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ooo oo o ' ooo oo o [START_REF] Bernard | Yang-Baxter equation in spin chains with long range interactions[END_REF] Gaudin functions of arbitrary level Let x = {x 1 , . . . , x n }, y = {y 1 , . . . , y n } be two sets of indeterminates of the same cardinality n. The Cauchy determinant det (xy) -1 x∈x,y∈y plays a central rôle in the theory of symmetric functions [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF].

Generalizations of this determinant appear in the calculation of correlation functions of different physical models. Gaudin [4,Ch.IV] obtained the determinant det (xy) -1 (xy + γ) -1 x∈x,y∈y , γ a parameter, for a bose gas in one dimension. Izergin and Korepin [START_REF] Izergin | Partition function of the six-vertex model in a finite volume[END_REF] solved the Heisenberg XXZ-antiferromagnetic model with the help of det (xy) -1 (xty) -1 x∈x,y∈y , and Kirillov and Smirnov [7, Th.1] wrote more general determinants. These different determinants have led to an abundant literature, in connection with different statistical models and combinatorial enumerations, for example the enumeration of alternating sign matrices displaying some symmetries [START_REF] Okada | Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups[END_REF].

In this text, we shall be interested in a purely algebraic generalization, having no physical interpretation to offer. With x and y as above, let t be an extra indeterminate and r be a positive integer.

We propose to study the determinant

det 1 (x -y)(x -ty) • • • (x -t r y) x∈x,y∈y
.

This is a rational function, which can be written ∆(x)∆(y) R(x, y(1

+ • • • + t r )) F r n (x, y) , (1) 
where F r n (x, y) is a polynomial symmetrical in both x 1 , . . . , x n and y 1 , . . . , y n , ∆(x) being the Vandermonde i<j (x jx i ), the resultant R(x, y), for two finite sets of indeterminates x, y, being the product of differences x∈x y∈y (xy), and y(1

+ • • • + t r ) being {t i y j : 1 ≤ j ≤ n, 0 ≤ i ≤ r}.
We shall call the function F r n (x, y) the Gaudin function of level r, in recognition of the pioneering work of Gaudin so well illustrated in his thesis [START_REF] Gaudin | Étude d'un modèle à une dimension pour un système de fermions en interaction[END_REF] and his book [START_REF] Gaudin | La fonction d'onde de Bethe[END_REF].

Let us introduce n sets of indeterminates y j := {y 0 j = y j , y 1 j , . . . , y r j } , j = 1, . . . , n .

Recall that, for any pair (a, b) of indeterminates, the divided difference relative to a, b is the operator (denoted on the right)

f (a, b) → f (a, b)∂ a,b = f (a, b) -f (b, a) (a -b) -1 .
The determinant M n = R(x i , y j ) -1 is the image of the Cauchy determinant under the product of divided differences

n j=1 ∂ j 0 • • • ∂ j r-1 ,
where ∂ j i is relative to the pair y i j , y i+1 j .

Indeed, for any j, any x, one has

(x -y 0 j ) -1 ∂ j 0 -→ (x -y 0 j ) -1 (x -y 1 j ) -1 ∂ j 1 -→ (x -y 0 j ) -1 (x -y 1 j ) -1 (x -y 2 j ) -1 • • • ,
so that the divided differences relative to the alphabet y j transform all the terms (x iy 0 j ) -1 , inside the Cauchy determinant, into (x iy

0 j ) -1 • • • (x i - y r j ) -1 .
On the other hand, it is classical, and immediate, that the Cauchy determinant be equal to ∆(x)∆(y)/R(x, y). It can also be expressed as

∆(x) 1 R(x, y) , y R(x, y) , . . . , y n-1 R(x, y) , y=y 1 ,...,yn
.

