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Abstract. We calculate analytic expressions for the distribution of bipartite
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Introduction

The question of generating and measuring entanglement in multipartite quantum
systems has become of greater interest with the development of the field of quantum
information. Entanglement generation is an important aspect of several quantum
information processes, such as superdense coding [1], quantum communication [2], or
quantum data hiding [3]. Various methods have been proposed in order to generate
highly entangled quantum states, based on pseudo-random unitary operators [4] or on
the entangling power of chaotic quantum maps [5, 6] or intermediate quantum maps
[7]. Entanglement generation by means of pseudo-random unitary operators or chaotic
quantum maps relies upon the fact that unitary evolution of any initial state leads to
states whose entanglement properties are close to those of random states, in particular
to highly entangled states.
In order to quantify the entanglement of a state, or the entangling power of an
operator, a number of entanglement measures have been proposed, based either on
quantum information theory or on thermodynamical considerations: entanglement of
formation and distillable entanglement [8], relative entropy [9, 10, 11], n-tangle [12],
concurrence [13]. For bipartite entanglement of pure states, these measures all reduce
to the entropy of entanglement [14], which can be proved to be a unique entanglement
measure [15, 16]. The entropy of entanglement corresponds to the von Neumann
entropy of the partial density matrix obtained by tracing over one subsystem. Rather
than the von Neumann entropy itself, one often prefers to consider the purity R, which
corresponds (up to constants) to the so-called linear entropy, that is the first-order
term in the expansion of the von Neumann entropy around its maximum. To quantify
the degree of entanglement of multipartite pure states, one measure commonly used,
based on purity, is the measure proposed by Meyer and Wallach in [17]. Meyer-Wallach
entanglement Q can be defined as the average of the bipartite entanglement of one
qubit with all others, measured by the purity (see Equation (18)) [18]. Meyer-Wallach
entanglement was used e.g. to quantify entanglement generation for pseudo-random
operators [4] or intermediate or chaotic quantum maps [7, 19, 20].
The study of purity or Meyer-Wallach entanglement is of particular interest for random
quantum states. Random pure states as column vectors of random unitary matrices
distributed according to the invariant Haar measure can be shown to be entangled with
high probability. Various analytical calculations have been carried out to characterize
entanglement properties of random states. Expressions for the first moment of the
purity have been obtained by Lubkin [21]; the second and third moments have been
derived in [6], following earlier work [23]. The average entropy has been obtained
in [22]. Statistical properties of entanglement measures for random density matrices
were obtained in [25]-[28]. The average value for each Schmidt coefficient of a random
pure state has been calculated in [29]. In [30], the average entropy of a subsystem was
obtained from the average Tsallis entropy [31].
To further characterize entanglement of random pure states, our aim here is to give
an exact expression for all moments of the probability density distribution P (R) of
the purity for a bipartite random pure state. Since the probability distribution P (R)
is defined over a bounded interval (R is bounded), the knowledge of all moments
determines uniquely the probability distribution [32]. There are various techniques
to obtain a function approximating the exact probability density distribution in a
controlled way (that is, by an expansion where the error can be bounded) from the
knowledge of its moments. In [33] an algorithm was given to construct polynomials
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converging to the probability distribution. We will rather follow [34], where the
asymptotic expansion for nearly gaussian distributions is calculated at all orders.
In Section 1 the moments 〈Rn〉 for the distribution P (R) are calculated, and the
construction of the asymptotic expansion of P (R) at all orders from its moments
is recalled. In Section 2 the approximate moments 〈Qn〉 for the distribution P (Q)
are derived. For both distributions, the moments are expressed as sums involving a
finite number of combinatorial terms and can be easily calculated effectively. As an
illustration, we give the first values of the cumulants and calculate the probability
density distribution expansion for Meyer-Wallach entanglement.

