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Abstract. A b-coloring of a graph is a proper coloring where each color
admits at least one node (called dominating node) adjacent to every
other used color. Such a coloring gives a partitioning of the graph in
clusters for which every cluster has a clusterhead (the dominating node)
adjacent to each other cluster. Such a decomposition is very interesting
for large distributed systems, networks,... In this paper we present a
distributed algorithm to compute a b-coloring of a graph, and we propose
an application for the routing in networks to illustrate our algorithm.

1 Introduction

In a distributed system, a node exchanges information only with its neighbor-
hood. Every node has a set of local variables to determine a local state of the
node. The state of the entire system, called global state, is the union of the local
states of all the nodes in the system. The objective in a distributed system is
to obtain automatically a desirable global final state (called legitimate state)
where each node is considered as a distinct entity able to compute its own state
itself, with its neighborhood as only knowledge. Distributed algorithms are a
very attractive topic for a lot of fields and several graph problems arise nat-
urally in distributed systems. For example, distributed algorithms for finding
spanning trees, matchings, independent sets or particular colorings have been
studied [1,5,9,15,16]. Such algorithms are so very interesting and efficient for
dynamic networks [3,17].

The aim of our paper is to propose a distributed method to determine a
particular coloring of graphs. Thus, we propose a partitioning method under
conditions of a graph based on a graph coloring called b-coloring. A proper k-
coloring is a coloring using k colors such that two adjacent nodes have different
colors. Then, a b-coloring is a proper k-coloring where for each color i, 1 ≤ i ≤ k,
there exists a node x, with color i, adjacent to nodes colored with every color
j, 1 ≤ j �= i ≤ k. Such nodes are called dominating nodes. This coloring was
introduced by Irving and Manlove in [10] where they presented the b-chromatic
number as the maximum integer k such that G admits a b-coloring with k colors.
In [10], they also proved that finding the b-chromatic number of any graph is
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a NP-hard problem and they gave a polynomial-time algorithm for finding the
b-chromatic number of trees. This parameter was also studied for other classes of
graphs like cartesian product of graphs [13], bipartite graphs [14], power graphs
of paths and cycles [7]. More recently, Corteel et al. [6] proved that the b-
chromatic number problem is not approximable within 120/133−ε for any ε > 0,
unless P = NP . This coloring is very interesting since it partitions the nodes of
G into color classes for which at least one node is adjacent to each other color
class. The property of these nodes is very attractive to give a hierarchy of nodes,
to exchange information with other classes,. . .

The remainder of this article is then decomposed as follows. In Section 2, we
present a distributed algorithm to compute a b-coloring of a graph. Then in
Section 3, we propose an application to this clustering where we study a routing
method. Finally, Section 4 concludes with future works.

We first start with some definitions used in the following. A distributed system
will be modeled with an undirected connected graph G = (V, E), where the
node set V represents the set of processors, and the edge set E represents the
processor interconnexions. Throughout this paper, we assume that |V | = n and
|E| = m. For every node i, we define N(i), its open neighborhood, as the set
of nodes adjacent to i (the set of colors of N(i) will be denoted Nc(i)). We
let d(i) = |N(i)|, the number of neighbors of node i, or its degree, and we
let Δ = max{d(i)|i ∈ V }. Finally, let diam(G) be the diameter of the graph G,
defined as the maximum distance between any pair of vertices of G. In our study
we assume a synchronized model in which any process computes the same action
at the same time. Then, two or more processes can be in conflict (for example,
two adjacent processes colored with the same color). A central daemon selects,
among all these processes, the next process to compute. Thus, if two or more
processes are in conflict, we cannot predict which process will be computed next.
Several protocols exist ([2,4]) that provide a scheduler. Our algorithm can be
combined with any of these protocols to work under different schedulers as well.

It is very important to remark that the coloring constraint in this problem
is not only on the neighborhood of each node, but on the entire graph. Indeed,
the color of a node depends on the presence or not of a dominating node for its
color. Note that in the following we say that a color is emptyable if it has no
dominating nodes. Thus, the first idea for finding such a coloring is: 1- Find a
proper coloring of the graph; 2- For any emptyable color c, recolor nodes with
color c by other colors and discard color c. However, the b-coloring is not a
continue coloring. For instance, the hypercube Q3 admits b-colorings with 2 or
4 colors but not with 3 (see Figure 1). Thus if we remove emptyable colors,
we must remove them one by one and verify, at each step, if the coloring is a
b-coloring or not.

