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Gaudin functions, and Euler-Poincaré characteristics

Alain Lascoux

Abstract

Given two positive integers n,r, we define the Gaudin function of
level r to be quotient of the numerator of

det (@5 = )@ — tyy) -+ (2 = ) ™)

i,j=1...n
by the two Vandermonde in z and y. We show that it can be char-
acterized by specializing the x; into the y; variables, multiplied by
powers of t. This allows us to obtain the Gaudin function of level 1
(due to Korepin and Izergin) as the image of a resultant under the
the Euler-Poincaré characteristics of the flag manifold. As a corol-
lary, we recover a result of Warnaar about the generating function of
Macdonald polynomials.
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1 Gaudin functions of arbitrary level

Let x = {x1,..., 2.}, Yy = {vy1,...,yn} be two sets of indeterminates of the
same cardinality n. The Cauchy determinant det((x — y)_l)mex yey plays a
central role in the theory of symmetric functions [[[4]. 7

Generalizations of this determinant appear in the calculation of correla-
tion functions of different physical models. Gaudin [, Ch.IV] obtained the
determinant

det((z —y) (. —y+7)7")

v a parameter, for a bose gas in one dimension. Izergin and Korepin [g]
solved the Heisenberg XXZ-antiferromagnetic model with the help of

det ((z —y) 'z —ty)™")

TEX,YEyY ’

TEX,YEyY ’



and Kirillov and Smirnov [[, Th.1] wrote more general determinants. These
different determinants have led to an abundant literature, in connection with
different statistical models and combinatorial enumerations, for example the
enumeration of alternating sign matrices displaying some symmetries|[[q].

In this text, we shall be interested in a purely algebraic generalization,
having no physical interpretation to offer. With x and y as above, let ¢ be
an extra indeterminate and r be a positive integer.

We propose to study the determinant

det ( (z —y)(z— t;) ol —try) )xe"’yey |

This is a rational function, which can be written

AX)A(y)
R(x,y(1+---+1))

F(xy), (1)

where F(x,y) is a polynomial symmetrical in both zy, ..., z, and yy, ..., yn,
A(x) being the Vandermonde [[;_;(z; — x;), the resultant R(x,y), for two
finite sets of indeterminates x,y, being the product of differences

[Lex [Tey(z —y), and y(1 + - +1") being {t'y; : 1 <j<n, 0<i<r}

We shall call the function F(x,y) the Gaudin function of level r, in
recognition of the pioneering work of Gaudin so well illustrated in his thesis
[B] and his book [H].

Let us introduce n sets of indeterminates

y] :{y]O:ijy]lvay;}aj:]-aan

Recall that, for any pair (a,b) of indeterminates, the divided difference
relative to a, b is the operator (denoted on the right)

f(a7 b) - f(a7 b)aﬂhb = (f(av b) - f<b7 a)) (a’ - b>_1 .

The determinant M, = |R(x;, y?)~!| is the image of the Cauchy determi-
nant under the product of divided differences

%0y,

1

J

n

where @/ is relative to the pair yhytt



Indeed, for any j, any z, one has

% -1 9 1

=y == (=) —y) T = (=) ) -y
so that the divided differences relative to the alphabet y7 transform all the
terms (z; — y?)*l, inside the Cauchy determinant, into (z; — y?)*1 sz —
i)

On the other hand, it is classical, and immediate, that the Cauchy deter-
minant be equal to A(x)A(y)/R(x,y). It can also be expressed as

1 y ynfl
Rey) Ry Rey)

A |

Its product by [], R(x,y") can therefore be written as

AR | Rix,y* = o) 2)

Since each factor R(x,y") commutes with any divided difference 8%, k=
0,...,7=1, j = 1,...,n, the image of (f) under [], 8- --9_, is equal to
M, [, R(x,y"):

M,
A(x

s TTRG0Y) = |60 Bocy' = 400+ 01 . 3)

We shall now have recourse to symmetric functions, referring to the last
section for more details, as well as [[2, [[4]. For any non negative integer j,
one has

() Ree,y* =)0+ 0ry = Sio(y'sy' =),

where O = [n-1,...,n-1] = (n-1)", and S, is a multi-Schur function.

Writing y* = (y* — x) + x, and expanding by linearity, then
. . j .
Sio(ysy' —%x) = Sk(x)S;k0ly’ —x).
k=0
This identity allows us to transform () into

M, o
Alx) IZIR(X,.Y ) =

Si.oly' =x)|, (4)
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where now the entries of row 7 are Schur functions in the difference y* — x.