1. Bipartite entanglement for random pure states

Let Ψ be a pure state belonging to a Hilbert space HA ⊗HB , where HA and HB are
spanned respectively by {|ai〉}1≤i≤p and {|bi〉}1≤i≤q . We assume that p ≤ q. Let xi

be the Schmidt coefficients for Ψ. That is, the state Ψ has a Schmidt decomposition
(see e.g. [35])

|Ψ〉 =

p
∑

i=1

√
xi|ai〉 ⊗ |bi〉. (1)

The bipartite entanglement measure for Ψ can be expressed throught Schmidt
coefficients xi. The entropy of entanglement is the Shannon entropy of the xi’s:
S(Ψ) = −∑p

i=1 xi ln xi. The purity R(Ψ) of the state Ψ can be expressed as

R(Ψ) =

p
∑

i=1

x2
i . (2)

For random states the Schmidt coefficients are distributed according to the density

P (x1, . . . , xp) = N
∏

1≤i<j≤p

(xi − xj)
2
∏

1≤k≤p

xq−p
k δ

(

1 −
p
∑

i=1

xi

)

(3)

for xi ∈ [0, 1], with some normalisation factor N [38, 6]. The n-th moment of the
purity is then given by

〈Rn〉 = N
∫ 1

0

dx1 . . . dxp

∏

1≤i<j≤p

(xi − xj)
2
∏

1≤k≤p

xq−p
k (4)

×
(

x2
1 + x2

2 + · · · + x2
p

)n
δ

(

1 −
p
∑

i=1

xi

)

.

The calculation of 〈Rn〉 requires the evaluation of integrals of the form

I(n) =

∫ 1

0

dx1 . . . dxpV (x)2xr
1 . . . xr

pδ

(

1 −
p
∑

i=1

xi

)

fn(x), (5)

where r = q − p, x = (x1, . . . , xp) and n = (n1, . . . , np). The function fn(x) =
{xn1

1 xn2

2 . . . x
np

p + all permutations of the ni} is a symmetric function of the xi, and
V is the Vandermonde determinant

V (x) =
∏

1≤i<j≤p

(xi − xj). (6)
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The integral I(n) is evaluated in the appendix and yields

I(n) =
p!
∏p

i=1(r + ni + i − 1)!

(p2 + rp +
∑

i ni − 1)!

∏

i<j

(nj − ni + j − i) + perm., (7)

where ”+perm” indicates that the expression (7) is a sum over all permutations of the
ni. Now the function f for a given 〈Rn〉 is obtained by multinomial expansion of the
term

(x2
1 + · · · + x2

p)
n =

∑

n1+n2+···+np=n

n!

n1!n2! . . . np!
x2n1

1 x2n2

2 . . . x2np

p . (8)

The normalization constant N in (4) is given by the choice n = 0 in (5), i.e.
N = 1/I(0). This leads to

〈Rn〉 =
(p2 + rp − 1)!

(p2 + rp + 2n − 1)!

∑

n1+n2+···+np=n

n!

n1!n2! . . . np!

×
∏p

i=1(r + 2ni + i − 1)!
∏p

i=1(r + i − 1)!

∏

1≤i<j≤p

2nj − 2ni + j − i

j − i
. (9)

Replacing r by its value q − p and correspondingly changing all indices i to p + 1 − i
(and ni to np+1−i), one finally obtains

〈Rn〉 =
(pq − 1)!

(pq + 2n− 1)!

∑

n1+n2+···+np=n

n!

n1!n2! . . . np!

×
p
∏

i=1

(q + 2ni − i)!

(q − i)!i!

∏

1≤i<j≤p

(2ni − i − 2nj + j). (10)

Note that one can cast (10) into an expression more symmetric in p and q by noting
that

∏

i<j(2ni − i − 2nj + j)
∏p

i=1(p + 2ni − i)!
=

p
∏

j=1

[

1

(2nj)!

j−1
∏

i=1

(

1 − 2nj

2ni + j − i

)

]

, (11)

yielding

〈Rn〉 =
(pq − 1)!

(pq + 2n− 1)!

∑

n1+n2+···+np=n

n!

n1!n2! . . . np!
(12)

×
∏

ni 6=0





(q + 2ni − i)!(p + 2ni − i)!

(q − i)!(p − i)!(2ni)!

i−1
∏

j=1

(

1 − 2nj

2ni + j − i

)



 .

