

A new access to dihydrotropones through ring expansion of spirocyclohexadienones: synthesis and mechanism.

Marie Varin, Angèle Chiaroni, Jean-Yves Lallemand, Bogdan Iorga, Catherine

Guillou

► To cite this version:

Marie Varin, Angèle Chiaroni, Jean-Yves Lallemand, Bogdan Iorga, Catherine Guillou. A new access to dihydrotropones through ring expansion of spirocyclohexadienones: synthesis and mechanism.. Journal of Organic Chemistry, 2007, 72 (17), pp.6421-6. 10.1021/jo070594p . hal-00171090

HAL Id: hal-00171090 https://hal.science/hal-00171090

Submitted on 7 Mar 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A new access to dihydrotropones through ring expansion of spirocyclohexadienones: Synthesis and mechanism[§]

Marie Varin, Angèle Chiaroni, Jean-Yves Lallemand, Bogdan Iorga,* Catherine Guillou*

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, F-91198 Gif sur Yvette, France

iorga@icsn.cnrs-gif.fr, guillou@icsn.cnrs-gif.fr

Tel. +33 1 69 82 30 30; Fax +33 1 69 07 72 47

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

RUNNING TITLE A new access to dihydrotropones

SYNOPSIS TOC

ABSTRACT In this paper we report the rearrangement of spirocyclohexadienones into dihydrotropones in basic conditions as a new method for the preparation of seven-membered ring ketones, which are key building blocks for the synthesis of tropoloalkaloids. DFT calculations and deuterium labeling studies support the mechanism we propose for this rearrangement, involving the ring opening of a spirocyclopropane intermediate followed by successive base-catalyzed 1,3-hydrogen shifts. The X-ray

structure of the resulting dihydrotropone shows near-perfect planarity and the conjugation gain is likely to be the driving force of the reaction.

KEYWORDS dienone, dihydrotropone, rearrangement, DFT calculations

Introduction

Substituted carbocyclic seven-membered rings are frequently found in natural and medicinally active compounds (e.g. hinokitiol,¹ thapsigargins,² colchicine^{3,4}), and several methods for their synthesis are available,⁵⁻⁷ among them, cycloadditions of allyl cations with 1,3-dienes,⁸⁻¹⁰ metal-catalyzed cycloadditions,¹¹⁻²⁰ electrochemical oxidations,²¹ radical,²²⁻²⁴ acidic^{25,26} or thermal^{27,28} ring expansion reactions.

We describe here a new method, the rearrangement of spirocyclohexadienones to one-carbon ring expansion products, dihydrotropones, under basic conditions.²⁹ A mechanism for this reaction is also proposed, which is fully supported by DFT calculations and deuterium labeling studies.

Results and Discussion

Reaction conditions. In basic conditions, we observed conversion of the dienone 1^{30} into two products: a one carbon ring expansion product (**2a**) and a tricyclic ester (**3**) resulting from the lactone ring opening (Scheme 1). These two compounds are obtained in various ratios according to the reaction conditions.

Conditions: i) MeONa, MeOH, 40°C; ii) HCl 1 M

Scheme 1. Rearrangement and lactone ring opening products of spirocyclohexadienone **1** in basic conditions. Throughout this study, the following naming system is used: (a) for the keto forms; (b) for the enol forms; (c) for the enolate forms (see Table 1 for more details).

The presence of an efficient protonating agent seems to be essential for the rearrangement of **1** into **2a** to occur. Several systems have been investigated at different temperatures (–78 °C to 75 °C): i) in the absence of protonating agent (NaH/THF) no reaction is observed; ii) in the presence of stoichiometric quantity of

protonating agent (DBU/CH₂Cl₂, potassium phthalimide/THF, lithium *N*-methyltoluenesulfonamide/THF) we observed the suppression of the lactone ring opening, a slow reaction rearrangement and low yields of **2a** (5-30 %); iii) when the protonating agent is the solvent (MeONa/MeOH, EtONa/EtOH, *i*-PrONa/*i*-PrOH) we observed a fast reaction and the formation of two compounds: the rearrangement product **2a** and the tricyclic ester **3**. The best results are obtained with MeONa in MeOH at 40 °C for 30 min, the product **2a** being isolated in 75 % yield in these conditions.

During the study of the reaction of **1** with MeONa in MeOH at 40 °C we evidenced two competitive reactions: i) the rearrangement described above, leading to **2a** after protonation and ii) the intermediate formation of the ester 3,³¹ through the nucleophilic opening of the lactone ring followed by a Michael addition of the resulting phenoxide **8** (Scheme 2).

Conditions: i) CX₃ONa, CX₃OX, 40°C; ii) HCl 1 M

Scheme 2. Deuterium labeling studies during the rearrangement and lactone ring opening of spirocyclohexadienone **1** in basic conditions.

The formation of compound **3** proved to be reversible and the equilibrium is shifted towards the thermodynamic product **2a** (Figure S1, Supporting information). Figure 1 shows that the ester **3** has completely disappeared after 10 min, but the best yields of **2a** are obtained after 30 min at 40 °C. At lower temperatures (-78 °C to 20 °C), the ester **3** is almost exclusively observed.

When the reaction of **1** with CD₃ONa in CD₃OD at 40 °C is followed by ¹H-NMR (Figure S2, Supporting information) it is noteworthy that: i) an equilibrium between three species (**5**, **7c** and **9**) is immediately established, which is completely shifted towards the delocalized anion **7c** after 30 min; ii) the deuterium exchange is very fast and all the enolisable positions are completely deuterated after 3 min. The complete incorporation of deuterium into both positions α to the ketone in **5** proves the existence of a dynamic equilibrium between the ester **5** and the open bicyclic phenoxide **9**.³² Moreover, the reversibility of this process is confirmed by the exclusive formation of the rearrangement product **2a** when the ester **3** is treated with MeONa/MeOH at 40 °C.

The rearrangement product 2a, in the presence of CD₃ONa in CD₃OD at room temperature, is completely deprotonated and immediately forms the enolate **6c**, which then undergoes a slow deuterium exchange, complete after 20 h, leading to the enolate **7c** (Figure S3, Supporting information).

Reaction mechanism. In the light of the results presented above, we propose the following mechanism for this rearrangement (Scheme 3): the deprotonation of the lactone **1**, followed by the intramolecular Michael addition of anion **10** leads to the cyclopropyl derivative **11**, which is transformed into the enolate **12c** by a cyclopropane ring opening.³³ The enolate **12c** is then converted into the final protonated product **2a**.

Scheme 3. Proposed mechanism for the rearrangement of **1** into **2a**. Calculated relative energies (kcal/mol) of neutral compounds are represented in blue and those of anions and transition states (TS) in red. In brackets are reported the activation barriers (kcal/mol).

In order to support the proposed mechanism, the structures of intermediates and transition states were optimized at the B3LYP level with the 6-31++G(d,p) basis set using Gaussian 03^{34} (Scheme 3). Intrinsic

reaction coordinate (IRC) path calculations are in full agreement with a spirocyclopropane intermediate **11**, which rearranges to give a seven-membered ring enolate **12c**. The activation barrier energies for TS1 and TS2 (9.3 and 4.7 kcal/mol, respectively) are not very high, which is consistent with the mild reaction conditions used for this transformation. The driving force of the rearrangement is likely to be the greater extent of conjugation in **2a** than in **1**, confirmed by the near-perfect planarity of the X-ray structure.

Whereas the mechanism for the conversion of **1** into **12c** is relatively intuitive, the second part of the mechanism presented in Scheme 3, the conversion of the enolate **12c** into the rearrangement product **2a**, is not so obvious. We have formulated two hypotheses: a) a sigmatropic hydrogen shift and b) a base-catalyzed 1,3-hydrogen shift.

a) Sigmatropic hydrogen shift. Three pathways can be envisaged for the conversion of **12b** into **2b** through a sigmatropic mechanism: i) one direct [1,3] hydrogen shift; ii) three consecutive [1,5] hydrogen shifts; iii) two consecutive [1,7] hydrogen shifts (Scheme 4). These sigmatropic shifts can theoretically take place before or after the protonation step, thus both neutral and anionic forms of the possible intermediates must be considered.

Scheme 4. Three different possible pathways for the conversion of 12b into 2b through signatropic reactions.

In the cycloheptatrienic systems only the suprafacial hydrogen shifts are possible for steric reasons, thus the [1,3] and [1,7] hydrogen shifts are thermally forbidden, whereas the [1,5] hydrogen shift is allowed.³⁵⁻³⁹ In order to evaluate the conditions required for the sigmatropic shift in this rearrangement, we optimized the structures and calculated the energies for all intermediates, as well as for the transition states in the first sigmatropic shift (Scheme 4, Table 1).

We succeeded in locating valid transition states only in three cases, for neutral **TS4n**, anionic **TS4a** and anionic **TS5a**.⁴⁰ The difference of activation barriers between the neutral and anionic forms of **TS4** is almost 9 kcal/mol, so it seems that the sigmatropic rearrangement is more favored in the anionic series. However, in spite of the lower value obtained for **TS4a** (24.2 kcal/mol), this activation barrier is still too high to be compatible with the mild conditions used for this reaction. The activation barrier of the anionic form **TS5a** is higher than that of **TS4a**, as expected for a forbidden sigmatropic shift.

All these calculations data suggest that there is no sigmatropic shift involved in this mechanism; this is further supported by the complete deuterium exchange observed for the two methylene groups in **4a** (Scheme 2), which is not compatible with a sigmatropic shift.

As suggested by one of the referees, in the light of Herndon's studies,¹¹ we investigated the possibility to convert **2a** into **13a** by two successive thermal [1,5] hydrogen shifts. However, heating **2a** in *p*-xylene at 140 °C for 16 h led only to the partial conversion of **2a** into **13a** and from the mixture of these two compounds (ratio **2a** / **13a** = 3 / 1) **13a** was isolated in 11 % yield. Longer reaction time (3 days) resulted in extensive decomposition. These results are in agreement with an extended delocalized system in our case, a high activation barrier for the thermal [1,5] hydrogen shifts and support the greater stability (1.6 kcal/mol) calculated for **2a** compared to **13a**.

Table 1. Calculated relative energies of all possible intermediates in the sigmatropic rearrangement

Structure	Relative energy (kcal/mol) ^a					
Structure	keto $(\mathbf{a})^b$ enol $(\mathbf{b})^b$		enolate (c) ^c			
	- 11.9	- 1.3	- 4.9			
,0 ,2 ,13	- 10.3	- 0.9	- 3.4			

However, from the results of the Table 1, it is noteworthy that, with one exception (structures 14), the keto form is always more stable than the enol, the difference of energies being very important for 2 and 13. This is in agreement with the experimental results⁴¹ showing that the cycloheptadienone is the major form in this keto-enol equilibrium. Moreover, the energies of compounds 12, 14 and 17, bearing ring junction hydrogen atoms, are unusually high, for both keto and enol forms. This is the consequence of the significant geometrical change induced by the presence of these hydrogen atoms, which prevents the conjugation between the 7-membered ring and the other two rings.

b) Base-catalyzed 1,3-hydrogen shift. Several examples of this type of transformation are described in cycloheptatrienic systems, catalyzed by triethylamine,⁴²⁻⁴⁵ 1,8-diazabicyclo[5.4.0]undec-7-ene^{27,28} or potassium *tert*-butoxide.^{46,47} The mechanism and regioselectivity have been studied for cycloheptatrienes bearing electron withdrawing groups.⁴⁸⁻⁵² There are also a few examples of thermal,⁵³⁻⁵⁷ photochemical⁵⁸ or acid-catalyzed^{57,58} 1,3-hydrogen shifts. In most cases, the hydrogen atom shifts from a ring-junction

position to the nearest unsubstituted position (path A, Scheme 5).^{27,28,42-44,56-58} In the case where cycloheptatriene **18** has $R^1 \neq H$ (path B, Scheme 5), the 1,3-shift is very unfavored. The system evolves towards the spirodienone **21**^{43,53-55} if an oxygenated substituent is present at R^2 or remains in the less constrained norcaradiene form **20**⁵⁹ in the other cases. To sum up the above, the pathways and the final products are determined by the stability given by the substituents present on the molecule.