Going back to the original variables, that is, specializing each y® into
yi+ty; +- - -+1t"y;, we obtain the following expression of the Gaudin function
of level 7.

Theorem 1 The function

R(x,y(1+---+t" 1
s ol (o o o E e )
18 equal to
L S;o(yi(1+---+t") — x) .
Aly) i=1,...,n, j=0,....n—1

The original case of Izergin, Korepin is for level 1, and reads

Fi(x,y) =

1
m Sp_1(yi(1+t) — x),
Stn—1(yi(1+t) —x), ..., Sp1 -1 (vi(1+2) — x) . (5)

i=1,...,n

For example, for » = 1, n = 3, the function is

Soz2(y1+tyr —x)  Sioe(y1+tys —X)  Saoa(y1+tys — X)
F1<X7 V)A(Y) = [Soa2(yattys —X)  Sioa(ya+tys — X)  Saoa(ya+tys — X)
So22(ys+tys —x)  Sioo(ys+tys — X)  Saoa(ys+tys — X)

We have given another expression in [[[(J], separating the variables x and y.

The determinant det ((tz; — y;1) " (t2x; — y;5) ") specializes into
det ((z; — y;)(2? — y3)™) when t = exp(2mv/~1/3). In that case, F.(x,y)
becomes the Schur function in the union of x and y of index [0,0,1,1,2,2,...,n-1,n-1]
(cf. [I4, I§]). More generally, the Gaudin function of level r, when r is
odd, displays such a global symmetry. In that case, (tx —yt=)~1 ... (t"Hx —
yt= 17t = (z—y) (2" 2—y"?)7!, and the determinant det ((z; — y;) (] — y;“)*l)

is equal to
Ax)Aly)
a2 =y 50,0,6.6,...(n=1)8,(n-1)s(X T ¥)
? J

More general determinants displaying a symmetry in xy, ..., 2., Y1, .., Yn
are given in [[[3, Lemma 13] and [I3].



We shall now characterize the Gaudin function by specialization. Ex-
panding the determinant expressing F’(x,y) by linearity in x, one sees that

Fr(x,y) is a linear combination of terms ﬁ Yty
0<wv,...,u, < (n-1)(r+l), i.e. is a linear combination of Schur functions
of y indexed by partitions contained in B = [(n-1)r,..., (n-1)r]. By sym-

-~

n

metry x <y, F/(x,y) is a linear combination of products of Schur function
of x and of Schur functions of y indexed by partitions contained in H.

Given any infinite set of indeterminates z, any linear combination of Schur
functions in x with coefficients in z, indexed by partitions C H, is also a lin-
ear combination of Grassmannian Schubert polynomials Y,(x,z), v C H. As
such, it is determined by the ("Hn"*r) specializations x C {z1,..., Znrin_r}-
In the next theorem, we choose z = {1, . . ., Yns tY1, - -+, W, Y1, o o s 2y ..}
to get simple specializations.

Theorem 2 F!(x,y) is the only linear combination of Schur functions in
x, with coefficients in'y, indexed by partitions contained in B, which has the
same specializations

X CA{Yr, s Ynye s Y1y YR}

than the function
A(x)
G (x,y) = —= || So(y;(1+---+t") — x),
) = S TTsetutre ) =

where O is, as before, equal to (n—1)".

Proof. 1f the specialization of x contains several occurrences of the same
y; (ignoring the powers of t), then all the functions S; o(y;(1+---+t") — x)
vanish. Thus, F(x,y) as well as GJ,(x,y) vanish in that case.

Let now x' = {2} = yit, ..., 2, = y,t}, with 0 < €1,...,¢, < 7. In
that case, each y;(1+---+t") — X’ is equal to the difference of two sets of
respective cardinalities r,n — 1, and, according to ([1]),

Sio(yi(1+---+t") = x') = S;(x) — x') So(ys(1+ - - - +t") — X).

This factorization allows to extract from the determinant expressing F! (x',y)
the factor [T, So(yi(1+- - +t") — x'). There remains det(S;(z} — x')), which

)
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is equal to the Vandermonde A(x"). Therefore, the two functions F)(x,y),

G’ (x,y) have the same specializations in {y1,...,t"y,}. To characterize
F’(x,y), we need only specialize x to a subset of the first nr+mn —r elements
of {y1,...,t"y,}, and this finishes the proof of the theorem. QED

Notice that all the specializations occurring in Theorem [ are either 0, or
products of factors (y;t* — ;).