Equation (10) is a closed expression, involving only a finite sum over partitions of n
into numbers greater or equal to 0. Note that the order of the ni matters: for instance
for p = 2 and n = 2 the sum will involve three terms (n1, n2) = (2, 0), (1, 1) and (0, 2).
These partitions can be easily generated for any n by some suitable algorithm (see
e.g. [34] for such an algorithm generating the partitions required). From Equation
(10) one can get the expressions for the cumulants of the distribution P (R). Indeed,
given the moments µn of a distribution the n-th cumulant κn reads (see e.g. [34])

κn = n!
∑

{km}

(−1)r−1(r − 1)!

n
∏

m=1

1

km!

(µm

m!

)km

, (13)
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where r = k1 + · · · + kn, and the sum runs over all ki ≥ 0, 1 ≤ i ≤ n such that
k1 + 2k2 + ... + nkn = n. As an example, the first five cumulants read

κ1 =
p + q

1 + pq
(14)

κ2 =
2(p2 − 1)(q2 − 1)

(1 + pq)2(2 + pq)(3 + pq)

κ3 =
8(p2 − 1)(q2 − 1)(p + q)(−5 + pq)

(1 + pq)3(2 + pq)(3 + pq)(4 + pq)(5 + pq)

κ4 =
48(p2 − 1)(q2 − 1)(pq − 3)Ap,q

(1 + pq)3(2 + pq)(3 + pq)
∏7

i=1(i + pq)

κ5 =
384(p2 − 1)(q2 − 1)(p + q)Bp,q

(1 + pq)4(2 + pq)(3 + pq)
∏9

i=1(i + pq)

where Ap,q and Bp,q are polynomials in p and q defined by Ap,q = 28−112p2−153pq−
79p3q−112q2−98p2q2−11p4q2−79pq3−3p3q3+p5q3−11p2q4+4p4q4+p3q5 and Bp,q =
3528−6552p2−6343pq−449p3q−6552q2+1545p2q2 +1237p4q2−449pq3+1164p3q3 +
132p5q3+1237p2q4−274p4q4−41p6q4+132p3q5−93p5q5+p7q5−41p4q6+9p6q6+p5q7.
As expected, κ1 corresponds to Lubkin’s expression [21] for the average purity. For
n = 2, 3 one recovers the expressions derived in [6]. For larger n it is easy to generate
the exact value for each cumulant.
In the case p = 2, the analytic expression for the probability distribution P (R) dR
can easily be obtained analytically directly from (2)-(3). It reads

P (R) dR = A(1 − R)q−2
√

2R − 1 dR (15)

for 1/2 ≤ R ≤ 1, 0 otherwise (A is the normalization factor). For p ≥ 3, the
asymptotic expansion of the distribution can be obtained (see [34] and references
therein) by Edgeworth expansion as a function of the normal distribution Z(x) =
exp(−x2/2)/

√
2π, the mean µ = κ1, the variance σ2 = µ2 − µ2

1 = κ2, and rescaled
cumulants γr = κr/σ2r−2:

P (R) =
1

σ
Z

(

R − µ

σ

)

[1+ (16)

∞
∑

s=1

σs
∑

{km}

Hes+2t

(

R − µ

σ

) s
∏

m=1

1

km!

(

γm+2

(m + 2)!

)km



 .

For each s the sum runs over kj ≥ 0 such that
∑

j jkj = s, and t is defined by
t =

∑

j kj . The Hen(x) are Chebyshev-Hermite polynomials defined by Hen(x) =

(−1)nex2/2∂ne−x2/2 (here ∂ is the differential operator with respect to x) and
correspond to rescaled Hermite polynomials:

Hen(x) = n!