Scheme 5. Influence of the ring substituents in the evolution of cycloheptatrienic systems

In our study, the intermediate **12c** is a particular form of **18**, with $R^1 = H$ and $R^2 = O^-$. Following the path A, the enolate **12c** is protonated and the resulting compound **12a** forms the enolate **6c** by deprotonation at the ring-junction position. This deprotonation represents the first step of the base-catalyzed hydrogen shift. In the second step, the delocalized enolate **6c** can be protonated at several positions to give either the compounds **12a**, **6a** or **2a**, which are in equilibrium via **6c** as a common intermediate (Scheme 6).

Scheme 6. Proposed mechanism for the conversion of 12c to 6c. The red dots represent the positions completely deuterated when the reaction is carried out in CD₃OD

This equilibrium is completely shifted towards the enolate **6c**, which is the only species visible in the NMR spectrum. The complete incorporation of deuterium in the positions marked with red dots in Scheme 6 supports the existence of successive base-catalyzed 1,3-hydrogen shifts leading to the enolate **6c**, which is the most stable of all anionic intermediates (Table 1). The protonation of **6c** leads exclusively to the isomer **2a**, the most stable compound among **2a**, **6a** and **12a** (Table 1).

The deuterium labeling results indicate that the mechanism of the rearrangement involves base-catalyzed 1,3-hydrogen shifts. This conclusion is supported by the calculations data.

Conclusion

In this paper we report the rearrangement of spirocyclohexadienones into dihydrotropones in basic conditions as a new method for the preparation of seven-membered ring ketones, which are key building blocks for the synthesis of tropoloalkaloids. We gained insight into the mechanism that we proposed for this rearrangement by DFT calculations of the possible intermediates and transition states as well as by deuterium labeling. All these data allowed us to choose between two possible paths and thus conclude that the mechanism involves a base-catalyzed 1,3-hydrogen shift in the cycloheptatrienic system obtained from the opening of a fused cyclopropane intermediate.

Experimental Section

General Remarks. Starting materials and reagents were purchased from a commercial supplier and used without further purification with the exception of MeOH, which was distilled over Mg and I_2 .

Synthesis of methyl 2'-(4-methoxy-7-oxo-5a,6,7,9a-tetrahydrodibenzo[*b,d*]**furan-9a-yl**)**acetate** (**3**). To a solution of 8-methoxyspiro[chroman-4,1'-cyclohexa[2',5']diene]-2,4'-dione 1^{30} (20 mg, 0.078 mmol) in methanol (0.5 mL) was added trifluoroacetic acid (0.1 mL, 1.3 mmol). After stirring 16 h at room temperature, the mixture was concentrated *in vacuo*. Preparative silica gel TLC (heptane / ethyl acetate 50 / 50) afforded 20 mg of methyl 2'-(4-methoxy-7-oxo-5a,6,7,9a-tetrahydrodibenzo[*b,d*]furan-9a-yl) acetate **3** as a pale yellow oil (87 %): ¹H NMR (500 MHz, CDCl₃) δ 6.94 (dd, *J* = 7.7, 7.8 Hz, 1H), 6.86 (d, *J* = 7.7 Hz, 1H), 6.83 (d, *J* = 7.8 Hz, 1H), 6.57 (dd, *J* = 10.3, 2 Hz, 1H), 6.02 (d, *J* = 10.3 Hz, 1H), 5.13 (m, 1H), 3.88 (s, 3H), 3.69 (s, 3H), 3.09 (d, *J* = 14.3 Hz, 1H), 3.13 (dd, *J* = 17.7, 2.8 Hz, 1H), 6.03 (dd, *J* = 17.7, 4.2 Hz, 1H), 2.90 (d, *J* = 15 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 195.0, 170.3, 146.9, 146.3, 145.1, 131.4, 127.6, 122.6, 115.0, 112.7, 86.0, 56.2, 52.2, 47.4, 41.5, 38.5; IR (CDCl₃) 1199, 1280, 1492, 1680, 1731 cm⁻¹; MS (ESI) *m/z* : 311(M+Na)⁺; HRMS (ESI) *m/z* calcd for C₁₆H₁₆O₅Na⁺ 311.0895, found 311.0878.

Synthesis of 4-methoxy-10,11-dihydro-cyclohepta[c]chromene-6,9-dione (2a). A solution of 8methoxyspiro[chroman-4,1'-cyclohexa[2',5']diene]-2,4'-dione 1^{30} (20 mg, 0.078 mmol) in methanol (0.6 mL) / THF (0.3 mL) is added at 40 °C to a solution of sodium methoxide, freshly prepared from sodium (13 mg, 0.56 mmol) and methanol (0.6 mL). After stirring for 30 min at 40 °C, the reaction is quenched with 1 M hydrochloric acid (2 mL), stirred for 10 min and extracted with dichloromethane (3 x 5 mL). Concentration *in vacuo* of the combined organic layers followed by preparative silica gel TLC (heptane / ethyl acetate 70 / 30) afforded 15 mg of 4-methoxy-10,11-dihydro-cyclohepta[c]chromene-6,9-dione **2a** (75 %): ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 12.9 Hz, 1H), 7.39 (d, *J* = 8.35 Hz, 1H), 7.30 (dd, *J* = 8.35, 8.04 Hz, 1H), 7.18 (d, *J* = 8.04 Hz, 1H), 6.40 (d, *J* = 12.8 Hz, 1H), 4.01 (s, 3H), 3.20 (dd, *J* = 5.5, 6.0 Hz, 2H), 2.83 (dd, *J* = 5.6, 6.1 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃) δ 199.8, 159.7, 155.8, 148.0, 143.4, 135.6, 132.0, 124.7, 121.5, 119.4, 116.7, 115.0, 56.6, 41.2, 22.7; IR (CDCl₃) 1469, 1662, 1710 cm⁻¹; MS (ESI) *m*/*z* : 279 (M+Na)⁺; HRMS (ESI) *m*/*z* calcd for C₁₅H₁₂O₄Na⁺ 279.0633, found 279.0616.

Synthesis of 4-methoxy-7,8-dihydro-cyclohepta[c]chromene-6,9-dione (13a). A solution of 4methoxy-10,11-dihydro-cyclohepta[c]chromene-6,9-dione 2a (22 mg, 0.086 mmol) in *p*-xylene (1 mL) is heated at 140 °C for 16 h, concentrated *in vacuo* and the resulting mixture (ratio **2a** / **13a** = 3 / 1) is purified by preparative silica gel TLC (eluting with heptane / ethyl acetate 40 / 60) to afford 2.5 mg of 4methoxy-7,8-dihydro-cyclohepta[c]chromene-6,9-dione **13a** (11 %) : ¹H NMR (500 MHz, CDCl₃) δ 7.42 (d, *J* = 12.8 Hz, 1H), 7.28 (m, 2H), 7.14 (dd, *J* = 7.0, 2.1 Hz, 1H), 6.65 (d, *J* = 12.8 Hz, 1H), 4.01 (s, 3H), 3.17 (m, 2H), 2.84 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) 200.9, 160.6, 147.7, 142.5, 142.1, 136.3, 132.5, 129.3, 124.4, 119.1, 115.0, 113.3, 56.3, 44.1, 20.9; IR (CDCl₃) 1473, 1671, 1707 cm⁻¹; MS (ESI) *m/z* : 279 (M+Na)⁺; HRMS (ESI) *m/z* calcd for C₁₅H₁₂O₄Na⁺ 279.0633, found 279.0631.

Computational Methods

Geometry optimization and vibrational frequency calculations were performed at the Density Functional Theory (DFT) level by using the Gaussian 03 program suite.³⁴ Becke's three-parameter exchange functional (B3) ^{60,61} was employed in conjunction with the Lee-Yang-Parr correlation functional (LYP),⁶² as implemented in Gaussian 03³⁴ at a 6-31++G(d,p) basis set level. Geometries were optimized without constraint, and vibrational frequencies were then computed to characterize each structure as a minimum or transition structure (TS), via the number of imaginary frequencies (zero for minima and one for saddle points, respectively). After locating a TS, an intrinsic reaction coordinate (IRC) ⁶³⁻⁶⁶ calculation was carried out to identify its respective reactant and product.

Acknowledgment. We thank the Institut de Chimie des Substances Naturelles (ICSN) and the Centre National de la Recherche Scientifique (CNRS) for the financial support.

Supporting Information Available. Spectral characterization of compounds **3**, **2a** and **13a**, equilibrium between different intermediates and deuterium labeling followed by NMR, detailed data for the X-ray structure of compound **2a**, theoretical data for calculated compounds, intermediates and transition states, a movie generated from the IRC calculations showing the first part of the mechanism. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

References

[§] Parts of this work were presented at the 1st European Chemistry Congress, 27-31 August 2006, Abstract p. 326.

(1) Miyashita, M.; Hara, S.; Yoshikoshi, A. J. Org. Chem. 1987, 52, 2602-2604.

- Ley, S. V.; Antonello, A.; Balskus, E. P.; Booth, D. T.; Christensen, S. B.; Cleator, E.; Gold, H.;
 Högenauer, K.; Hünger, U.; Myers, R. M.; Oliver, S. F.; Simic, O.; Smith, M. D.; Sohoel, H.;
 Woolford, A. J. A. *Proc. Natl. Acad. Sci. U. S. A.* 2004, *101*, 12073-12078.
- (3) Graening, T.; Schmalz, H.-G. Angew. Chem., Int. Ed. 2004, 43, 3230-3256.
- (4) Graening, T.; Bette, V.; Neudoerfl, J.; Lex, J.; Schmalz, H.-G. Org. Lett. 2005, 7, 4317-4320.
- (5) Pietra, F. Chem. Rev. **1973**, 73, 293-364.
- (6) Banwell, M. G. Aust. J. Chem. **1991**, 44, 1-36.
- (7) Battiste, M. A.; Pelphrey, P. M.; Wright, D. L. Chem.--Eur. J. 2006, 12, 3438-3447.
- (8) Noyori, R. Acc. Chem. Res. **1979**, *12*, 61-66.
- (9) Noyori, R.; Hayakawa, Y. Org. React. 1983, 29, 163-344.
- (10) Hoffmann, H. M. R. Angew. Chem., Int. Ed. Engl. 1984, 23, 29-48.
- (11) Herndon, J. W.; Chatterjee, G.; Patel, P. P.; Matasi, J. J.; Tumer, S. U.; Harp, J. J.; Reid, M. D. J.
 Am. Chem. Soc. 1991, *113*, 7808-7809.
- (12) Herndon, J. W.; Zora, M.; Patel, P. P.; Chatterjee, G.; Matasi, J. J.; Tumer, S. U. *Tetrahedron* 1993, 49, 5507-5530.
- (13) Herndon, J. W.; Zora, M. Synlett 1993, 363-364.
- (14) Barluenga, J.; Aznar, F.; Martin, A.; Vazquez, J. T. J. Am. Chem. Soc. 1995, 117, 9419-9426.
- Barluenga, J.; Barrio, P.; Lopez, L. A.; Tomas, M.; Garcia-Granda, S.; Alvarez-Rua, C. Angew.
 Chem., Int. Ed. 2003, 42, 3008-3011.
- (16) Ni, Y.; Montgomery, J. J. Am. Chem. Soc. 2004, 126, 11162-11163.
- (17) Barluenga, J.; Vicente, R.; Barrio, P.; Lopez, L. A.; Tomas, M.; Borge, J. J. Am. Chem. Soc. 2004, 126, 14354-14355.
- (18) Barluenga, J.; Alonso, J.; Fananas, F. J. Chem.--Eur. J. 2005, 11, 4995-5006.
- (19) Trost, B. M.; Shen, H. C.; Horne, D. B.; Toste, F. D.; Steinmetz, B. G.; Koradin, C. *Chem.--Eur. J.* **2005**, *11*, 2577-2590.
- (20) Zora, M.; Acikgoez, C.; Odabasoglu, M.; Bueyuekguengoer, O. J. Organomet. Chem. 2007, 692, 1571-1578.
- (21) Sperry, J. B.; Wright, D. L. J. Am. Chem. Soc. 2005, 127, 8034-8035.
- (22) Dowd, P.; Choi, S. C. J. Am. Chem. Soc. 1987, 109, 3493-3494.
- (23) Baldwin, J. E.; Adlington, R. M.; Robertson, J. Tetrahedron 1989, 45, 909-922.