2 b-Coloring of a Graph

In this section we propose a distributed algorithm to determine a partitioning
(or a clustering) of the nodes of a graph G based on a particular coloring. In
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Fig. 1. b-colorings with k colors for the hypercube Q3, where a) k = 2, b) k = 4. (black
nodes are dominating nodes).

every cluster we select a clusterhead (called the dominating node in the coloring)
able to join directly each other cluster.

In this approach, the nodes are represented by processes and they search to
have a color with dominating node (i.e. the emptyable colors are removed from
the coloring). Since the information on colors are dispersed in the entire graph,
nodes need to exchange some messages with the remainder of the graph. Our
approach enables the nodes to react to these messages to reach a legitimate
state for the system. Thus nodes have different labels from the interval [1;n].
The principle of this algorithm is to detect emptyable colors. If such colors exist,
they must be removed, but as we saw, one by one.

This method is a recoloring method. So nodes must be initialized. To put the
system in an initialized state, we color a node with maximum degree by color 1
and we use Procedure 1.

Procedure 1. Init Coloring()
begin
if c(i) �= ∅ then

Let M = Nc(i) ∪ {c(i)}.
q = 0.
for every node j ∈ N(i) such that c(j) = ∅ do

q = min{k|k > q, k /∈ M and k /∈ Nc(j)}.
if q ≤ Δ + 1 then c(j) = q else c(j) = min{k|k /∈ Nc(j)}. endif.

enddo.
endif.
end.

Lemma 1. Procedure 1 is done in O(m).

Proof. Procedure 1 is applied once on every colored node. For each node, the
procedure colors every of its non-colored neighbors. Since each node has d(i)
neighbors, Procedure 1 is computed in

∑n
i=1 d(i) = 2m = O(m). ��

Several studies propose fast colorings of graphs which can be used to initialized
the state of nodes. In particular Hedetniemi et al. in [8], and Johansson in [12],
propose distributed colorings using at most Δ+1 colors. Our procedure has the
advantage to find exactly Δ + 1 colors in a linear time.
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To compute a b-coloring of a graph, any node needs some information about
dominating nodes and emptyable colors. We let for any node i, Domi[] as a
table containing the label of the dominating node for each color (initialized to
0). If a color c has no dominating node we have Domi[c] = 0 and the value
Domi[c] = ∅ means that the color c has been removed from the coloring. Then,
before removing a color c, every node must verify if it is not a dominating node
for this color. If it is not, it will send a message to propose to remove the color c.

Before the study of each possible message, we give the two following pro-
cedures. The first evaluates the state of a node (dominating node or not). By
comparing the set of existing colors in the graph and the set of colors in its neigh-
borhood, a node determines if it is a dominating node or not. Then, between all
possible nodes to be a dominating node for a color c, we choose the node with
the smallest label. If i is not a dominating node and if there does not exist a
dominating node for c(i), then node i supposes that its color is an emptyable
color. Note that each node maintains also the color list of its neighborhood Nc(i).

Procedure 2. Processing()
begin
Let N ′

c =
⋃

q such that 1 ≤ q �= c(i) ≤ Δ + 1 and Domi[q] �= ∅.
if N ′

c = Nc(i) (i.e. i is a dominating node) then
if Domi[c(i)] > i or Domi[c(i)] = 0 then

Domi[c(i)] := i.
send to every k ∈ N(i): M2(i, c(i)).

endif.
else

if Domi[c(i)] = 0 then
send to every k ∈ N(i): M3(c(i)).
Execute Waiting().

endif.
endif.
end.

The second procedure gives some instructions computed after a delay, used to
consider that a message reached every node in the graph. This procedure will
be applied on a node i if it determines its color c(i) as emptyable. Since the
method is distributed, any node works in the same time. Thus, if there exists a
dominating node j for c(i), this information will be propagated to every node
of G in time diam(G). We will see that if the node i receive this information, it
stops the execution of the Procedure 3. So, if i waits for a delay diam(G) + 1, it
can consider that its color has no dominating node, and it will replace it.