[n/2]
∑

k=0

(−1)kxn−2k

k!(n − 2k)!2k
. (17)

Equations (13)-(17) together with the knowledge of the moments (10) allow to obtain
explicitely the asymptotic expansion of the probability density distribution at any
order. The error on the expansion is of the order of the last term included.
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2. Multipartite entanglement

The Meyer-Wallach entanglement of a pure M -dimensional state Ψ coded on m qubits
(with M = 2m) can be defined by

Q(Ψ) = 2

(

1 − 1

m

m
∑

i=1

Rk

)

, (18)

where Rk is the purity (2) of the k-th qubit [18]. In order to calculate Q(Ψ) for
bipartite random pure states we need to calculate the average purity of a bipartite
system belonging to a Hilbert space HA ⊗ HB , where HA has dimension p = 2 and
HB has dimension q = 2m−1 = M/2. The moments 〈Rn〉 can be obtained in this case
either from Equation (10) or directly from the distribution (15). In both cases it leads
to

〈Rn〉 =
Γ(q + 1

2 )√
π2n−1

n
∑

k=0

(

n

k

)

(

k + 1
2

)

!
(

q + k − 1
2

)

!
. (19)

The calculation of the moments 〈Qn〉 involves terms of the form 〈(∑i Ri)
k〉. These

terms depend on correlations between the purities Ri. However if we make the
approximation that for two different qubits i 6= j we have 〈RiRj〉 = 〈Ri〉〈Rj〉
(and more generally 〈∏i Ri〉 =

∏

i〈Ri〉 for products over distinct qubits), we get
a distribution P (Q) which turns out to be very close to the numerical distribution
obtained by generating random matrices. Making this approximation we get

〈
(

m
∑

i=1

Ri

)k

〉 =
∑

k1+k2+···+km=k

k!

k1!k2! . . . km!
〈Rk1〉〈Rk2〉 . . . 〈Rkm〉, (20)

The n-th moment is then

〈Qn〉 = 2n
n
∑

k=0

(

n

k

)

(−1)kk!

mk

∑

k1+k2+···+km=k

〈Rk1〉
k1!

〈Rk2〉
k2!

. . .
〈Rkm〉
km!

. (21)

Gathering together terms having the same exponents, we finally get

〈Qn〉 = 2n
n
∑

k=0

(

n

k

)

(−1)kk!

mk

∑

{rk}

m!

r1!r2! . . . rk !(m − r)!

k
∏

i=1

( 〈Ri〉
i!

)ri

,(22)

where r ≡ ∑

ri and 〈Rn〉 is given by (19). The sum runs over all ri ≥ 0 such that
∑

j jrj = k. From Equations (19) and (22) one can now obtain the cumulants for the
distribution P (Q) for an m-qubit system (M = 2m). The first ones read

κQ
1 =

M − 2

M + 1
(23)

κQ
2 =

6(M − 2)

(M + 1)2(M + 3)m

κQ
3 =

24(−M2 + 7M − 10)

(M + 1)3(M + 3)(M + 5)m2

κQ
4 =

144(M4 − 12M3 + 6M2 + 133M − 210)

(M + 1)4(M + 3)2(M + 5)(M + 7)m3

κQ
5 = − 1152(1890− 1763M + 337M 2 + 78M3 − 23M4 + M5)

(M + 1)5(M + 3)2(M + 5)(M + 7)(M + 9)m4
.
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We can use these approximate cumulants to obtain an analytical formula for P (Q).
Calculating the first terms in the asymptotic expansion (16) we obtain (the first terms
can be found in [39])

P (Q) ∼ 1

σ
Z

(

Q − µ

σ

){

1 +
τ3

6
He3

(

Q − µ

σ

)

+

[

τ4

24
He4

(

Q − µ

σ

)

+
τ2
3

72
He6

(

Q − µ

σ

)]

+

[

τ5

5!
He5

(

Q − µ

σ

)

+
τ3τ4

144
He7

(

Q − µ

σ

)

(24)

+
τ3
3

1296
He9

(

Q − µ

σ

)]

+ ...

}

(25)

with µ = κQ
1 , σ =

√

κQ
2 and τi = κi/σi, i ≥ 3. Figure 1 displays the probability

density function P (Q) for m = 10 qubits as obtained by averaging over numerically
generated random matrices, together with the plot of analytical expression (24) trun-
cated at order 0 (gaussian), 1 (first line of (24)), 2 (two first lines of (24)) and 3
(expression (24))), using the cumulants (23). The tails of the distribution are repro-
duced with increasing accuracy when the number of terms in the analytic expansion
is increased. Figure 2 displays the same for m = 11.
It is to be noted that techniques similar to those used to derive 〈Rn〉 and P (R) in sec-
tion 1 can be applied to derive distributions for random states drawn from orthogonal
or symplectic matrix ensembles, since the joint probability distribution for Schmidt
coefficients is of the same form as the distribution (3).