Its product by i R(x, y i ) can therefore be written as

∆(x) (y 0 i ) j R(x, y i -y 0 i ) i=1,...,n, j=0,...,n-1 . (2) 
Since each factor R(x, y i ) commutes with any divided difference ∂ j k , k = 0, . . . , r-1, j = 1, . . . , n, the image of [START_REF] Cherednik | Double Affine Hecke Algebras[END_REF] 

under i ∂ i 0 • • • ∂ i r-1 is equal to M n i R(x, y i ): M n ∆(x) i R(x, y i ) = (y 0 i ) j R(x, y i -y i )∂ i 0 • • • ∂ i r-1 . (3) 
We shall now have recourse to symmetric functions, referring to the last section for more details, as well as [START_REF] Lascoux | Symmetric functions & Combinatorial operators on polynomials[END_REF][START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]. For any non negative integer j, one has (y 0 i ) j R(x, y i -

y 0 i )∂ i 0 • • • ∂ i r-1 = S j; (y i ; y i -x)
, where = [n-1, . . . , n-1 r ] = (n-1) r , and S j; is a multi-Schur function.

Writing y i = (y ix) + x, and expanding by linearity, then

S j; (y i ; y i -x) = j k=0 S k (x)S j-k, (y i -x) .
This identity allows us to transform (3) into

M n ∆(x) i R(x, y i ) = S j, (y i -x) , (4) 
where now the entries of row i are Schur functions in the difference y ix.

Going back to the original variables, that is, specializing each y i into y i + ty i + • • •+ t r y i , we obtain the following expression of the Gaudin function of level r.

Theorem 1 The function

F r n (x, y) := R(x, y(1+ • • • +t r )) ∆(x)∆(y) det 1 (x i -y j )(x i -ty j ) • • • (x i -t r y j ) is equal to 1 ∆(y) S j, (y i (1+ • • • +t r ) -x)
i=1,...,n, j=0,...,n-1

.

The original case of Izergin, Korepin is for level 1, and reads

F 1 n (x, y) = 1 ∆(y) S n-1 (y i (1+t) -x), S 1,n-1 (y i (1+t) -x), . . . , S n-1,n-1 (y i (1+t) -x) i=1,...,n . (5) 
For example, for r = 1, n = 3, the function is .

F 1 (x,
We have given another expression in [START_REF] Lascoux | Square ice enumeration[END_REF], separating the variables x and y. The determinant det (tx iy j

1 t ) -1 (t 2 x i -y j 1 t 2 ) -1 specializes into det (x i -y j )(x 3 i -y 3 j ) -1 when t = exp(2π √ -1/3).
In that case, F 1 n (x, y) becomes the Schur function in the union of x and y of index [0, 0, 1, 1, 2, 2, . . . , n-1, n-1] (cf. [START_REF] Yu | A new way to deal with Izergin-Korepin determinant at root of unity[END_REF][START_REF] Yu | Izergin-Korepin determinant reloaded[END_REF]). More generally, the Gaudin function of level r, when r is odd, displays such a global symmetry. In that case, (tx

-yt -1 ) -1 • • • (t r+1 x - yt -r-1 ) -1 = (x-y)(x r+2 -y r+2 ) -1 , and the determinant det (x i -y j )(x r+2 i -y r+2 j ) -1 is equal to ∆(x)∆(y) x r+2 i -y r+2 j S 0,0,β,β,...,(n-1)β,(n-1)β (x + y) .
More general determinants displaying a symmetry in x 1 , . . . , x n , y 1 , . . . , y n are given in [13, Lemma 13] and [START_REF] Okada | Enumeration of Symmetry Classes of Alternating Sign Matrices and Characters of Classical Groups[END_REF].

We shall now characterize the Gaudin function by specialization. Expanding the determinant expressing F r n (x, y) by linearity in x, one sees that F r n (x, y) is a linear combination of terms 1 ∆(y) y v 1 i , . . . , . . . Given any infinite set of indeterminates z, any linear combination of Schur functions in x with coefficients in z, indexed by partitions ⊆ ⊞, is also a linear combination of Grassmannian Schubert polynomials Y v (x, z), v ⊆ ⊞. As such, it is determined by the nr+n-r n specializations x ⊂ {z 1 , . . . , z nr+n-r }.

y vn i , 0 ≤ v 1 , . . . , v n ≤ (n-1)(r+1), i.e.
In the next theorem, we choose z = {y 1 , . . . , y n , ty 1 , . . . , ty n , t 2 y 1 , . . . , t 2 y n , . . .} to get simple specializations.