- (24) Dowd, P.; Zhang, W. J. Org. Chem. 1992, 57, 7163-7171.
- (25) Evans, D. A.; Hart, D. J.; Koelsch, P. M. J. Am. Chem. Soc. 1978, 100, 4593-4594.
- (26) Evans, D. A.; Tanis, S. P.; Hart, D. J. J. Am. Chem. Soc. 1981, 103, 5813-5821.
- (27) Rogers, D. H.; Frey, B.; Roden, F. S.; Russkamp, F.-W.; Willis, A. C.; Mander, L. N. Aust. J. Chem. 1999, 52, 1093-1108.
- (28) Frey, B.; Wells, A. P.; Roden, F.; Au, T. D.; Hockless, D. C.; Willis, A. C.; Mander, L. N. Aust. J. Chem. 2000, 53, 819-830.
- (29) During the preparation of this manuscript, a short paper describing a similar rearrangement has been published : Moisan, L.; Wagner, M.; Comesse, S.; Doris, E. *Tetrahedron Lett.* 2006, 47, 9093-9094.
- (30) Guillou, C.; Beunard, J.-L.; Gras, E.; Thal, C. Angew. Chem., Int. Ed. 2001, 40, 4745-4746.
- (31) The compound 3 can be prepared in a straightforward manner in acidic medium (TFA, MeOH) from spirocyclohexadienone 1 in 87 % yield (see Experimental Section).
- (32) The compound 9 is the anionic phenoxide form rather than the neutral phenol form, as indicated by the important shift of the aromatic protons observed in its ¹H-NMR spectrum, see Highet, R. J.; Highet, P. F. *J. Org. Chem.* **1965**, *30*, 902-906.
- (33) A single example of fused tricyclic cyclopropane intermediate similar to 11 has been previously proposed as intermediate in the transformation of phenolic nitroalkanes into tropone derivatives, but the reaction conditions and the overall mechanism are different from ours, which lead to the dihydrotropone derivative 2a : Kende, A. S.; Koch, K. *Tetrahedron Lett.* 1986, 27, 6051-6054.
- (34) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;

Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A.; Gaussian 03 revision B.05; Gaussian, Inc., Wallingford CT; **2004**.

- (35) Spangler, C. W. Chem. Rev. 1976, 76, 187-217.
- (36) Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem. Int. Ed. Engl. 1992, 31, 682-708.
- (37) Hudson, C. E.; McAdoo, D. J. J. Org. Chem. 2003, 68, 2735-2740.
- (38) Donovan, W. H.; White, W. E. J. Org. Chem. 1996, 61, 969-977.
- (39) Okajima, T.; Imafuku, K. J. Org. Chem. 2002, 67, 625-632.
- (40) In the search for the transition states TS3n, TS3a and TS5n, several initial structures were tested. In some cases, local maximums were found (one negative frequence), but the IRC calculations did not lead to the expected reactants or products. This is probably due to the constraints induced by the cyclic form of the system.
- (41) Lew, C. S. Q.; Tang, T.-H.; Cxizmadia, I. G.; Capon, B. J. Chem. Soc., Chem. Commun. 1995, 175-176.
- (42) McKervey, M. A.; Tuladhar, S. M.; Twohig, M. F. J. Chem. Soc., Chem. Commun. 1984, 129-130.
- (43) Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Tuladhar, S. M.; Twohig, M. F. J. Chem. Soc., Perkin Trans. 1 1990, 1047-1054.
- (44) Manitto, P.; Monti, D.; Zanzola, S.; Speranza, G. Chem. Commun. 1999, 543-544.
- (45) Saraçoglu, N.; Menzek, A.; Kinal, A.; Balci, M. Can. J. Chem. 2001, 79, 35-41.
- (46) Swenton, J. S.; Burdett, K. A.; Madigan, D. M.; Rosso, P. D. J. Org. Chem. 1975, 40, 1280-1286.
- (47) Pomerantz, M.; Dassanayake, N. L. J. Am. Chem. Soc. **1980**, 102, 678-682.
- (48) Takahashi, K.; Yamamoto, H.; Nozoe, T. Bull. Chem. Soc. Jpn. 1970, 43, 200-207.
- (49) Takahashi, K.; Suzuki, T.; Toda, H.; Takase, K.; Koseki, S.; Nakajima, T. J. Org. Chem. 1987, 52, 2666-2673.
- (50) Zwaard, A. W.; Kloosterziel, H. Recl. Trav. Chim. Pays-Bas 1981, 100, 126-128.
- (51) Zwaard, A. W.; Prins, M. D.; Kloosterziel, H. Recl. Trav. Chim. Pays-Bas 1984, 103, 174-176.
- (52) Zwaard, A. W.; Prins, M. D.; Kloosterziel, H. Recl. Trav. Chim. Pays-Bas 1984, 103, 188-192.
- (53) Ledon, H.; Cannic, G.; Linstrumelle, G.; Julia, S. *Tetrahedron Lett.* **1970**, *11*, 3971-3974.
- (54) Iwata, C.; Yamada, M.; Shinoo, Y.; Kobayashi, K.; Okada, H. J. Chem. Soc., Chem. Commun. 1977, 888-889.

- (55) Iwata, C.; Yamada, M.; Shinoo, Y.; Kobayashi, K.; Okada, H. Chem. Pharm. Bull. 1980, 28, 1932-1934.
- (56) Scott, L. T.; Minton, M. A.; Kirms, M. A. J. Am. Chem. Soc. 1980, 102, 6311-6314.
- (57) Machiguchi, T.; Hasegawa, T.; Otani, H.; Ishii, Y. J. Chem. Soc., Chem. Commun. 1987, 1375-1376.
- (58) Ishizu, T.; Mori, M.; Kanematsu, K. J. Org. Chem. 1981, 46, 526-531.
- (59) Duddeck, H.; Kennedy, M.; McKervey, M. A.; Twohig, F. M. J. Chem. Soc., Chem. Commun. 1988, 1586-1588.
- (60) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377.
- (61) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648-5652.
- (62) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785-789.
- (63) Ishida, K.; Morokuma, K.; Komornicki, A. J. Chem. Phys. 1977, 66, 2153-2156.
- (64) Fukui, K. Acc. Chem. Res. 1981, 14, 363-368.
- (65) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154-2161.
- (66) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523-5527.

A new access to dihydrotropones through ring expansion of spirocyclohexadienones: Synthesis and mechanism

Marie Varin, Angèle Chiaroni, Jean-Yves Lallemand, Bogdan Iorga, Catherine Guillou

Institut de Chimie des Substances Naturelles, CNRS UPR 2301, F-91198 Gif sur Yvette, France

Table of contents :	
¹ H and ¹³ C-NMR spectra of compound 3	S2
¹ H and ¹³ C-NMR spectra of compound 2a	S4
¹ H and ¹³ C-NMR spectra of compound 13a	S6
Evolution of the reaction followed by ¹ H-NMR	S8
X-ray structure analysis of compound 2a	S11
Theoretical data for intermediates and transition states	S19

Figure S1. Superposed ¹H-NMR spectra (500 MHz, CDCl₃) of reaction mixture (from the reaction of **1** with MeONa in MeOH at 40°C) after acidic quench at different times. The competitive formation of **2a** and **3** (green) is observed, then the conversion of **3** in **2a**. The rearrangement product **2a** is obtained almost exclusively after 30 min.

Figure S2. Superposed ¹H-NMR spectra (500 MHz, CD_3OD) of intermediates from the reaction of **1** with CD_3ONa in CD_3OD at 40°C. The competitive formation of the ester **5**, phenoxide **9** and 7-membered ring anion **7c** is observed. The equilibrium is shifted almost completely towards the more thermodynamically stable anion **7c** after 30 min.

Figure S3. Superposed ¹H-NMR spectra (500 MHz, CD_3OD) of intermediates from the reaction of **2a** with CD_3ONa in CD_3OD at room temperature. We observe the immediate formation of the anion **6c**, which is progressively deuterated, leading to the complete formation of the anion **7c** after 20 h.

X-RAY STRUCTURE ANALYSIS OF COMPOUND 2A

Figure S4. ORTEP drawing of the X-ray structure of **2a** shown as displacement ellipsoids at the 30% probability level

Figure S5. ORTEP drawing of the asymmetric unit (left) and deviations of the atoms C8, C9, C10 and O9 from the molecule plane for the two molecules in the asymmetric unit. Displacement ellipsoids are shown at the 30 % probability level.

Crystals suitable for an X-ray study have been obtained for the 6,7-dihydrotropone **2a** and the tridimensional structure is shown in Figure S4. All atoms are coplanar except the atoms C8, C9, C10 and O9. There are two independent molecules in the asymmetric unit, the main difference between them being the degree of deviation of the atoms C8, C9, C10 and O9 from the molecule plane (Figure S5).

Crystallographic results. Data were obtained from a small colorless crystal plate (0.55 x 0.50 x 0.20 mm). Empirical formula : $C_{15} H_{12} O_4$, $M_w = 256.25$. The compound crystallizes in the triclinic system, space group P-1, racemic. There are four molecules in the unit-cell (Z= 4) and so, two independent molecules in the asymmetric unit. Cell parameters : a = 7.510(5), b = 12.824(5), c = 13.261(7) Å, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.824(5)$, $\alpha = 73.61(3)$, $\beta = 12.824(5)$, $\beta = 12.$ 78.80(3), $\gamma = 87.33(3)^{\circ}$, $V = 1202 \text{ Å}^3$; $d_c = 1.416 \text{ g cm}^{-3}$, F(000) = 536, λ (Mo K α) = 0.71073 Å, μ = 0.103 mm⁻¹. Data were measured with a Nonius Kappa-CCD linear area-detector diffractometer, using graphite monochromated Mo K α radiation, according to the phi and omega scan method, up to θ = 27.50°. A total of 9306 intensity data was collected reduced to 7000 triclinic reflections of which 5273 were unique (Rint = 0.020).¹ Structure was solved with program *SHELXS86*² and refined by full-matrix least-squares, upon all unique F^2 with program SHELXL97.³ All the hydrogen atoms were located in difference Fourier maps. They were fitted at theoretical positions and treated as riding, assigned of an isotropic displacement parameter equivalent to 1.12 the one of the bonded atom, 1.15 for those of the methyl groups. Refinement of 345 parameters converged to $R_1(F) = 0.0486$ with the 3639 observed reflections having I ≥ 2 sigma (I) and wR2(F²) = 0.1272 with all the 5273 unique data ; goodness-of-fit S factor of 1.024. The residual electron density was found between -0.18 and 0.19 eÅ⁻³. All the crystallographic results are given in Cif file and Tables S1 to S6.

Comparison of molecular conformations. The two independent molecules of the asymmetric unit named respectively, * and **, appear in Figure S5, showing the same diastereoisomer. In both molecules, bond distance and angle values are nearly the same with double bonds C6a-C11a (1.362 Å) and C7-C8 (av. 1.341Å) clearly precised. However, differences appear in torsion angle values of the seven membered rings principally along the bonds: C8-C9 (-6.1 in *, -28.1° in **), C9-C10 (-43.7 and -19.0°) and C10-C11 (76.9 and 86.2), indicating differences in the ring conformations. Fitting the two structures, atoms C7 and C11 are quitely coplanar with the bicyclic aromatic part in each molecule, while atoms C8, C9 and C10 are respectively deviated by 0.226(2), 0.885(2) and 1.183(2) Å in *, by 0.500(2), 1.372(2) and 1.284(2) Å in **, from the mean plane of the other twelve atoms. If atom C8 is included in the aromatic mean plane, deviations of atoms C9 and C10 become : 0.800(2) and 1.114(2) Å in *, 1.180(2) and 1.144 (2) Å - nearly the same - in **. So, the angles between the planes [C11, C11a, C6a, C7, C8] and [C8, C9, C10, C11] in the seven membered rings, are respectively 136.3° in *, 131.0° in **. More, if we consider only the mean plane of the double bonds involving atoms [C11a, C6a, C7, C8, C9], atoms C10 and C11 are deviated from this plane by respectively 0.327(2) and -0.620(2) Å in *, while atom C10 lies in this plane in **, with C11 situated below by -0.890(2) Å. The crystal packing study shows that only van der Waals contacts exist between the molecules.