When r = 1, Theorem B claims that F!(x,y) has the same specializations
X C Ay, Yns ty1, -, tyn} as AX)A(y) T, Sne1(yi + ty; — x). We have
moreover remarked that one can suppress one letter from {yi,...,ty,} to
characterize the Gaudin function.

For n = 2, r = 2, the expression in Theorem [[] specializes, for z; =
Y1, T = t2y, into

1 Sonn (tyr + t2y1 — t2y2)  Siia(tyr + Pyr — t2y0)
Y2 — % Sor1(y2 +ty2 — y1) S111(y2 +tya — y1)
—tQCUQ
—Y1

=13 (y2 — y1) (Y1 — ty2)* (Pyo — 1) -

1
= (= 1)l — )
Theorem J gives on the other hand

2y —y
—2 7 So1 (tyr + t2y1 — t2y2) Sou1 (y2 + ty2 — 1)
Y2 — 1

_ t2yy — y1(

ty, — t2y2)(t2y1 - t2y2)(y2 —y1)(ty2 — v1),
Yo — W

which is, indeed, equal.

2 Euler-Poincaré characteristics

We go back to the original Gaudin-Izergin-Korepin determinant [f, ], that
is, from now on, we take level r = 1.

The Euler-Poincaré characteristics for a flag manifold under GI(C™), con-
veniently generalized by Hirzebruch [{, ], can be combinatorially interpreted
as a summation over the symmetric group S,, :

(f Hifc(ti; & ))w € Gym(x) .

Clt][r1,...,xn] D f — fU, = Z

wG(‘Bn



This morphism is characterized by the fact that the images of dominant
monomials
T ::xi‘l---:p;\f, A > 2>20 >0

are the Hall-Littlewood polynomials [[4] c)P(x,t), the normalization con-
stants ¢y, writing A = 0™01™ ...n™» being

n  m;

o=[[I[a-Ha-n".

=0 j=1
The elementary operators (case n = 2) are
U; = U, 0 f — fU; = f(to; — 2i11) O;

and generate the Hecke algebra of the symmetric group (as an algebra of
operators on polynomials. This is the description of the affine Hecke algebra
that I used with M.P. Schiitzenberger in [§]). The usual generators T; :=
U; — 1 satisfy the braid relations, and the Hecke relation (7; —¢)(7; +1) = 0,
while U? = (1 + t)U;.

We shall also need an affine operation #, which is the incrementation of
indices on the z-variables :

;0 =201, periodicity z;,, =zt .

Notice that to define Macdonald’s polynomials (see next section), one uses
the periodicity x;., = qx; with ¢ independent of ¢.

Theorem 3 Let x,y be two alphabets of cardinality n, f be a function of a
single variable. Then

flx) R(x— 21, y)(1 —t0)--- (1 —t"" 'Oy,
= (f<$1)372 te 'xnal o 'anfl ) F5<X7 y) [n]' : <6>

Proof. The LHS, as a function of y, belongs to the space generated by the
Schur functions of index contained in the partition (n—-1)". It therefore can
be determined by computing all the specializations

y C {.Tl, R ,.I‘n,.I‘Qt_l, .. .l’nt_l}

(we do not need to take z;¢!).



To lighten notations, let us take n = 4. The function
f(z1) R(zatas+ay, y)(1 —t0)(1 — 20)(1 — t30)

is equal to

f(z1) R(zo+as+my,y) —t [3

1] f(z2) R(zst+xs+a1/t,y)

+ 3 [3

2] f(x3) R(wyvay [tras/t,y) — 0 f(24) R(xy /t+as/tras/t,y)

The sum under the symmetric group can be written

A (1234)\ "
Z (f(xl)R(x2+:c3+:c4, y)m)

’ B tm 3 (f(xl)R(x3+x4+x2t1,Y)%)w

w

)

6 RS
—t ;(f(xl)R(xgt gt Hxgt T y) A(1231)

We shall identify the coefficients of f(z1) in both members of [j. Consider
all the specializations y C {x1,..., 24, 22/t,... , x4/t} of the LHS. Up to
symmetry, the only non-zero specializations are

ro+x3+T A H\"
oy — {{L‘l,l’g, xs3, [L‘4}: —tGR(%a}I) Zw:wlzl (At((1122§4))>

x zotx A(3214)\ Y
Yy — {.Tl, T2, X3, 74} t3 B] R(% + 24, y) Zw:w1=1,w4=4 ( A((3214))>