Theorem 2 F r n (x, y) is the only linear combination of Schur functions in x, with coefficients in y, indexed by partitions contained in ⊞, which has the same specializations

x ⊂ {y 1 , . . . , y n , . . . , t r y 1 , . . . , t r y n } than the function

G r n (x, y) := ∆(x) ∆(y) i S (y i (1+ • • • +t r ) -x) ,
where is, as before, equal to (n-1) r .

Proof. If the specialization of x contains several occurrences of the same y i (ignoring the powers of t), then all the functions S j, (y i (1+ • • • +t r )x) vanish. Thus, F r n (x, y) as well as G r n (x, y) vanish in that case. Let now

x ′ = {x ′ 1 = y 1 t ǫ 1 , . . . , x ′ n = y n t ǫn }, with 0 ≤ ǫ 1 , . . . , ǫ n ≤ r. In that case, each y i (1+ • • • +t r ) -x ′ is
equal to the difference of two sets of respective cardinalities r, n -1, and, according to [START_REF] Lascoux | Yang-Baxter graphs, Jack and Macdonald polynomials[END_REF],

S j, (y i (1+ • • • +t r ) -x ′ ) = S j (x ′ i -x ′ ) S (y i (1+ • • • +t r ) -x ′ ) .
This factorization allows to extract from the determinant expressing F r n (x ′ , y) the factor i S (y i (1+ • • • +t r )x ′ ). There remains det S j (x ′ ix ′ ) , which is equal to the Vandermonde ∆(x ′ ). Therefore, the two functions F r n (x, y), G r n (x, y) have the same specializations in {y 1 , . . . , t r y n }. To characterize F r n (x, y), we need only specialize x to a subset of the first nr + nr elements of {y 1 , . . . , t r y n }, and this finishes the proof of the theorem. QED Notice that all the specializations occurring in Theorem 2 are either 0, or products of factors (y i t kx j ).

When r = 1, Theorem 2 claims that F 1 n (x, y) has the same specializations x ⊂ {y 1 , . . . , y n , ty 1 , . . . , ty n } as ∆(x)∆(y) -1 i S n-1 (y i + ty ix). We have moreover remarked that one can suppress one letter from {y 1 , . . . , ty n } to characterize the Gaudin function.

For n = 2, r = 2, the expression in Theorem 1 specializes, for

x 1 = y 1 , x 2 = t 2 y 2 , into 1 y 2 -y 1 S 011 (ty 1 + t 2 y 1 -t 2 y 2 ) S 111 (ty 1 + t 2 y 1 -t 2 y 2 ) S 011 (y 2 + ty 2 -y 1 ) S 111 (y 2 + ty 2 -y 1 ) = t 3 (y 2 -y 1 )(y 1 -ty 2 ) 2 1 -t 2 y 2 1 -y 1 = t 3 (y 2 -y 1 )(y 1 -ty 2 ) 2 (t 2 y 2 -y 1 )
.

Theorem 2 gives on the other hand

t 2 y 2 -y 1 y 2 -y 1 S 011 (ty 1 + t 2 y 1 -t 2 y 2 ) S 011 (y 2 + ty 2 -y 1 ) = t 2 y 2 -y 1 y 2 -y 1 (ty 1 -t 2 y 2 )(t 2 y 1 -t 2 y 2 )(y 2 -y 1 )(ty 2 -y 1 ) ,
which is, indeed, equal.