¹ Collect (Nonius BV, 1997-2000); HKL Denzo and Scalepack (Otinowski & Minor, 1997).

² Sheldrick, G.M. (1990). SHELXS86. Acta Cryst. A 46, 467-473.

³ Sheldrick, G.M. (1997). SHELX97. Program for the Refinement of Crystal Structures, Univ. of Göttingen, Germany.

```
Identification code
                                   'VARIN051'
Empirical formula
                                  C15 H12 O4
Formula weight
                                  256.25
Temperature
                                  293(2) K
Wavelength
                                   0.71073 A
Crystal system, space group
                                  Triclinic, P -1
Unit cell dimensions
                                  a = 7.510(5) A
                                                     alpha = 73.61(3) deg.
                                                     beta = 78.80(3) deg.
                                  b = 12.824(5) A
                                                     gamma = 87.33(3) deg.
                                  c = 13.261(7) A
Volume
                                  1201.9(11) A^3
Z, Z', Calculated density
                                  4, 2, 1.416 Mg/m^3
Absorption coefficient
                                  0.103 mm^-1
                                  536
F(000)
                                  0.55 x 0.50 x 0.20 mm
Crystal size
Theta range for data collection
                                  2.76 to 27.50 deg.
Limiting indices
                                  -9<=h<=9, -16<=k<=16, -16<=l<=17
Reflections collected / unique
                                  9306 - 7000 / 5273 [R(int) = 0.0199]
Completeness to theta = 27.50
                                  95.3 %
Absorption correction
                                  Not measured
Refinement method
                                  Full-matrix least-squares on F^2
Data / restraints / parameters
                                  5273 / 0 / 345
Goodness-of-fit on F^2
                                  1.024
Final R indices [I>2sigma(I)]
                                  R1 = 0.0486, wR2 = 0.1101 (3639 Fo)
                                  R1 = 0.0779, wR2 = 0.1272 (5273 data)
R indices (all data)
Largest diff. peak and hole
                                  0.187 and -0.177 e.A<sup>-3</sup>
```

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (A² x 10³) for compound 2a.
U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.
(* Molecule 1, ** Molecule 2)

		x	У	Z	U(eq)
*	C1 C2 C3 C4 C5 O5 C6 C6a C7 C8 C9 C10 C11 C11a C11b C12 C4	5205(3) 4806(3) 5442(3) 6506(3) 6902(2) 7928(2) 8399(2) 7777(2) 8222(3) 8325(3) 8167(3) 7663(3) 6121(3) 6766(2) 6285(2) 6884(4) 7106(2)	3658(2) 2587(2) 2054(2) 2600(1) 3696(1) 4211(1) 5287(1) 5888(1) 7045(1) 7798(2) 7658(2) 6568(2) 6017(2) 5385(1) 4246(1) 1034(2)	2140(2) 2304(2) 1534(2) 571(1) 402(1) -580(1) -854(1) -64(1) -455(1) 62(2) 1207(2) 1970(2) 1708(1) 910(1) 1170(1) -73(2) 240(1)	54(1) 62(1) 57(1) 48(1) 41(1) 46(1) 41(1) 40(1) 49(1) 58(1) 58(1) 59(1) 54(1) 41(1) 42(1) 85(1) 62(1)
	04 06 09	7196(2) 9313(2) 8478(3)	2168(1) 5647(1) 8426(1)	-249(1) -1733(1) 1518(1)	62(1) 56(1) 90(1)
**	C1 C2 C3 C4 C5 O5 C6 C6a C7 C8 C9 C10 C11 C11a C11b C12 O4 O6 O9	9034(3) 8869(3) 8165(3) 7624(3) 7810(2) 7255(2) 7373(3) 8072(2) 8174(3) 8020(3) 7519(3) 7904(3) 9339(3) 8623(2) 8504(2) 6606(3) 6921(2) 6862(2) 6781(2)	1683(2) 922(2) -106(2) -378(1) 394(1) 74(1) 757(1) 1858(1) 2531(1) 3609(2) 4385(1) 4170(1) 3317(1) 2182(1) 1432(1) -2132(2) -1359(1) 398(1) 5233(1)	3263(1) 2744(2) 3296(2) 4389(1) 4922(1) 6015(1) 6629(1) 6680(1) 6792(1) 6606(2) 5663(2) 4592(2) 4460(1) 4997(1) 4377(1) 4486(2) 5015(1) 7580(1) 5757(1)	53(1) 60(1) 56(1) 47(1) 42(1) 50(1) 48(1) 42(1) 49(1) 53(1) 53(1) 53(1) 53(1) 53(1) 50(1) 40(1) 41(1) 66(1) 64(1) 72(1) 83(1)

		х	У	Z	U(eq)
*	Н1	4763	3999	2670	61
	Н2	4091	2208	2947	69
	H3	5153	1324	1664	63
	Н7	8482	7311	-1197	55
	Н8	8525	8508	-371	65
	H10A	7304	6646	2687	66
	H10B	8721	6104	1961	66
	H11A	5471	5529	2363	60
	H11B	5276	6567	1427	60
	H12A	5603	897	49	97
	H12B	7362	627	542	97
	H12C	7477	817	-690	97
**	Н1	9498	2370	2875	59
	H2	9238	1096	2005	68
	НЗ	8059	-610	2926	63
	Н7	8373	2156	7471	55
	Н8	8259	3898	7135	60
	H10A	8286	4846	4052	65
	H10B	6782	3941	4455	65
	H11A	9768	3397	3703	56
	H11B	10364	3438	4761	56
	H12A	7735	-2305	4089	76
	H12B	5788	-1834	4006	76
	H12C	6081	-2779	5006	76

Table S3.	Hydrogen coordinates (x 10^4) and isotropic
	displacement parameters (A ² x 10 ³) for compound 2a

Table S4. Comparison of selected torsion angles [deg] for compound 2a.

*	06-C6-C6a-C7	5.3(3)
	C11a-C6a-C7-C8	24.3(3)
	C6a-C7-C8-C9	6.0(4)
	C7-C8-C9-C10	-6.1(3)
	09-C9-C10-C11	137.5(2)
	C8-C9-C10-C11	-43.7(3)
	C9-C10-C11-C11a	86.2(2)
	C7-C6a-C11a-C11	-4.3(3)
	C10-C11-C11a-C6a	-56.2(2)
	C10-C11-C11a-C11b	124.8(2)
	C11-C11a-C11b-C1	0.8(3)
	C3-C4-O4-C12	-4.1(3)
		(-)
**	06-C6-C6a-C7	1.8(3)
**	06-C6-C6a-C7 C11a-C6a-C7-C8	1.8(3) 32.1(3)
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9	1.8(3) 32.1(3) 6.9(3)
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10	$1.8(3) \\ 32.1(3) \\ 6.9(3) \\ -28.1(3)$
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11	$1.8(3) \\ 32.1(3) \\ 6.9(3) \\ -28.1(3) \\ 160.4(2)$
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11	$1.8(3) \\ 32.1(3) \\ 6.9(3) \\ -28.1(3) \\ 160.4(2) \\ -19.0(3)$
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C11a	1.8(3) 32.1(3) 6.9(3) -28.1(3) 160.4(2) -19.0(3) 76.9(2)
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C11a C7-C6a-C11a-C11	1.8(3) 32.1(3) 6.9(3) -28.1(3) 160.4(2) -19.0(3) 76.9(2) -2.1(3)
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C11a C7-C6a-C11a-C11 C10-C11-C11a-C6a	1.8(3) $32.1(3)$ $6.9(3)$ $-28.1(3)$ $160.4(2)$ $-19.0(3)$ $76.9(2)$ $-2.1(3)$ $-63.8(2)$
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C11a C7-C6a-C11a-C11 C10-C11-C11a-C6a C10-C11-C11a-C11b	1.8(3) $32.1(3)$ $6.9(3)$ $-28.1(3)$ $160.4(2)$ $-19.0(3)$ $76.9(2)$ $-2.1(3)$ $-63.8(2)$ $115.9(2)$
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C11a C7-C6a-C11a-C11 C10-C11-C11a-C6a C10-C11-C11a-C11b C11-C11a-C11b-C1	1.8(3) $32.1(3)$ $6.9(3)$ $-28.1(3)$ $160.4(2)$ $-19.0(3)$ $76.9(2)$ $-2.1(3)$ $-63.8(2)$ $115.9(2)$ $0.4(3)$
**	06-C6-C6a-C7 C11a-C6a-C7-C8 C6a-C7-C8-C9 C7-C8-C9-C10 09-C9-C10-C11 C8-C9-C10-C11 C9-C10-C11-C11a C7-C6a-C11a-C11 C10-C11-C11a-C6a C10-C11-C11a-C11b C11-C11a-C11b-C1 C3-C4-04-C12	1.8(3) $32.1(3)$ $6.9(3)$ $-28.1(3)$ $160.4(2)$ $-19.0(3)$ $76.9(2)$ $-2.1(3)$ $-63.8(2)$ $115.9(2)$ $0.4(3)$ $-4.7(2)$

* C1-C2	1.367(3)
C1-C11b	1.409(3)
C2-C3	1.383(3)
C3-C4	1.382(3)
C4-O4	1.361(2)
C4-C5	1.397(2)
C5-05	1.378(2)
C5-C11b	1.393(2)
05-C6	1.369(2)
C6-06	1.207(2)
C6-C6a	1,464(2)
C6a-C11a	1.362(2)
C6a-C7	1,458(2)
C7 - C8	1 345(2)
C8-C9	1.460(3)
C9-09	1 218(2)
$C_{9} = C_{10}$	1 491(3)
$C_{10} = C_{11}$	1 526(3)
C10-C11	1.520(3)
C11a-C11b	$1 \sqrt{4}$
	1 429(2)
012-04	1.429(2)
* C2-C1-C11b	120.08(18)
C1-C2-C3	121.49(18)
C4-C3-C2	120.31(17)
04-C4-C3	125.72(16)
04-C4-C5	116.13(16)
C3-C4-C51	118.15(16)
05-C5-C11b	121.67(15)
05-C5-C4	115.90(15)
C11b-C5-C4	122.42(16)
C6-05-C5	121.93(13)
06-C6-05	116.09(14)
06-C6-C6a	126.08(15)
05-C6-C6a	117.83(14)
C11a-C6a-C7	125.30(15)
C11a-C6a-C6	120.60(15)
C7-C6a-C6	113.93(15)
C8-C7-C6a	131.71(17)
C7-C8-C9	129.12(18)
09-C9-C8	119.4(2)
09-C9-C10	121.46(19)
C8-C9-C10	119.08(16)
C9-C10-C11	113.17(17)
C11a-C11-C10	113.11(16)
C6a-C11a-C11b	120.06(15)
C6a-C11a-C11	119.97(15)
C11b-C11a-C11	119.96(15)
C5-C11b-C1	117.54(16)
C5-C11b-C11a	117.90(15)
C1-C11b-C11a	124.55(16)
C4-04-C12	117.01(16)