The author thanks CalMiP in Toulouse and Idris in Orsay for access to their su-
percomputers, and Bertrand Georgeot for reading the manuscript. This work was
supported by the Agence Nationale de la Recherche (ANR project INFOSYSQQ) and
the European program EC IST FP6-015708 EuroSQIP.

Appendix A.

The aim of this appendix is to evaluate integrals of the form I(n) given by Equation
(5). The Vandermonde determinant (6) can be written

V (x) =
∑

σ

εσx0
σ(1) . . . xp−1

σ(p), (A.1)

where the sum runs over all permutations on p elements and εσ is the signature of the
permutation σ. For any function ϕ symmetric under permutations of the xi we have

∫ 1

0

dx1 . . . dxpV (x)2ϕ(x) = (A.2)

=
∑

σ,σ′

εσεσ′

∫ 1

0

dx1 . . . dxpx
0
σ(1)x

0
σ′(1) . . . xp−1

σ(p)x
p−1
σ′(p)ϕ(x)

=
∑

σ,σ′

εσ◦σ′

∫ 1

0

dx1 . . . dxpx
0
1x

0
σ◦σ′(1) . . . xp−1

p xp−1
σ◦σ′(p)ϕ(x)

= p!

∫ 1

0

dx1 . . . dxpx
0
1x

1
2 . . . xp−1

p V (x)ϕ(x),
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1

Figure 1. Probability density function P (Q) of Meyer-Wallach entanglement
Q for random vectors of size 2m for m = 10. Top: P (Q) in logarithmic scale.
Bottom: relative differences (Ps(Q)/Pnum(Q)) − 1 between Ps(Q) (analytical
expansion at order s) and the numerical curve. From bottom to top on the left axis
of the top figure: truncation of the expansion at order 0 (gaussian, red, dotted);
order 1 (green, short dashed); order 2 (blue, dot-dashed); order 3 (purple, long
dashed); numerical curve from column vectors of 1000 random unitary matrices
obtained by Hurwitz parametrization (black, solid).

with x = (x1, . . . , xp). The integral (5) becomes I(n) =
∑

τ J(τ(n)) where the sum
runs over all permutations of the ni, with

J(n) = p!

∫ 1

0

dx1 . . . dxpV (x)

p
∏

i=1

xr+ni+i−1
i δ

(

1 −
p
∑

i=1

xi

)

. (A.3)

Using the fact that
∫ 1

0

dxxa(1 − x)b =
a!b!

(a + b + 1)!
, (A.4)

a recurrence on the number of integrals shows that
∫ 1

0

dx1 . . . dxpx
a1

1 . . . xap

p δ

(

1 −
p
∑

i=1

xi

)

=
a1!a2! . . . ap!

(
∑p

i=1 ai + p − 1)!
. (A.5)

The Vandermonde determinant (A.1) can be written as

V (x) =
∑

σ

εσx
σ(1)−1
1 . . . xσ(p)−1

p . (A.6)

Inserting this expression in the integral (A.3) leads to a sum of integrals of the form
(A.5), which can be cast under

J(n) =
p!
∏p

i=1(r + ni + i − 1)!

(p2 + rp +
∑

i ni − 1)!
∆(n) (A.7)
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Figure 2. Same as Figure 1 for m = 11. Numerical curve averaged over 650
random unitary matrices.

with ∆(n) a determinant defined by

∆(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 r + n1 + 1 (r + n1 + 1)(r + n1 + 2) · · ·
1 r + n2 + 2 (r + n2 + 2)(r + n2 + 3) · · ·
...

...
...

...
1 r + np + p (r + np + p)(r + np + p + 1) · · ·

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (A.8)

The determinant can be evaluated by recurrence. It finally yields

J(n) =
p!
∏p

i=1(r + ni + i − 1)!

(p2 + rp +
∑

i ni − 1)!

∏

i<j

(nj − ni + j − i) (A.9)

which in turn gives I(n) as a sum over permutations of the ni of J(n).
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