Euler-Poincaré characteristics

We go back to the original Gaudin-Izergin-Korepin determinant [START_REF] Gaudin | La fonction d'onde de Bethe[END_REF][START_REF] Izergin | Partition function of the six-vertex model in a finite volume[END_REF], that is, from now on, we take level r = 1. The Euler-Poincaré characteristics for a flag manifold under Gl(C n ), conveniently generalized by Hirzebruch [START_REF] Hirzebruch | Topological methods in algebraic geometry[END_REF][START_REF] Lascoux | About the "y" in the χ y -characteristic of Hirzebruch, Conference in the honor of F. Hirzebruch, Institut Banach[END_REF], can be combinatorially interpreted as a summation over the symmetric group S n :

C[t][x 1 , . . . , x n ] ∋ f -→ f ⋒ ω := w∈Sn f i<j (tx i -x j ) x i -x j w ∈ Sym(x) .
This morphism is characterized by the fact that the images of dominant monomials

x λ := x λ 1 1 • • • x λn n , λ 1 ≥ • • • ≥ λ n ≥ 0 are the Hall-Littlewood polynomials [14] c λ P λ (x, t), the normalization con- stants c λ , writing λ = 0 m 0 1 m 1 • • • n mn , being c λ = n i=0 m i j=1 (1 -t j )(1 -t) -1 .
The elementary operators (case n = 2) are

⋒ i := ⋒ s i : f -→ f ⋒ i = f (tx i -x i+1 ) ∂ i
and generate the Hecke algebra of the symmetric group (as an algebra of operators on polynomials. This is the description of the affine Hecke algebra that I used with M.P. Schützenberger in [START_REF] Lascoux | Symmetry and Flag manifolds, Invariant Theory[END_REF]). The usual generators T i := ⋒ i -1 satisfy the braid relations, and the Hecke relation (T it)(T i + 1) = 0, while ⋒ 2 i = (1 + t)⋒ i . We shall also need an affine operation θ, which is the incrementation of indices on the x-variables :

x i θ = x i+1 , periodicity x i+n = x i t -1 .
Notice that to define Macdonald's polynomials (see next section), one uses the periodicity x i+n = qx i with q independent of t.

Theorem 3 Let x, y be two alphabets of cardinality n, f be a function of a single variable. Then

f (x 1 ) R(x -x 1 , y)(1 -tθ) • • • (1 -t n-1 θ)⋒ ω = (f (x 1 )x 2 • • • x n ∂ 1 • • • ∂ n-1 ) F 1 n (x, y) [n]! . (6) 
Proof. The LHS, as a function of y, belongs to the space generated by the Schur functions of index contained in the partition (n-1) n . It therefore can be determined by computing all the specializations y ⊂ {x 1 , . . . , x n , x 2 t -1 , . . . x n t -1 } (we do not need to take x 1 t -1 ).

To lighten notations, let us take n = 4. The function

f (x 1 ) R(x 2 +x 3 +x 4 , y)(1 -tθ)(1 -t 2 θ)(1 -t 3 θ) is equal to f (x 1 ) R(x 2 +x 3 +x 4 , y) -t 3 1 f (x 2 ) R(x 3 +x 4 +x 1 /t, y) + t 3 3 2 f (x 3 ) R(x 4 +x 1 /t+x 2 /t, y) -t 6 f (x 4 ) R(x 1 /t+x 2 /t+x 3 /t, y)
The sum under the symmetric group can be written

w f (x 1 )R(x 2 +x 3 +x 4 , y) ∆ t (1234) ∆(1234) w -t 3 1 w f (x 1 )R(x 3 +x 4 +x 2 t -1 , y) ∆ t (2134) ∆(2134) w + t 3 3 2 w f (x 1 )R(x 4 +x 2 t -1 +x 3 t -1 , y) ∆ t (3214) ∆(3214) w -t 6 w f (x 1 )R(x 2 t -1 +x 3 t -1 +x 4 t -1 , y) ∆ t (4231) ∆(4231) w
We shall identify the coefficients of f (x 1 ) in both members of 6. Consider all the specializations y ⊂ {x 1 , . . . , x 4 , x 2 /t, . . . , x 4 /t} of the LHS. Up to symmetry, the only non-zero specializations are