* *	C1-C2	1.365(3)
	C1-C11b	1.400(2)
	C2-C3	1.386(3)
	C3-C4	1,374(3)
		1 361(2)
		1.301(2)
	C4-C5	1.395(2)
	C5-05	1.374(2)
	C5-C11b	1.394(2)
	O5-C6	1.370(2)
	C6-06	1.204(2)
	C6-C6a	1.463(2)
	C6a-C11a	1,361(2)
	C6a C7	1.461(2)
		1.401(2)
		1.337(3)
	C8-C9	1.463(3)
	C9-09	1.224(2)
	C9-C10	1.493(3)
	C10-C11	1.521(3)
	C11-C11a	1.502(2)
	C11a-C11b	1,447(2)
	$C_{12} = 0.4$	1 17(2)
	012-04	1.417(2)
* *	C2-C1-C11b	120.13(17)
	C1-C2-C3	121.47(18)
	C4-C3-C2	119,96(17)
	04 - C4 - C3	125.29(16)
	04 $C4$ $C5$	$125 \cdot 25(10)$ $116 \cdot 01(16)$
		110.01(10)
		110.09(10)
	05-05-0110	121.93(14)
	05-C5-C4	116.12(15)
	C11b-C5-C4	121.95(16)
	C6-05-C5	121.70(13)
	06-C6-05	116.64(15)
	06-C6-C6a	125.63(16)
	05-C6-C6a	117.73(15)
	$C_{11a} - C_{6a} - C_{7}$	124 68(15)
		124.00(15)
		120.95(15)
	C7-C6a-C6	114.34(15)
	C8-C7-C6a	129.16(17)
	C7-C8-C9	127.37(17)
	09-C9-C8	118.98(19)
	O9-C9-C10	119.53(19)
	C8-C9-C10	121,49(16)
	C9 - C10 - C11	115 53(17)
	$C_{11a}^{-}C_{11a}^{$	112 11(16)
	$C_{62} C_{112} C_{11b}$	110 70(15)
		110 - 5 (15)
		119.55(15)
	C11b-C11a-C11	120.73(15)
	C5-C11b-C1	117.79(15)
	C5-C11b-C11a	117.97(15)
	C1-C11b-C11a	124.24(15)
	C4-04-C12	117.02(16)
	01 01 012	11,002(10)

The anisotropic displacement factor exponent takes the form: -2 pi^2 [h^2 a*^2 U11 + ... + 2 h k a* b* U12]

		U11	U22	U33	U23	U13	U12
*	C1 C2	59(1) 71(1)	57(1) 58(1)	41(1) 46(1)	-11(1) -2(1)	0(1) 1(1)	-9(1) -18(1)
	C3 C4	68(1) 57(1)	44(1) 43(1)	53(1) 44(1)	-3(1) -12(1)	-12(1) -13(1)	-13(1) -5(1)
	C5	43(1)	42(1)	35(1)	-7(1)	-5(1)	-5(1)
	05	56(1)	40(1)	38(1)	-12(1)	0(1)	-5(1)
	C6	46(1)	40(1)	34(1)	-7(1)	-4(1)	-2(1)
	C6a	43(1) 61(1)	40(1)	3/(1) 20(1)	-11(1)	-/(1)	0(1)
	C8	$\frac{01(1)}{74(1)}$	44(1) 43(1)	59(1) 54(1)	-9(1) -15(1)	-3(1)	-2(1)
	C9	68(1)	43(1) 54(1)	54(1) 60(1)	-30(1)	-10(1)	-3(1)
	C10	83(2)	56(1)	43(1)	-23(1)	-14(1)	7(1)
	C11	64(1)	50(1)	43(1)	-16(1)	4(1)	0(1)
	C11a	42(1)	45(1)	36(1)	-12(1)	-7(1)	1(1)
	C11b	43(1)	44(1)	36(1)	-8(1)	-6(1)	-2(1)
	C12	145(2)	44(1)	68(1)	-21(1)	-15(2)	-18(1)
	04	91(1)	41(1)	54(1)	-17(1)	-7(1)	-10(1)
	06	/0(1) 124(2)	48(1)	40(1) 81(1)	-10(1)	/(⊥) 11(1)	-4(1)
	09	134(2)	00(1)	01(1)	-44(1)	-11(1)	-15(1)
**	C1	67(1)	46(1)	39(1)	-5(1)	-2(1)	-6(1)
	C2	82(2)	58(1)	38(1)	-12(1)	-5(1)	-6(1)
	C3	69(1)	53(1)	52(1)	-23(1)	-12(1)	0(1)
	C4	53(1)	40(1)	48(1)	-12(1)	-6(1)	-2(1)
	C5	47(1)	38(1)	36(1)	-8(1)	-3(1)	-1(1)
	05	68(1) 58(1)	38(1)	39(1) 20(1)	-/(1)	2(1)	-11(1)
	C62	50(1)	41(1) 36(1)	39(1) 40(1)	-10(1)	(1)	-0(1)
	C7	57(1)	48(1)	40(1)	-11(1)	-4(1)	-2(1)
	C8	57(1)	50(1)	56(1)	-23(1)	-4(1)	-8(1)
	C9	50(1)	37(1)	70(1)	-18(1)	-1(1)	-7(1)
	C10	73(1)	36(1)	61(1)	-5(1)	-14(1)	-2(1)
	C11	60(1)	39(1)	44(1)	-7(1)	3(1)	-11(1)
	C11a	40(1)	35(1)	41(1)	-6(1)	-2(1)	0(1)
	CIIb	43(1)	37(1)	38(1)	-6(1)	-3(1)	1(1)
	04	00(1) 89(1)	49(I) 12(1)	9U(Z) 50(1)	-23(1) _16(1)	-23(1) 0(1)	-0(1) _10(1)
	04	112(1)	4∠(⊥) 57(1)	39(1)	-10(1)	0(1) 10(1)	-10(1) -26(1)
	09	101(1)	46(1)	97(1)	-24(1)	-2(1)	11(1)
		= = = (=)	(-)	······································	(-)	-(-)	(-)

Theoretical data for compound 1:

Final Energy in Hartrees: HF = - 879.7282735 (B3LYP/6-31++G(D,P))

Center Atomic Atomic			Coord	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	6	0	1.430375	-2.624924	.213216		
2	6	0	2.621041	-1.922539	002833		
3	6	0	2.603370	527822	102583		
4	6	0	1.368559	.143881	.022208		
5	6	0	.180569	551790	.249198		
6	6	0	.219787	-1.951149	.338540		
7	8	0	3.690478	.256180	315312		
8	6	0	4.962127	369795	457047		
9	8	0	1.413634	1.520834	149536		
10	6	0	.385244	2.322836	.266576		
11	6	0	746564	1.629288	.991570		
12	6	0	-1.122870	.252859	.360784		
13	6	0	-2.109260	417821	1.284057		
14	6	0	-3.357675	758168	.928875		
15	6	0	-3.870456	529416	441128		
16	6	0	-2.933292	.107363	-1.390807		
17	6	0	-1.690638	.463430	-1.028670		
18	8	0	-5.011154	852488	767131		
19	8	0	.446034	3.507930	.056338		
20	1	0	5.670075	.442406	622930		
21	1	0	4.977208	-1.049835	-1.317395		
22	1	0	5.239930	917561	.451778		
23	1	0	-3.304543	.271909	-2.398013		
24	1	0	-4.046438	-1.221414	1.629455		
25	1	0	-1.025817	.928860	-1.754349		
26	1	0	-1.600472	2.307732	1.011579		
27	1	0	417967	1.462243	2.026169		
28	1	0	-1.756578	606753	2.296725		
29	1	0	1.457016	-3.707770	.283683		
30	1	0	700312	-2.502051	.501309		
31	1	0	3.554074	-2.464804	094619		
					_		
		1	2		3		
_ ·		A	A		A		
Frequencies	s	3/.9/40	43.930)4 - 0	80.4251		
Red. masses	s	5.8775	6.035	200	4.2839		
Frc consts		.0050	.006	9	.0163		
IR Inten		1.4632	1.711	L3	4.0625		

Theoretical data for compound 10:

Final Energy in Hartrees: HF = -879.1713081 (B3LYP/6-31++G(D,P))

Center Atomic Atomic Coordinates (Angstro				stroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-1.099823	-2.852971	.067652
2	6	0	-2.382061	-2.323520	112456
3	6	0	-2.568667	946705	215622
4	6	0	-1.456732	068011	152804
5	6	0	171113	599612	.052513
6	6	0	009651	-1.988789	.155230
7	8	0	-1.706282	1.247676	317863
8	6	0	685634	2.260225	.026098
9	6	0	.584949	1.782350	.281556
10	6	0	1.040592	.337881	.110827
11	6	0	1.818158	.255868	-1.185026
12	6	0	3.149086	.036962	-1.268887
13	6	0	3.956172	240459	072257
14	6	0	3.235488	250753	1.217840
15	6	0	1.910831	017958	1.292528
16	8	0	5.175445	458782	133048
17	8	0	-1.154866	3.403836	.040157
18	8	0	-3.848313	491805	457807
19	6	0	-4.385441	.456529	.474592
20	1	0	-5.418225	.626898	.159525
21	1	0	-3.824605	1.393258	.457413
22	1	0	-4.381607	.035402	1.489925
23	1	0	3.837077	447814	2.101758
24	1	0	3.680910	.063099	-2.216596
25	1	0	1.399192	019641	2.252713
26	1	0	1.352664	2.517073	.492073
27	1	0	1.233079	.457160	-2.079765
28	1	0	957141	-3.927409	.143763
29	1	0	.991046	-2.388123	.297472
30	1	0	-3.257177	-2.963526	180502
		1	2		3
		A	A	2.2	A
requencies	3	23.0524	50.08	33	//.0913
Ked. masses	3	J.113/	8.23	10	3.8149
Frc consts		. UUL /	.012		.0134
IK Inten		.19/4	2.67	10	3.0598

Theoretical data for transition state **TS1** :

Final Energy in Hartrees: HF = -879.1565668 (B3LYP/6-31++G(D,P))

Center Atomic Atomic Coordinates (Angstroms)				stroms)		
Number	Number	Туре		Х	Y	Z
1	6	C)	1.762037	2.812218	089311
2	6	C)	2.882876	1.989731	.035655
3	6	C)	2.743113	.600062	.021253
4	6	C)	1.462768	.027827	127712
5	6	C)	.328060	.850609	234145
6	6	C)	.494473	2.241037	217040
7	8	C)	1.393892	-1.341116	153544
8	6	C)	.242067	-2.020849	673900
9	6	C)	966746	-1.285037	689980
10	6	C) .	-1.027367	.208614	334931
11	6	C) .	-2.091101	.992244	-1.026739
12	6	C) .	-3.378996	.932594	641946
13	6	C) .	-3.872450	.133695	.524643
14	6	C) .	-2.875262	564137	1.249143
15	6	C) .	-1.507795	551482	.858863
16	8	C) .	-5.107060	.159937	.789692
17	8	C)	.439835	-3.184879	-1.001810
18	8	C)	3.892712	159296	.074873
19	6	C)	4.001168	-1.094708	1.154339
20	1	C)	5.003775	-1.522315	1.076342
21	1	C)	3.251179	-1.884599	1.074182
22	1	C)	3.900847	578728	2.119345
23	1	C) .	-3.175830	-1.148391	2.113975
24	1	C) .	-4.145830	1.488939	-1.177672
25	1	C)	750657	833117	1.584782
26	1	C) .	-1.804899	-1.721033	-1.214428
27	1	C) .	-1.786970	1.601024	-1.877644
28	1	C)	1.874710	3.892732	072820
29	1	C)	385208	2.873298	287786
30	1	C)	3.882775	2.400510	.138889
		1		2		3
		A		A		A
Frequencies	s3	06.1658		47.29	981	70.6809
Red. masses	s	10.1525		5.50)42	7.5343
Frc consts		.5607		.00)73	.0222
IR Inten	6	79.7455		1.48	375	5.1084

Theoretical data for compound 11 :

Final Energy in Hartrees: HF = -879.1575149 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	2	Coor	dinates (Ang	stroms)
Number	Number	Туре		Х	Y	Z
1	6		0	1.830040	2.797463	071724
2	6		0	2.932000	1.949851	.050594
3	6		0	2.757611	.563768	.022794
4	6		0	1.465679	.028664	139005
5	6		0	.346388	.872614	239086
6	6		0	.549154	2.259542	207675
7	8		0	1.371328	-1.345710	197197
8	6		0	.208904	-1.988554	679070
9	6		0	-1.022991	-1.249849	603895
10	6		0	-1.017239	.273691	341464
11	6		0	-2.088583	1.067370	991238
12	6		0	-3.378785	.956625	615073
13	6		0	-3.869451	.118146	.524238
14	6		0	-2.872787	587109	1.222433
15	6		0	-1.482653	602843	.805574
16	8		0	-5.110250	.150989	.795114
17	8		0	.360958	-3.135659	-1.066143
18	8		0	3.884996	228376	.074596
19	6		0	3.972050	-1.151124	1.166408
20	1		0	4.958058	-1.615034	1.085956
21	1		0	3.195582	-1.917220	1.104707
22	1		0	3.897988	618852	2.124710
23	1		0	-3.152015	-1.154191	2.106032
24	1		0	-4.151057	1.527222	-1.128143
25	1		0	737753	805479	1.573245
26	1		0	-1.840061	-1.655617	-1.186229
27	1		0	-1.795939	1.735808	-1.800652
28	1		0	1.967395	3.874928	044685
29	1		0	315072	2.912970	270753
30	1		0	3.940597	2.335985	.161980
		1		2		3
		A		A	5.6	A
Frequencies		48.2311		70.19	56	82.0859
Red. masses		5.6904		7.12	32	2.1130
Frc consts		.0078		.02	07	.0084
IR Inten		1.5936		4.57	49	2.4441