- - A2134)\ Y
oy — {x1, 19, g —tmR(TQ + x3+24,Y) wa1=1,w2=2 ( A((2134))>

oy — {1’17 J:TQ’ %7 %} R(l’2+x3+x47 y) Zw:wlzl <AAt((1122§f))) :

Up to the global factor

IE25E3I‘4(1 — t)(]_ — t2)(1 — t3)
At(1234)At (4321)R([L‘1, IL‘2+I‘3+$4)

8



these specializations are respectively equal to
R(z1+xo+xs, xy)  R(xi+x9,x3+74)  R(x1, 2ot+x3+24)
’ R(IL‘1+I‘2+I‘3, tl‘4) ’ R(l‘lJrl‘Q, tl‘3+tl‘4) ’ R(ZL‘l, tl‘2+t$3+tl‘4) ’

They coincide with the specializations of the RHS of (), thanks to Theorem
B, writing f(x1)xow3240,0:05 as

f($1)$2$3$4 f($2)$1$3$4 f($3)$1$2$4 f($4)$1$2$3
R(.Tl, l’2+373+374) R(.TQ, l’1+373+374) R(.Tg, 1’1+I2+.T4) R(.T4, 1’1+I2+I‘3) )

In final, we have checked enough specializations to prove ({). Q.E.D.

3 Generating functions of Macdonald poly-
nomials

The symmetric Macdonald polynomials Py (x; g, t) satisfy a Cauchy formula :

<xyﬁ) ] [T ey _ CGCTRLCUNNG

1—qgx
rex,ycy >0 q Yy

sum over all partitions of length () < n, the constants by being defined in
[[4, VI.4.11].

Let 7, be the following incrementation of indices on the z-variables :
T;Tq = Tip1, periodicity iy, = qx; .

We want to compute

Since
1-—t¢ l—t_'_ (t 1)
X T, =Xx—— +x1(t —
1—¢q* 1—gq ! ’
one has
1—t .
Xyﬂ (I1—try)---(1—t"1,) U,

=0y (xy(1-t)) (1 —trp)--- (1 = t"10) U, 0y (qu%_;) (8)



The parameter ¢ has been eliminated from the operation, and we are thus
reduced to the case of Hall-Littlewood polynomials, which is treated in the
next theorem.

Theorem 4 The image of the generating function of Hall-Littlewood poly-
nomials Py(x,t) = P\(x;0,t) under (1 —tr) -+ - (1 — t"19)UY,, is

o1 (xy(1-1)) (1 —t1p) - - - (1 — ")V, = o1 (xy) FH(x,y) [n]!, 9)

where FX(x,y) is the Gaudin function (zy ---x,)"* F1(x",y),
xV ={at Y, and [n)! = (1—¢) - (1 — 7).

rn

Proof. One rewrites oy (xy(1-t)) = R(tx,y")R(x,y")"!. Notice that

R(tw; + - +tr,,y") R(tw; + -+ +1wn,y") R(twiz + -+ tay, y")

1—t"7) = =

( o) R(ri+ -+ xn,yY)  R(@ip+-+ 20, yY)
R(twig + -+ tx,,y") f ()

= R t 7 v _tnR 7 v ! =

with f(x;) a polynomial in z; of degree n — 1. Multiplying the LHS of ({) by

the function R(x,y"), one transforms it into

R(xi+ -+ 23,5Y)

(f(:pl)R(th + ot twy,,yY) — e f(xa)R(teg + - - + ta, + 21,y ")
o ()" e f(za) Rz + -+ T, yv)) Uy,

where ey, ..., e,_; are the elementary symmetric functions of ¢, ...,#""!. One
recognizes in this last expression

fx)R(twy + -+ tzn, vy ) (1 —t0)--- (1 —t"710).

We now invoke Theorem . Since the function f(z1)xs - 2,010, 1 is
a constant (for degree reasons), the LHS of () is proportional to Fl(x,y"),
that is, is proportional to F,(x,y). In fact, f(x) = [[,(tz — )

n -1
—t"[[;(x —y; ), so that

flx)zy 2,01 Oy = (1 — ") (yy - - -yn)_l-

Correcting by the right powers of (x;---z,) and (y; - - - y,), one finishes
the proof of the theorem. Q.E.D.