• y → {x 1 , x 2 , x 3 , x 4 }: -t 6 R( x 2 +x 3 +x 4 t , y) w: w 1 =1 ∆t(1234) ∆(1234) w • y → {x 1 , x 2 , x 3 , x 4 t }: t 3 3 2 R( x 2 +x 3 t + x 4 , y) w: w 1 =1,w 4 =4 ∆t(3214) ∆(3214) w • y → {x 1 , x 2 , x 3 t , x 4 t }: -t 3 1 R( x 2 t + x 3 +x 4 , y) w: w 1 =1,w 2 =2 ∆t(2134) ∆(2134) w • y → {x 1 , x 2 t , x 2 t , x 4 t }: R(x 2 +x 3 +x 4 , y) w: w 1 =1 ∆t(1234) ∆(1234) w .
Up to the global factor

x 2 x 3 x 4 (1 -t)(1 -t 2 )(1 -t 3 ) ∆ t (1234)∆ t (4321)R(x 1 , x 2 +x 3 +x 4 )
these specializations are respectively equal to 1, R(x 1 +x 2 +x 3 , x 4 ) R(x 1 +x 2 +x 3 , tx 4 ) , R(x 1 +x 2 , x 3 +x 4 ) R(x 1 +x 2 , tx 3 +tx 4 ) , R(x 1 , x 2 +x 3 +x 4 ) R(x 1 , tx 2 +tx 3 +tx 4 ) .

They coincide with the specializations of the RHS of ( 6), thanks to Theorem 2, writing f (x 1 )

x 2 x 3 x 4 ∂ 1 ∂ 2 ∂ 3 as f (x 1 )x 2 x 3 x 4 R(x 1 , x 2 +x 3 +x 4 ) + f (x 2 )x 1 x 3 x 4 R(x 2 , x 1 +x 3 +x 4 ) + f (x 3 )x 1 x 2 x 4 R(x 3 , x 1 +x 2 +x 4 ) + f (x 4 )x 1 x 2 x 3 R(x 4 , x 1 +x 2 +x 3 )
.

In final, we have checked enough specializations to prove [START_REF] Izergin | Partition function of the six-vertex model in a finite volume[END_REF].

Q.E.D.

Generating functions of Macdonald polynomials

The symmetric Macdonald polynomials P λ (x; q, t) satisfy a Cauchy formula :

σ 1 xy 1 -t 1 -q := x∈x,y∈y i≥0 1 -tq i xy 1 -q i xy = λ b λ P λ (x; q, t)P λ (y; q, t) , (7) 
sum over all partitions of length ℓ(λ) ≤ n, the constants b λ being defined in [START_REF] Macdonald | Symmetric functions and Hall polynomials[END_REF]VI.4.11]. Let τ q be the following incrementation of indices on the x-variables :

x i τ q = x i+1 , periodicity x i+n = qx i .

We want to compute

σ 1 xy 1 -t 1 -q (1 -tτ q ) • • • (1 -t n τ q ) ⋒ ω . Since x 1 -t 1 -q τ q = x 1 -t 1 -q + x 1 (t -1) , one has σ 1 xy 1 -t 1 -q (1 -tτ q ) • • • (1 -t n τ q ) ⋒ ω = σ 1 (xy(1-t)) (1 -tτ 0 ) • • • (1 -t n τ 0 ) ⋒ ω σ 1 xyq 1 -t 1 -q (8) 
The parameter q has been eliminated from the operation, and we are thus reduced to the case of Hall-Littlewood polynomials, which is treated in the next theorem.

Theorem 4 The image of the generating function of Hall-Littlewood polynomials P λ (x, t) = P λ (x; 0, t) under (1

-tτ 0 ) • • • (1 -t n τ 0 )⋒ ω is σ 1 (xy(1-t)) (1 -tτ 0 ) • • • (1 -t n τ 0 )⋒ ω = σ 1 (xy) F 1 n (x, y) [n]! , (9) 
where