Theoretical data for transition state **TS2** :

Final Energy in Hartrees: HF = -879.1498774 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.991332	2.759143	.028772
2	6	0	3.054286	1.856076	.107168
3	6	0	2.801733	.482672	.004455
4	6	0	1.490466	.032580	194103
5	6	0	.400029	.925571	257191
6	6	0	.684811	2.301430	133744
7	8	0	1.332975	-1.343693	345028
8	6	0	.117357	-1.919713	663535
9	6	0	-1.102501	-1.100030	511240
10	6	0	956278	.404500	408237
11	6	0	-2.049201	1.221933	891606
12	6	0	-3.364550	.969723	625544
13	6	0	-3.886536	.085363	.441455
14	6	0	-2.893935	532625	1.256949
15	6	0	-1.537099	701408	.874813
16	8	0	-5.131875	.082607	.687464
17	8	0	.137008	-3.076820	-1.028650
18	8	0	3.880871	379087	.021835
19	6	0	3.923296	-1.316361	1.101854
20	1	0	4.873879	-1.846231	1.002370
21	1	0	3.097461	-2.030844	1.045665
22	1	0	3.898385	792178	2.067086
23	1	0	-3.164653	766447	2.283432
24	1	0	-4.125681	1.592774	-1.092193
25	1	0	798758	880922	1.655018
26	1	0	-1.905465	-1.460601	-1.150695
27	1	0	-1.785898	2.093272	-1.492571
28	1	0	2.181389	3.825697	.117190
29	1	0	141325	3.004531	147085
30	1	0	4.079582	2.183773	.245220
		1	2		3
		А	A		A
Frequencies	s49	0.6418	45.54	29	69.6040
Red. masses	s ——	5.3992	5.87	33	3.8492
Frc consts		.7658	.00	72	.0110
IR Inten	19	2.1547	1.73	54	5.4452

Theoretical data for compound 12c :

Final Energy in Hartrees: HF = -879.1830086 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z		
1	6	 0	2.335577	2.677858	.251889		
2	6	0	3.320110	1.687280	.145429		
3	6	0	2.924765	.363419	074728		
4	6	0	1.566548	.056256	205162		
5	6	0	.546117	1.031948	100438		
6	6	0	.985961	2.359914	.153063		
7	8	0	1.270963	-1.277981	477378		
8	6	0	.000414	-1.775410	507299		
9	6	0	-1.175356	831733	346487		
10	6	0	827778	.640135	267227		
11	6	0	-1.875458	1.538939	453509		
12	6	0	-3.256571	1.288041	465608		
13	6	0	-3.993232	.222438	.160908		
14	6	0	-3.278597	771295	1.011439		
15	6	0	-2.035032	-1.250326	.833021		
16	8	0	-5.252903	.172737	.137627		
17	8	0	122864	-2.970504	679653		
18	8	0	3.909685	595509	232150		
19	6	0	3.951887	-1.618693	.765245		
20	1	0	2.629018	3.708089	.439438		
21	1	0	4.378441	1.909370	.232365		
22	1	0	.243072	3.138436	.288234		
23	1	0	-1.791455	990033	-1.251905		
24	1	0	-1.593787	2.572195	664226		
25	1	0	-3.899675	2.072967	860299		
26	1	0	-3.874991	-1.140038	1.844359		
27	1	0	-1.618152	-1.963356	1.543020		
28	1	0	4.830967	-2.226972	.536677		
29	1	0	3.055942	-2.245485	.736111		
30	1	0	4.065440	-1.177740	1.765442		
		1	2		3		
		A	A		А		
Frequencies		35.6304	62.89	39	78.0753		
Red. masses		6.7930	3.56	66	6.1076		
Frc consts		.0051	.00	83	.0219		
IR Inten		.2839	.36	09	3.1001		

Theoretical data for compound 2a :

Final Energy in Hartrees: HF = -879.7472803 (B3LYP/6-31++G(D,P))

Center Atomic Atomic				Coordinates (Angstroms)			
Number	Number	т Туре		Х	Y	Z	
1	6		0	2.349150	-2.507020	140323	
2	6		0	3.310763	-1.496038	.021122	
3	6		0	2.917250	160087	.074401	
4	6		0	1.540855	.145310	038901	
5	6		0	.566571	854500	204577	
6	6		0	1.004075	-2.202037	250928	
7	8		0	3.747390	.900227	.228288	
8	6		0	5.145697	.654887	.347793	
9	8		0	1.219489	1.464892	.017180	
10	6		0	079672	1.920359	070011	
11	6		0	-1.139629	.904328	225502	
12	6		0	823046	433999	310222	
13	8		0	255921	3.118293	015285	
14	6		0	-2.474584	1.483322	363343	
15	6		0	-3.709570	.954388	180142	
16	6		0	-4.085459	382297	.318918	
17	6		0	-3.010718	-1.432930	.550618	
18	6		0	-1.918926	-1.445294	537072	
19	8		0	-5.262011	636784	.557367	
20	1		0	5.605419	1.636875	.459401	
21	1		0	5.541581	.165065	550198	
22	1		0	5.368002	.043875	1.231139	
23	1		0	-3.519087	-2.399541	.599453	
24	1		0	-2.563546	-1.255830	1.538860	
25	1		0	-4.566968	1.602253	342670	
26	1		0	2.671876	-3.542588	176273	
27	1		0	.290442	-3.006791	368260	
28	1		0	4.357227	-1.762248	.105044	
29	1		0	-2.441191	2.538150	623357	
30	1		0	-1.508287	-2.450502	613372	
31	1		0	-2.383598	-1.232090	-1.511147	
				·			
		1		2		3	
		A		A		A	
Frequencies		31.7646		53.96	31	71.6721	
Red. masses		6.0848		3.70	00	6.2170	
Frc consts		.0036		.00	63	.0188	
IR Inten		.5194		1.48	01	10.6039	

Theoretical data for transition state **TS4n** :

Final Energy in Hartrees: HF = -879.662717 (B3LYP/6-31++G(D,P))

Center Atomic Atomic			Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	2.424677	2.655365	.403496	
2	6	0	3.365309	1.636139	.230276	
3	6	0	2.958324	.333511	071641	
4	6	0	1.583637	.072055	209371	
5	6	0	.627554	1.086422	036927	
6	6	0	1.064765	2.383114	.280003	
7	8	0	3.925313	606824	304929	
8	6	0	3.920715	-1.789692	.511612	
9	8	0	1.226437	-1.217005	577833	
10	6	0	045409	-1.718288	387352	
11	6	0	-1.134013	736911	117287	
12	6	0	765191	.714782	272374	
13	8	0	198716	-2.916255	461189	
14	6	0	-1.978092	-1.095991	.997645	
15	6	0	-3.218478	519000	1.190716	
16	6	0	-3.804525	.229514	.145843	
17	6	0	-3.044839	.683018	964734	
18	6	0	-1.796930	1.458880	711085	
19	8	0	-5.150946	.383565	.076332	
20	1	0	2.757488	3.659527	.647334	
21	1	0	4.429509	1.826154	.323039	
22	1	0	.329525	3.166585	.433258	
23	1	0	4.839297	-2.321641	.259030	
24	1	0	3.055701	-2.420834	.297554	
25	1	0	3.937192	-1.518258	1.574473	
26	1	0	-1.678539	-1.919488	1.641991	
27	1	0	-3.830841	829895	2.034151	
28	1	0	-3.653422	1.001031	-1.812975	
29	1	0	-2.200999	527817	-1.028892	
30	1	0	-1.755042	2.523330	919649	
31	1	0	-5.591618	144047	.758723	
		1	2		3	
		А	Ā		Ā	
Frequenci	es1503	.8333	43.522	21	58.9796	
Red. mass	es 1	.1994	6.15	36	2.0421	
Frc const	s 1	.5982	.000	69	.0042	
IR Inten	247	.0457	1.73	97	2.5080	

Theoretical data for transition state **TS4a** :

Final Energy in Hartrees: HF = - 879.1443616 (B3LYP/6-31++G(D,P))

Center Atomic Atomic			Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	2.412460	2.644924	.430127	
2	6	0	3.353816	1.631956	.216492	
3	6	0	2.928919	.336883	097623	
4	6	0	1.554657	.070975	209893	
5	6	0	.593066	1.077694	.015001	
6	6	0	1.049229	2.369535	.344228	
7	8	0	1.183408	-1.199535	595416	
8	6	0	101695	-1.709630	334994	
9	6	0	-1.180581	741945	100597	
10	6	0	794613	.703235	184137	
11	6	0	-1.821465	1.471174	645435	
12	6	0	-3.061427	.760480	968287	
13	6	0	-3.948442	.241275	.087218	
14	6	0	-3.329051	586567	1.137662	
15	6	0	-2.095239	-1.130402	.998668	
16	8	0	-5.191362	.388298	.058649	
17	8	0	199449	-2.923404	361573	
18	8	0	3.896761	610292	363527	
19	6	0	3.872910	-1.797787	.437693	
20	1	0	4.767889	-2.360594	.160465	
21	1	0	2.980158	-2.396043	.241864	
22	1	0	3.922400	-1.540547	1.504732	
23	1	0	-3.983720	895326	1.949330	
24	1	0	-3.650773	1.196020	-1.780067	
25	1	0	-1.763393	-1.907039	1.687927	
26	1	0	-2.174153	523676	-1.033214	
27	1	0	-1.694158	2.522276	900780	
28	1	0	2.748341	3.647488	.682622	
29	1	0	.316535	3.147455	.536826	
30	1	0	4.420739	1.818642	.288487	
			 2		 o	
	⊥ ⊼		∠ ⊼		2	
Eromondia	A 1 1 / 2	710	A A5 COU	0.2	A 70 2000	
rrequencies	5 = 143/.1	704	40.000	U S / 1	10.2995	
reu. masses	5 1.1	704 272	0.584	역고 01	2.5285	
TD Totor	1.4	243 004	.000	1 0 0 T	.00/4	
ık inten	543.4	094	.0/4	40	2.2404	

Theoretical data for transition state **TS5a** :

Final Energy in Hartrees: HF = -879.1087276 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.271007	2.709654	.412532
2	6	0	3.280412	1.758013	.255286
3	6	0	2.938058	.439209	073108
4	6	0	1.593226	.103722	276729
5	6	0	.557432	1.048560	114176
6	6	0	.928901	2.358775	.257300
7	8	0	1.304502	-1.173721	725645
8	6	0	.121902	-1.800965	236434
9	6	0	-1.031494	957562	148758
10	6	0	818397	.598188	318788
11	6	0	-1.903230	1.513478	407375
12	6	0	-3.273487	1.380259	328964
13	6	0	-4.074749	.252673	.124351
14	6	0	-3.505940	-1.062873	.520750
1.5	6	0	-2.249085	-1.546704	.376251
16	8	0	-5.312659	.383026	.221195
17	8	0	.208365	-3.003177	010553
18	8	0	3.964686	461151	272376
19	6	0	3 934253	-1 650263	528321
20	1	0	4 855368	-2 189669	292622
21	1	0	3 066320	-2 270654	293977
22	1	0	3 929500	-1 390359	1 595948
22	1	0	-4 261567	-1 726661	932504
24	1	0	-3 873832	2 257354	- 555164
25	1	0	-2 089282	-2 579159	685042
26	1	0	-1 006246	- 201305	-1 2/9/89
20	1	0	_1 571081	2 520177	- 623078
29	1	0	2 520/03	3 729901	685401
20	1	0	2.J29495	2 102205	.000401
29	1	0	.139734	2 004250	.433730
			4.329586	2.004359	.3836/3
	1		2		3
	A		А		A
Frequencies	s1653.	2005	47.52	90	56.5620
Red. masses	s 1.	2708	6.49	05	4.2436
Frc consts	2.	0463	.00	86	.0080
IR Inten	1805.	7267	1.092	27	.2551