One can now go back to the case of Macdonald polynomials, and recover
a result of Warnaar [[9, Th.3.1].

10



Theorem 5 (Warnaar) There holds

- i 1—t ~
Y P g, )Ryt [J- ) = o <X}’m) o(txy)F, (x,y) .
A 1=1
(10)

Proof. The non symmetric Macdonald polynomials are eigenfunctions of cer-
tain commuting Dunkl-type operators &1, ..., &,, first introduced in [ and
extensively used by Cherednik [f]. The eigenvalues are ¢*¢"~ 1, ... ¢*t° for
the polynomial M) indexed by A: Ay > --- > X\, > 0. Up to normalization,
the image of M, under U, is equal to P\(x,q,t), and for any symmetric
function g in n variables, then

P)\<X7 q, t) g(flu s 7£n) = P)\(Xv q, t) g<q>\ltn_17 SR q)\nt0> .
Using [[]] that U, & U, = U, "7, U,,, one sees that

n

P)\(X; Q7t) H(l - q)\itn_“—l) = PA(X; Q7t)(1 - th) e (1 - tan) u, .

i=1
Therefore, the LHS of ([) can be identified with
1t
o1 <xy1—) (1—tr)---(1—t"71,) U, .
-q
Thanks to (§) and (), this can be written
14\ =, 14 .
o1(xy)oy qul——q F,(x,y) =01 Xyl——q o (txy)F,(X,¥),

which is Warnaar’s formula. Q.E.D.

4 Note: Symmetric functions and Schubert
polynomials

We use A\-ring conventions to describe symmetric functions. Given three sets
A, B, C of indeterminates (“alphabets”), the generating function of complete
functions S,(AB — C) is

1 —
o, = Alee =Y S, (AB - C).

HaeA,beB l1—=z

11



We write alphabets as sums of the letters composing them. For example,
A(l+t+---+1") is the alphabet {at’: a € A,0 < i <r}.

Schur functions S,(A — C), v € N, are determinants of complete func-
tions:

SU(A - C) = det (Svj—l—j—i(A - C))

One generalizes Schur functions to multi-Schur functions by taking dif-
ferent alphabets in blocks of columns of the preceding determinant. For
example, Sy ..., (A1 — C1; A — C) is the determinant with first column
S (A1 = C1), ..., Sy —nt1(A1 — C1), and entries S, 4;_i(A — C) elsewhere.

Multi-Schur functions satisfy some factorization properties [[J, Prop.
1.4.3]. We need only the following case, which was much used in classical
elimination theory in the 19th century.

ij=l.n"

Lemma 6 Given two finite alphabets A, B of respective cardinalities o, 3,
gwen j: 0 <7<, then

Sjpe(A=B)=5;(=B) [[ (a=b)=(-1Ve;B) ] (a—0), (1)

a€AbeB acAbeB

where e;(B) is the elementary symmetric function of degree j in B. In par-
ticular, Sjga(A—B) =0 if AN B # 0.

There are several families of non-symmetric polynomials extending the
basis of Schur functions. Of special interest are the Schubert polynomials
Y,(x,y), v € N" which constitute a linear basis of the ring of polynomials
in z = {x1,...,2,}, with coefficients in y;,¥s, ..., 9. They can be charac-
terized by vanishing properties related to the Bruhat order.

The subfamily of Schubert polynomials indexed by (increasing) parti-
tions form a basis of the ring of symmetric polynomials [[3]. It satisfies
the following property. Given v € N" : 0 < u; < -+ < uy,, let y<*= =

{y1+u17 s 7yn+un}'

Lemma 7 Let v = [0 < vy < -+ < v, be a partition. Then Y,(x,y) is
the only symmetric function in x of degree |v| = vy + -+ 4+ v, such that
Yo(y<*=,y) =0 for all u: |u| < |v|, u # v, and Y,(x,{0,0,...}) = S,(x).

More generally, Y,(y<"”,y) # 0 iff the diagram of u contains the diagram
of v.

In the case where y = {0,1,2,...} (resp. y = {¢° ¢',¢? ...}), the poly-
nomials Y, (x,y) are called factorial Schur functions (resp. q-factorial Schur
functions, and the above vanishing properties are extensively used in [[L{].

12
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