F 1 n (x, y) is the Gaudin function (x 1 • • • x n ) n-1 F 1 n (x ∨ , y), x ∨ = {x -1 1 , . . . , x -1 n }, and [n]! = (1 -t) • • • (1 -t n ). Proof. One rewrites σ 1 (xy(1-t)) = R(tx, y ∨ )R(x, y ∨ ) -1 . Notice that R(tx i + • • • + tx n , y ∨ ) R(x i + • • • + x n , y ∨ ) (1-t n τ 0 ) = R(tx i + • • • + tx n , y ∨ ) R(x i + • • • + x n , y ∨ ) - R(tx i+1 + • • • + tx n , y ∨ ) R(x i+1 + • • • + x n , y ∨ ) = R(tx i , y ∨ )-t n R(x i , y ∨ ) R(tx i+1 + • • • + tx n , y ∨ ) R(x i + • • • + x n , y ∨ ) = f (x i ) R(x i + • • • + x n , y ∨ )
with f (x i ) a polynomial in x i of degree n -1. Multiplying the LHS of ( 9) by the function R(x, y ∨ ), one transforms it into

f (x 1 )R(tx 2 + • • • + tx n , y ∨ ) -e 1 f (x 2 )R(tx 3 + • • • + tx n + x 1 , y ∨ ) + • • • + (-1) n-1 e n-1 f (x n )R(x 1 + • • • + x n-1 , y ∨ ) ⋒ ω ,
where e 1 , . . . , e n-1 are the elementary symmetric functions of t, . . . , t n-1 . One recognizes in this last expression

f (x 1 )R(tx 2 + • • • + tx n , y ∨ )(1 -tθ) • • • (1 -t n-1 θ) .
We now invoke Theorem 6. Since the function f

(x 1 )x 2 • • • x n ∂ 1 • • • ∂ n-1
is a constant (for degree reasons), the LHS of ( 9) is proportional to

F 1 n (x, y ∨ ), that is, is proportional to F 1 n (x, y). In fact, f (x) = j (tx -y -1 j ) -t n j (x -y -1 j ), so that f (x 1 )x 2 • • • x n ∂ 1 • • • ∂ n-1 = (1 -t n )(y 1 • • • y n ) -1 .
Correcting by the right powers of (x 1 • • • x n ) and (y 1 • • • y n ), one finishes the proof of the theorem.

Q.E.D.

One can now go back to the case of Macdonald polynomials, and recover a result of Warnaar [START_REF] Warnaar | Bisymmetric functions, Macdonald polynomials and sl 3 basic hypergeometric series[END_REF]Th.3.1].

Theorem 5 (Warnaar) There holds λ b λ P λ (x; q, t)P λ (y; q, t)

n i=1 (1-q λ i t n-i+1 ) = σ 1 xy 1 -t 1 -q σ 1 (txy) F 1 n (x, y) . (10) 
Proof. The non symmetric Macdonald polynomials are eigenfunctions of certain commuting Dunkl-type operators ξ 1 , . . . , ξ n , first introduced in [START_REF] Bernard | Yang-Baxter equation in spin chains with long range interactions[END_REF] and extensively used by Cherednik [START_REF] Cherednik | Double Affine Hecke Algebras[END_REF]. The eigenvalues are q λ 1 t n-1 , . . . , q λn t 0 for the polynomial M λ indexed by λ :

λ 1 ≥ • • • ≥ λ n ≥ 0.
Up to normalization, the image of M λ under ⋒ ω is equal to P λ (x, q, t), and for any symmetric function g in n variables, then P λ (x; q, t) g(ξ 1 , . . . , ξ n ) = P λ (x; q, t) g(q λ 1 t n-1 , . . . , q λn t 0 ) .

Using [START_REF] Lascoux | Yang-Baxter graphs, Jack and Macdonald polynomials[END_REF] that ⋒ ω ξ i ⋒ ω = ⋒ ω t n-i τ q ⋒ ω , one sees that

P λ (x; q, t) n i=1 (1 -q λ i t n-i+1 ) = P λ (x; q, t)(1 -tτ q ) • • • (1 -t n τ q ) ⋒ ω .
Therefore, the LHS of ( 10) can be identified with

σ 1 xy 1-t 1-q (1 -tτ q ) • • • (1 -t n τ q ) ⋒ ω .
Thanks to (8) and ( 9), this can be written

σ 1 (xy)σ 1 xyq 1-t 1-q F 1 n (x, y) = σ 1 xy 1-t 1-q σ 1 (txy) F 1 n (x, y) ,
which is Warnaar's formula. Q.E.D.

