of projective geometry states that the

collineation group of PG(3, 2) is essentially the group GL4(F2) of 4 × 4 non-singular

matrices with coefficients in F2. Generating all possible graphs from the 315 elements

of order 2 in GL4(F2), we obtain four pairs of isospectral billiards with 15 triangular

tiles, which completes the list of all pairs found in [9] and [10].
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Our method explicitly gives the transplantation matrix T for all these pairs: each

one is the incidence matrix of a FPS. The transplantation matrix explicitly provides

the mapping between eigenfunctions of both billiards. The inverse mapping is given by

T−1 = (1/qn−1)(T t − (λ/k)J). For all pairs, isospectrality can therefore be explained by

the symmetry between points and blocks in FPSs. We do not know if it is possible to

find isospectral billiards for which isospectrality would not rely on this symmetry.

Our construction furthermore allows to generalize the results we obtained in [12],

where a relation between the Green functions of the billiards in an isospectral pair was

derived. A similar relation can be found for all other pairs obtained by point-block

duality. Let M (µ) and N (µ) be the matrices describing the gluings of the tiles. To

any path p going from a point to another on the first billiard, one can associate the

sequence (µ1, ..., µn), 1 ≤ µi ≤ 3, of edges of the triangle hit by the path. The matrix

M =
∏
M (µi) is such that Mij = 1 if path p can be drawn from i to j. If N = T−1MT ,

relations (1) and (2) imply
∑

k,l TikTjlMkl = λ+(k−λ)Nij. Since Green functions can be

written as a sum over all paths, the relation between the Green functions G(2)(a, i; b, j)

and G(1)(a, i′; b, j ′) is
∑

i′,j′ Ti,i′Tj,j′G
(1)(a, i′; b, j ′) = (k − λ)G(2)(a, i; b, j) + λGt(a; b),

where Gt is the Green function of the triangle, and a point (a, i) is specified by a tile

number i and its position a inside the tile (see [12] for further detail). More precisely,

the term
∑

k,l TikTjlMkl can be interpreted as the number of pairs of tiles (i, j) in the

first billiard such that a path identical to p can go from i to j. A given diffractive orbit

going from i to j in the second billiard corresponds to a matrix N such that Nij = 1: it

is therefore constructed from a superposition of k = (qn −1)/(q−1) identical diffractive

orbits in the first billiard. (Note that these results correspond to Neumann boundary

conditions. It is easy to obtain similar relations for Dirichlet boundary conditions by

conjugating all matrices with a diagonal matrix D with entries Dii = ±1 according to

whether tile i is like the initial tile or like its mirror inverse.)
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