Theoretical data for compound **2b** :

Final Energy in Hartrees: HF = -879.7303913 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomi	c Coor		dinates (Ang	stroms)
Number	Number	Туре		Х	Y	Z
1	6		0	-2.193964	-2.717996	005408
2	6		0	-3.183343	-1.780092	.316443
3	6		0	-2.885688	419421	.358380
4	6		0	-1.566146	008887	.083528
5	6		0	559332	933911	259383
6	6		0	902507	-2.303378	299425
7	8		0	-3.861281	.453962	.751821
8	6		0	-4.260214	1.473597	181669
9	8		0	-1.309616	1.329381	.163424
10	6		0	056619	1.873325	060454
11	6		0	1.030405	.932030	368538
12	6		0	.769101	413274	534670
13	8		0	.043640	3.080134	.006075
14	6		0	2.345896	1.538691	480753
15	6		0	3.539090	.966586	157270
16	6		0	3.728781	381598	.348203
17	6		0	2.944743	-1.431612	.015834
18	6		0	1.888528	-1.292406	-1.048564
19	8		0	4.794868	595389	1.197666
20	1		0	-2.441307	-3.774498	027519
21	1		0	-4.197940	-2.086821	.548413
22	1		0	147791	-3.042299	539317
23	1		0	-5.107797	1.978518	.283644
24	1		0	-4.579714	1.018045	-1.126881
25	1		0	-3.455128	2.189550	360269
26	1		0	2.343896	2.596619	725695
27	1		0	4.424396	1.601378	186119
28	1		0	3.099226	-2.386695	.508575
29	1		0	2.310219	812661	-1.943087
30	1		0	1.521640	-2.271618	-1.354825
31	1		0	5.057025	.235852	1.613668
		1		2		3
		A		A		A
Frequencies		40.4893		59.34	26	72.3116
Red. masses		6.2660		3.85	61	2.0836
Frc consts		.0061		.00	80	.0064
IR Inten		.6649		.96	73	3.7119

Theoretical data for compound 2c :

Final Energy in Hartrees: HF = -879.1790705 (B3LYP/6-31++G(D,P))

Center Atomic Atomic			Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	2.091416	-2.728786	000267	
2	6	0	3.101241	-1.811241	318604	
3	6	0	2.817364	446930	358420	
4	6	0	1.508025	006515	085982	
5	6	0	.483096	912349	.260714	
6	6	0	.807200	-2.287085	.294118	
7	8	0	3.820644	.416465	742965	
8	6	0	4.204153	1.421210	.203778	
9	8	0	1.279156	1.335755	157830	
10	6	0	.011239	1.902344	.055428	
11	6	0	-1.074543	.991141	.370540	
12	6	0	828761	368908	.569537	
13	8	0	034073	3.119157	021290	
14	6	0	-2.405141	1.566952	.409224	
15	6	0	-3.566346	.937933	.055781	
16	6	0	-3.758193	441988	466559	
17	6	0	-2.894069	-1.443923	.017289	
18	6	0	-1.931538	-1.205736	1.148695	
19	8	0	-4.693550	627021	-1.312390	
20	1	0	2.314592	-3.792003	.015484	
21	1	0	4.111739	-2.132980	550448	
22	1	0	.030166	-3.007145	.522049	
23	1	0	5.065622	1.929692	235713	
24	1	0	4.502029	.957717	1.154353	
25	1	0	3.398073	2.138483	.375701	
26	1	0	-2.438202	2.639878	.582453	
27	1	0	-4.458515	1.557923	030460	
28	1	0	-2.956021	-2.434598	427673	
29	1	0	-2.387801	659269	1.989299	
30	1	0	-1.549957	-2.149261	1.549116	
		1	2		3	
		A	А		A	
Frequencies		41.5043	60.113	34	82.1901	
Red. masses		6.9013	4.634	17	2.1725	
Frc consts		.0070	.009	99	.0086	
IR Inten		1.8849	2.322	28	4.8168	

Theoretical data for compound 13a :

Final Energy in Hartrees: HF = -879.7447082 (B3LYP/6-31++G(D,P))

Center	Atomic	 :	Coor	 dinates (Ang	stroms)	
Number	Number	Туре		Х	Y	Z
1	6		0	-2.313421	-2.530857	.059514
2	6		0	-3.285576	-1.522069	.151148
3	6		0	-2.907587	181313	.096624
4	6		0	-1.536649	.129297	059679
5	6		0	559558	868676	174515
6	6		0	973105	-2.219105	097839
7	8		0	-3.748446	.878694	.185674
8	6		0	-5.141028	.626915	.347323
9	8		0	-1.221952	1.454816	086491
10	6		0	.075777	1.909311	185967
11	6		0	1.136599	.899564	326087
12	6		0	.831284	437298	341383
13	8		0	.253130	3.110256	167064
14	6		0	2.538257	1.432610	462934
15	6		0	3.495093	.914964	.624067
16	6		0	4.013841	489613	.374859
17	6		0	3.171645	-1.490677	331164
18	6		0	1.846527	-1.469861	598601
19	8		0	5.136678	820998	.737536
20	1		0	-5.611636	1.609062	.393986
21	1		0	-5.341184	.080480	1.277109
22	1		0	-5.545671	.067202	504807
23	1		0	2.997377	.923972	1.604415
24	1		0	4.372134	1.562471	.714992
25	1		0	3.728810	-2.385153	599243
26	1		0	-2.622066	-3.569685	.119166
27	1		0	243862	-3.018370	141877
28	1		0	-4.327137	-1.792752	.272819
29	1		0	2.490689	2.521517	420468
30	1		0	2.937119	1.167176	-1.453275
31	1		0	1.457562	-2.367225	-1.072250
		1		2		3
		A		А		А
Frequencies		31.8613		57.63	38	67.2632
Red. masses		6.5382		4.72	45	4.5207
Frc consts		.0039		.00	92	.0121
IR Inten		1.2865		10.32	22	.5703

Theoretical data for compound 13b :

Final Energy in Hartrees: HF = -879.7297326 (B3LYP/6-31++G(D,P))

Center Atomic Atomic			Coor	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z		
1	 6	0	2.248134	2.721570	.047005		
2	6	0	3.232827	1.763404	.315882		
3	6	0	2.913285	.407731	.338178		
4	6	0	1.580361	.023099	.087420		
5	6	0	.582571	.967972	215226		
6	6	0	.941194	2.332397	216162		
7	8	0	3.883699	488664	.692121		
8	6	0	4.229686	-1.508309	261214		
9	8	0	1.300316	-1.311232	.179952		
10	6	0	.034690	-1.828936	031864		
11	6	0	-1.013467	883574	417937		
12	6	0	769066	.467197	482597		
13	8	0	104522	-3.029056	.095036		
14	6	0	-2.361594	-1.459645	780408		
15	6	0	-3.402190	-1.027401	.221718		
16	6	0	-3.760053	.270682	.336952		
17	6	0	-3.130832	1.352801	403503		
18	6	0	-1.831047	1.423356	792789		
19	8	0	-4.779326	.723650	1.144955		
20	1	0	2.508494	3.775256	.046406		
21	1	0	4.257577	2.049665	.528494		
22	1	0	.190204	3.089319	405542		
23	1	0	5.084895	-2.031332	.168999		
24	1	0	4.521986	-1.052304	-1.215060		
25	1	0	3.406041	-2.208979	414248		
26	1	0	-2.288795	-2.546981	805958		
27	1	0	-2.638084	-1.113113	-1.786898		
28	1	0	-3.883656	-1.783489	.839478		
29	1	0	-3.764543	2.218699	582316		
30	1	0	-1.526733	2.338920	-1.290520		
31	1	0	-5.235721	027320	1.547929		
		1	2		3		
		A	A		A		
Frequencies		40.4855	56.55	87	67.6228		
Red. masses		5.8898	3.38	367	2.1990		
Frc consts		.0057	.00	64	.0059		
IR Inten		.6914	1.36	599	3.4663		

Theoretical data for compound 13c :

Final Energy in Hartrees: HF = -879.1767698 (B3LYP/6-31++G(D,P))

Standard orientation:

Center Atomic Atomic			Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z	
1	6	0	2.258180	2.707007	0.020072	
2	6	0	3.231437	1.737316	0.291916	
3	6	0	2.876416	0.390133	0.334611	
4	6	0	1.537128	0.021285	0.103438	
5	6	0	0.549392	0.977626	-0.210645	
6	6	0	0.941767	2.334915	-0.226086	
7	8	0	3.844411	-0.527165	0.682609	
8	6	0	4.130179	-1.556921	-0.271412	
9	8	0	1.237509	-1.305211	0.212909	
10	6	0	-0.049744	-1.810920	-0.021620	
11	6	0	-1.071330	-0.860311	-0.421099	
12	6	0	-0.806211	0.502121	-0.485060	
13	8	0	-0.165325	-3.019487	0.091486	
14	6	0	-2.416753	-1.398903	-0.834223	
15	6	0	-3.422328	-1.028501	0.223719	
16	6	0	-3.838275	0.292863	0.449848	
17	6	0	-3.170167	1.354633	-0.350169	
18	6	0	-1.866125	1.455685	-0.753797	
19	8	0	-4.755895	0.667790	1.255531	
20	1	0	2.533361	3.758052	0.006535	
21	1	0	4.264092	2.004643	0.492800	
22	1	0	0.198601	3.099770	-0.415266	
23	1	0	4.977987	-2.112324	0.136529	
24	1	0	4.415113	-1.116069	-1.236542	
25	1	0	3.277618	-2.226949	-0.404985	
26	1	0	-2.350537	-2.484499	-0.932205	
27	1	0	-2.669477	-0.984370	-1.825194	
28	1	0	-3.873543	-1.816649	0.822042	
29	1	0	-3.793879	2.238733	-0.485798	
30	1	0	-1.566325	2.404077	-1.195161	
		1	2		3	
		A	A	1 7	A	
Frequencie	s	40.4683	54.85	L /	/5.6483	
Ked. masse	s	6.5766	4.49	23	2.0564	
Frc consts		.0063	.008	3U	.0069	
IR Inten		1.6994	.45	52	3.7086	

6

Theoretical data for compound 12a :

Final Energy in Hartrees: HF = -879.7161544 (B3LYP/6-31++G(D,P))

Center	 Atomic	Atomi	с		Coor	dinates	 (Ang	stroms)
Number	Number	Туре			Х	Y		Z
1	6		0	2.1	57522	2.7471	.02	.304289
2	6		0	3.1	92667	1.8098	808	.232235
3	6		0	2.90	06108	.4693	345	022237
4	6		0	1.50	66299	.0886	595	221535
5	6		0	.52	13486	1.0121	.11	170525
6	6		0	.83	38087	2.3529	963	.115694
7	8		0	3.94	40772	4169	923	154972
8	6		0	4.04	49180	-1.4500	060	.838862
9	8		0	1.3	67028	-1.2582	275	497477
10	6		0	.1	40743	-1.8427	796	471446
11	6		0	-1.10	03106	9587	751	455747
12	6		0	85	59600	.5492	213	431108
13	8		0	.0	73917	-3.0475	539	503295
14	6		0	-2.05	57941	-1.4613	885	.617351
15	6		0	-3.24	42224	9256	592	.962084
16	6		0	-3.93	17847	.2433	304	.349868
17	6		0	-3.30	07689	.8807	705	900324
18	6		0	-1.89	99120	1.3680)21	672412
19	8		0	-4.90	64042	.6663	374	.822475
20	1		0	-1.5	69801	-1.1981	79	-1.427171
21	1		0	4.90	67708	-1.9893	312	.603310
22	1		0	3.1	99584	-2.1363	317	.795824
23	1		0	4.12	29897	-1.0082	294	1.839577
24	1		0	-3.80	08846	-1.3809	906	1.770604
25	1		0	4.22	29957	2.0954	12	.371394
26	1		0	-3.90	65978	1.6958	355	-1.204408
27	1		0	-3.32	25635	.1222	272	-1.700434
28	1		0	-1.75	52655	2.4432	225	684839
29	1		0	2.38	84498	3.7864	151	.519588
30	1		0	.04	45851	3.0880	26	.199879
31	1		0	-1.73	35367 	-2.3628	310	1.132520
		1			2			3
		A			A			A
Frequencies		34.8250			54.73	12		61.2133
Red. masses		6.6370			3.99	26		5.0008
Frc consts		.0047			.00	70		.0110
IR Inten		.5916			3.88	59		3.0258