Note: Symmetric functions and Schubert polynomials

We use λ-ring conventions to describe symmetric functions. Given three sets A, B, C of indeterminates ("alphabets"), the generating function of complete functions S n (AB -C) is

σ z := c∈C 1 -zc a∈A,b∈B 1 -zab = z n S n (AB -C) .
We write alphabets as sums of the letters composing them. For example, A(1

+ t + • • • + t r ) is the alphabet {at i : a ∈ A, 0 ≤ i ≤ r}. Schur functions S v (A -C), v ∈ N n , are determinants of complete func- tions: S v (A -C) = det S v j +j-i (A -C) i,j=1...n .
One generalizes Schur functions to multi-Schur functions by taking different alphabets in blocks of columns of the preceding determinant. For example, S v 1 ;v 2 ,...,vn (A

1 -C 1 ; A -C) is the determinant with first column S v 1 (A 1 -C 1 ), . . . , S v 1 -n+1 (A 1 -C 1 )
, and entries S v j +j-i (A -C) elsewhere.

Multi-Schur functions satisfy some factorization properties [START_REF] Lascoux | Symmetric functions & Combinatorial operators on polynomials[END_REF]Prop. 1.4.3]. We need only the following case, which was much used in classical elimination theory in the 19th century. There are several families of non-symmetric polynomials extending the basis of Schur functions. Of special interest are the Schubert polynomials Y v (x, y), v ∈ N n , which constitute a linear basis of the ring of polynomials in x = {x 1 , . . . , x n }, with coefficients in y 1 , y 2 , . . . , y ∞ . They can be characterized by vanishing properties related to the Bruhat order.

The subfamily of Schubert polynomials indexed by (increasing) partitions form a basis of the ring of symmetric polynomials [START_REF] Lascoux | Symmetric functions & Combinatorial operators on polynomials[END_REF]. It satisfies the following property. Given u ∈ N n : 0 ≤ u 1 ≤ • • • ≤ u n , let y <u> := {y 1+u 1 , . . . , y n+un }. More generally, Y v (y <u> , y) = 0 iff the diagram of u contains the diagram of v.

Lemma 7 Let v = [0 ≤ v 1 ≤ • • • ≤ v n ]
In the case where y = {0, 1, 2, . . .} (resp. y = {q 0 , q 1 , q 2 , . . .}), the polynomials Y v (x, y) are called factorial Schur functions (resp. q-factorial Schur functions, and the above vanishing properties are extensively used in [START_REF] Okounkov | Shifted Schur functions II. Binomial formula for characters of classical groups and applications, Kirillov's seminar on representation theory[END_REF].

  is a linear combination of Schur functions of y indexed by partitions contained in ⊞ = [ (n-1)r, . . . , (n-1)r n ]. By symmetry x ↔ y, F r n (x, y) is a linear combination of products of Schur function of x and of Schur functions of y indexed by partitions contained in ⊞.

Lemma 6

 6 Given two finite alphabets A, B of respective cardinalities α, β, given j : 0 ≤ j ≤ β, thenS j,β α (A -B) = S j (-B) a∈A,b∈B (ab) = (-1) j e j (B)a∈A,b∈B (ab) ,[START_REF] Lascoux | Yang-Baxter graphs, Jack and Macdonald polynomials[END_REF] where e j (B) is the elementary symmetric function of degree j in B. In particular, S j,β α (A -B) = 0 if A ∩ B = ∅.

  be a partition. Then Y v (x, y) is the only symmetric function inx of degree |v| = v 1 + • • • + v n such that Y v (y <u> , y) = 0 for all u : |u| ≤ |v|, u = v, and Y v (x, {0, 0, . . .}) = S v (x).
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