Procedure 3. Waiting()
begin
After a time diam(G) + 1 do

col := c(i).
c(i) := max{q|1 ≤ q ≤ Δ + 1, q /∈ Nc(i) and Domi[q] �= ∅}.
send to every k ∈ N(i): M1(i, c(i)).
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send to every k ∈ N(i): M4(col).
end.

Then, every node i will react following the received message. Messages are pre-
sented below:

– No message is received. In this case node i applies Procedure 2 to evaluate
its state.

– Message M1(j, c): ”node j has color c.”
Every node receiving this message updates the colors of its neighborhood.

– Message M2(j, c): ”node j is a dominating node for the color c.”
Among all nodes verifying the conditions to be a dominating node for color
c, the dominating node of c will be the node with the smallest label. Then,
if j is a dominating node for c(i) (i.e. c(i) = c), then node i interrupts its
procedure Waiting(). Moreover, to limit the number of messages, the node
i propagates this information only if it is new.
Then, if this message is received, node i applies the following procedure:

Procedure 4. M2(j, c)
begin
if Domi[c] > j or Domi[c] = 0 then

Domi[c] := j.
send to every k ∈ N(i): M2(j, c).
if c = c(i) then Interrupt Waiting(). endif.

endif.
end.

– Message M3(c): ”color c is emptyable.”
Among all emptyable colors, the next color to remove will be the smallest.
This message is so used by any node to determine if its color is the next color
to remove. Thus, if the color received by node i is smaller than c(i), then
it propagates the message. Moreover, if i executes currently the procedure
Waiting() (Procedure 3), then it stops it since the next color to remove will
not be c(i).

Procedure 5. M3(c)
begin
if c < c(i) and Domi[c] = 0 then

send to every k ∈ N(i): M3(c).
Interrupt Waiting().

endif.
end.

– Message M4(c): ”Delete color c”
If c(i) = c then the node i must take another existing color and it propagates
this message to remove color c from the graph. Moreover, since the color of
node i perhaps changed, it stops its procedure Waiting() and starts again
the procedure Processing().
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Procedure 6. M4(c)
begin
if c(i) = c then

Domi[c] := ∅.
c(i) := max{q|1 ≤ q ≤ Δ + 1, q /∈ Nc(i) and Domi[q] �= ∅}.
send to every k ∈ N(i): M1(i, c(i)).

endif.
send to every k ∈ N(i): M4(c).
Interrupt Waiting().
Execute Processing().
end.

Proposition 1. A legitimate state for G is reached with O(nΔ) local changes
and O(mΔ2) exchanged messages.

Proof. First, a color is removed if it is emptyable, and only one color is removed
at the same time. Thus, each node can change at most Δ times its color. Hence
the total number of local changes is O(nΔ).

Then, we can evaluate the number of exchanged messages. If the color of a
node changes, this node sends its new color to its d(i) neighbors. Since a node
can change at most Δ times its color, we have

∑n
i=1 Δ.d(i) = O(mΔ) Messages

1 sent. For Message 2, suppose that every node is a dominating node. Then,
a node can receive at most n − 1 messages on dominating nodes, and it can
also transmit these messages to its d(i) neighbors. Thus

∑n
i=1(n − 1).d(i) =

O(nm) messages are used to propagate these information. For the emptyable
colors (Message 3), a node sends a message to its neighborhood every time it
finds a smaller color to remove. Suppose that every color is emptyable. Since at
most Δ colors can be removed, each node sends at most Δ.d(i) messages. Every
time a color is removed, the same reasoning can be done. Thus, we deduce that∑n

i=1(
∑Δ

q=1 q.d(i)) = O(mΔ2) Messages 3 are exchanged. Finally, by the same
way as for Message 2, we deduce that O(nm) messages are used to remove colors
(Message 4). Therefore, the number of exchanged messages to join a legitimate
state is in O(mΔ2). ��
Theorem 1. The time complexity is O(Δdiam(G)).

Proof. After the initialization step, any node determines dominating nodes in
time diam(G) (by the propagation of Message 2). During the same time, an
emptyable color can be found (if exists). However, in the worst case, two op-
posite information can traverse the graph and prevent us from determining an
emptyable color (since any node interrupted its Procedure 3). Nevertheless, in
this case no more messages are exchanged, and from the algorithm every node
applies Procedure 2. Thus, in time diam(G), an emptyable color is found (if
exists).

Consequently, an emptyable color starts to be removed after a delay diam(G)
+ 1 and it is completely removed in time diam(G). Since at most Δ colors are
removed, a legitimate state is computed in O(Δ.diam(G)). ��
Figure 2 presents an example of computation of the algorithm.
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Fig. 2. Messages:M2(x, c) means ”x is a dominating node for color c”;M3(c) means ”c
is an emptyable color”;M4(c) means ”delete color c”. Thus, at t = 0 the graph G is
initialized and each node xi evaluates its state (Procedure 2). At t = diam(G), every
node knows the dominating nodes and the next color to remove. At t = diam(G) + 1,
Procedure 3 on node x2 is terminated, so it changes its color. At t = 2diam(G) + 1,
nodes know the dominating nodes and the coloring is found.

3 A b-Coloring Based Routing Method

In this section we propose an application of the above algorithm, for routing
information between nodes of a weighted graph. The idea is to decompose the
graph in clusters, and to use the clusterhead of the source node to join the cluster
of the target node.

To adapt our algorithm to a routing application, it needs some minor modifi-
cations. Indeed, the clusterhead of each cluster will communicate with the nodes
of its cluster. We just add some data to compute theses paths. Thus, we define
for each node i, Predeci[c] as the predecessor of i in the path from the dominat-
ing node of color c and i, and Disti[c] as the length (i.e. the total weight) of this
path. Thus, Procedure 2 initializes these data for any dominated color found.
Then, Message 2 can include two new parameters: the node v from which the
message comes, and its distance to the dominating node j. Then, the node i can
modify its path and so its distance to j in function of these parameters. These
modifications will be integrated to the messages propagating the domination of
j. This computation can increase the number of Message 2 sent but does not
change the complexity of the algorithm. Finally, information on the path and
the distance about a removed color can be destroyed in Message 4.

These modifications of the algorithm presented in the previous section enables
us to compute the shortest path from a clusterhead to any node of its cluster in
the same time as the b-coloring of the graph. Then, to propagate information
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from a source node s to a target node t, we use the dominating nodes of the
clusters containing s and t. Let ws and wt be the dominating nodes of clusters
containing respectively s and t. Thus, the steps for determining a path from s
to t are:

1. Finding the path from s to ws,
2. Joining a neighbor w′ of ws in the cluster containing node t (property of the

clusterhead ws),
3. Finding the path from w′ to wt,
4. Finding the path from wt to t.

The Figure 3 presents the method used to determine a route between a source
s and a destination t.

source

P
1

2
P

3
P

sw
tw

cluster

s t

w’

Gcluster

target

Fig. 3. Illustration of the routing from the source node s to the target node t in the
graph G. Any path Pi is computed in the same time as the coloring and every path Pi

is a shortest path between its endvertices.

Lemma 2. Routing method complexity is O(n).

Proof. For the determination of a path from a clusterhead x to a member of its
cluster y, we need to traverse the graph from y to x, node by node. Indeed in the
algorithm, each node knows only its predecessor in the path from x to y. Thus,
a path between any node and its clusterhead is done in O(n) (this is the case of
steps 1, 3 and 4). Moreover, each node knows its neighborhood. So, the step 2 is
done in O(1). Therefore, a path from a source node to a destination node in a
graph G is computed in O(n). ��
This method depends on the complexity of the b-coloring problem. It does not
improve existing methods based on spanning trees [1,3,5] or routing table [11],
it just proposes a new way to route information by a clustering of the structure.

4 Conclusion

In this article, we presented a distributed algorithm to partition a structure
in clusters. Each of these clusters has a clusterhead with the property to join
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directly every other cluster. An interesting question completes this study: How
can react vertices if the topology of the graph evolves ? Our study concerns
currently the dynamic graphs.
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13. Kouider, M., Mahéo, M.: Some bounds for the b-chromatic number of a graph.
Discrete Mathematics 256(Issues 1-2) (2002) 267-277

14. Kratochv́ıl, J., Tuza, Z., Voigt, M.: On the b-chromatic number of graphs. 28th
International Workshop on Graph-Theoretic Concepts in Computer Science, Cesky
Krumlov, Czech Republic; LNCS 2573 (2002) 310-320

15. Shi, Z., Goddard W., Hedetniemi, S.T.: An anonymous self-stabilizing algorithm
for 1-maximal independent set in trees. Information Processing Letters 91 (2004)
77-83
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