Theoretical data for compound **12b** :

Final Energy in Hartrees: HF = -879.7154875 (B3LYP/6-31++G(D,P))

Center Atomic Atomic				Coordinates (Angstroms)				
Number	Number	Туре	Э		Х	Y	Z	
1	6		0	2.	355393	2.67533	2 .304424	
2	6		0	3.	330982	1.68285	7.169081	
3	6		0	2.	957362	.36176	2080352	
4	6		0	1.	591801	.05564	2214580	
5	6		0		594053	1.03741	3093902	
6	6		0	1.	007427	2.35500	2.190512	
7	8		0	3.	938588	57483	1272336	
8	6		0	4.	024765	-1.63947	1 .688602	
9	8		0	1.	302453	-1.27289	9495412	
10	6		0		036340	-1.78012	5479620	
11	6		0	-1.	136400	82885	7325685	
12	6		0		803824	.64994	1288121	
13	8		0		104210	-2.97279	9602175	
14	6		0	-1.	948359	-1.16447	2 .903202	
15	6		0	-3.	214621	71593	2 1.041459	
16	6		0	-3.	856810	.20999	8.132292	
17	6		0	-3.	224435	1.22077	8547366	
18	6		0	-1.	824927	1.53309	8500044	
19	8		0	-5.	230750	.19745	8.072648	
20	1		0	2.	651848	3.69791	2.516212	
21	1		0	4.	388609	1.90817	5.256270	
22	1		0		258887	3.12633	5.333113	
23	1		0	4.	911672	-2.21255	9.414156	
24	1		0	3.	143847	-2.28517	5.649820	
25	1		0	4.	151239	-1.23133	7 1.699081	
26	1		0	-1.	775744	-1.01582	8 -1.202860	
27	1		0	-1.	496203	-1.77046	2 1.683527	
28	1		0	-3.	791788	-1.02544	1 1.912186	
29	1		0	-3.	877518	1.92523	9 -1.056915	
30	1		0	-1.	575588	2.57796	2667630	
31	1		0	-5.	570374	62804	1.441821	
		1			2		3	
		A			A		A	
Frequencies		35.8372			58.25	11	74.5111	
Red. masses		6.3175			2.86	79	3.0436	
Frc consts		.0048			.00	57	.0100	
IR Inten		1.1746			.90	09	2.3515	

Theoretical data for compound 14a :

Final Energy in Hartrees: HF = -879.7186584 (B3LYP/6-31++G(D,P))

Center Atomic Atomic				C	Coordinates (Angstroms)			
Number	Number	Туре	è	Х		Y	2	Ζ
1	 6		0	-2.4280	58	-2.45641	.343	9943
2	6		0	-3.3355	544	-1.42726	5015	8211
3	6		0	-2.8737	63	12551	.5 .04	9658
4	6		0	-1.4834	39	.12635	02	4507
5	6		0	5791	80	89412	429	4561
6	6		0	-1.0654	17	-2.19472	.950	9551
7	8		0	-3.6575	574	.94766	.32	3635
8	6		0	-5.0657	21	.75557	.40	8334
9	8		0	-1.1099	03	1.43925	.19	2651
10	6		0	.1670	82	1.89260	00	6218
11	6		0	1.2111	.34	.89133	.35	3420
12	6		0	.9050	01	60039	36	2595
13	8		0	.3722	206	3.07792	.12	5298
14	6		0	2.4476	523	1.33707	162	9574
15	6		0	3.5986	502	.42035	93	5892
16	6		0	4.0191	.27	45341	.6 .25	4711
17	6		0	3.0069	911	-1.27185	.96	2699
18	6		0	1.6861	.97	-1.34773	.71	2463
19	8		0	5.1913	867	49438	.60	0906
20	1		0	1.2591	.57	98982	.9 -1.33	2635
21	1		0	-5.4812	21	1.73763	.63	5133
22	1		0	-5.3249	33	.05448	1.21	1217
23	1		0	-5.4767	91	.39521	.654	2765
24	1		0	3.4258	374	-1.86314	9 1.77	3218
25	1		0	4.4821	29	.97315	· 9 -1.25	7628
26	1		0	3.3178	28	26817	4 -1.75	0519
27	1		0	2.6300	32	2.40737	′5	9854
28	1		0	-4.3950	96	-1.64559	10	8062
29	1		0	-2.7988	814	-3.46273	60	7626
30	1		0	3655	99	-2.99478	473	4698
31	1		0	1.0953	35	-2.01838	1.33	3952
		1			2			3
		A			A			А
Frequencies		37.1078		61	.5411	_	6	4.4137
Red. masses		5.8085		6	5.9639)		4.5436
Frc consts		.0047			.0155	5		.0111
IR Inten		.4599		6	5.3032	2		.4052

Theoretical data for compound 14b :

Final Energy in Hartrees: HF = -879.7203451 (B3LYP/6-31++G(D,P))

Center Atomic Atomic					Coordinates (Angstroms)				
Number	Number	Туре			Х	Y			Z
1	6		0	-2.30	2087	-2.519	815		34298
2	6		0	-3.26	7516	-1.530	642	2	05651
3	6		0	-2.87	6941	204	986	0	00965
4	6		0	-1.49	8893	.113	357	0	25110
5	6		0	53	8042	867	962	2	44336
6	6		0	95	1528	-2.193	519	4	55033
7	8		0	-3.72	4581	.832	651	.2	24377
8	6		0	-5.12	2593	.570	978	.2	49799
9	8		0	-1.19	3800	1.444	316	.1	83881
10	6		0	.07	5745	1.949	155	.0	28450
11	6		0	1.16	8273	.988	245	2	25547
12	6		0	.92	7832	506	104	2	39028
13	8		0	.21	1671	3.151	788	.1	09336
14	6		0	2.41	8880	1.485	001	4	88270
15	6		0	3.61	8654	.723	579	6	04243
16	6		0	3.89	7724	447	497	.0	62072
17	6		0	3.02	1944	-1.111	704	1.0	05160
18	6		0	1.67	3840	-1.090	359	.9	43216
19	8		0	5.14	2422	-1.011	227	.0	19009
20	1		0	-2.61	8586	-3.545	216	5	98372
21	1		0	-4.31	6721	-1.799	204	1	93540
22	1		0	20	2908	-2.960	084	6	34677
23	1		0	-5.59	7285	1.534	260	.4	38612
24	1		0	-5.38	3890	128	761	1.0	53513
25	1		0	-5.47	1973	.173	316	7	11268
26	1		0	1.39	6544	906	992	-1.1	52292
27	1		0	2.49	4262	2.562	413	6	08988
28	1		0	4.44	3738	1.199	189	-1.1	34619
29	1		0	3.52	1378	-1.626	693	1.8	21728
30	1		0	1.09	1573	-1.511	459	1.7	59483
31	1		0	5.73	4387	477	373 	5	29699
		1			2				3
		A			A				A
Frequencies		39.4168			64.60	39			85.0857
Red. masses		4.9099			4.54	17			4.3780
Frc consts		.0045			.01	12			.0187
IR Inten		1.8318			2.34	16			1.1459

Theoretical data for compound 14c :

Final Energy in Hartrees: HF = -879.1933354 (B3LYP/6-31++G(D,P))

Center	 Atomic	Atomic	 Coord	Coordinates (Angstroms)				
Number	Number	Туре	Х	Y	Z			
1	6	0	-2.256912	-2.517871	424628			
2	6	0	-3.229952	-1.530435	206917			
3	6	0	-2.841695	205508	004271			
4	6	0	-1.465666	.136787	016755			
5	6	0	498777	848630	223588			
6	6	0	910031	-2.176345	432213			
7	8	0	-3.711672	.831001	.213157			
8	6	0	-5.095874	.546112	.224565			
9	8	0	-1.173144	1.451728	.184275			
10	6	0	.151900	1.958763	.035699			
11	6	0	1.201216	1.012257	166304			
12	6	0	.967110	482513	219164			
13	8	0	.224094	3.181355	.097216			
14	6	0	2.491843	1.486971	437165			
15	6	0	3.682689	.767606	539034			
16	6	0	4.022863	516361	.027532			
17	6	0	3.072434	-1.184897	.963098			
18	6	0	1.729359	-1.165589	.903116			
19	8	0	5.165646	-1.023801	107814			
20	1	0	-2.564965	-3.547179	586924			
21	1	0	-4.278877	-1.803509	201590			
22	1	0	151311	-2.936975	597251			
23	1	0	-5.594895	1.500216	.406185			
24	1	0	-5.360708	159042	1.025354			
25	1	0	-5.435418	.137060	737713			
26	1	0	1.413699	846133	-1.163969			
27	1	0	2.554611	2.558221	625899			
28	1	0	4.542887	1.282882	963156			
29	1	0	3.566209	-1.737341	1.761090			
30	1	0	1.146338	-1.652549	1.685374			
		1	2		3			
		A	A		A			
Frequencies		39.7482	61.40	77	76.6007			
Red. masses		4.7705	4.604	43	5.4395			
Frc consts		.0044	.010	02	.0188			
IR Inten		.1498	1.27	72	7.0362			

Theoretical data for compounds 15a and 6a :

Final Energy in Hartrees: HF = -879.7342275 (B3LYP/6-31++G(D,P))

Center	 Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.311009	-2.527939	.324768
2	6	0	3.281105	-1.518780	.251171
3	6	0	2.895084	192142	.043963
4	6	0	1.520691	.101334	091232
5	6	0	.549101	902342	036371
6	6	0	.962739	-2.229983	.185741
7	8	0	3.742321	.865232	043142
8	6	0	5.139882	.625065	.080462
9	8	0	1.212119	1.429041	322150
10	6	0	064550	1.918322	213411
11	6	0	-1.136157	.920373	.065785
12	6	0	856974	493196	220746
13	8	0	236746	3.108099	344168
14	6	0	-2.291527	1.372462	.610468
15	6	0	-3.394678	.498049	1.119018
16	6	0	-4.095316	401148	.087301
17	6	0	-3.213951	895691	-1.062952
18	6	0	-1.821990	-1.321696	693894
19	8	0	-5.264521	696550	.189425
20	1	0	5.614512	1.600938	024627
21	1	0	5.500787	044179	710296
22	1	0	5.386654	.202343	1.062216
23	1	0	-4.161394	1.070634	1.643938
24	1	0	-2.971324	224324	1.837361
25	1	0	-2.394614	2.446478	.740402
26	1	0	-3.157621	026904	-1.741269
27	1	0	-3.753540	-1.688865	-1.583330
28	1	0	-1.567796	-2.357364	900217
29	1	0	2.623756	-3.552154	.502580
30	1	0	.220555	-3.016380	.269789
31	1	0	4.327838	-1.772926	.363310
		1	2		3
		A	A		A
Frequencies		37.3845	49.50	40	76.5492
Red. masses		6.7381	5.47	42	4.4583
Frc consts		.0055	.00	79	.0154
IR Inten		1.3950	4.81	71	1.1114

Theoretical data for compound 15b :

Final Energy in Hartrees: HF = -879.7291446 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coord	 dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.452177	-2.471743	.301562
2	6	0	3.376013	-1.425507	.170925
3	6	0	2.922618	116454	009047
4	6	0	1.532521	.120608	063124
5	6	0	.602907	918013	.049285
6	6	0	1.087206	-2.227568	.247458
7	8	0	3.719796	.976315	143208
8	6	0	5.129619	.793586	096146
9	8	0	1.156693	1.431383	271378
10	6	0	139784	1.857279	141651
11	6	0	-1.163184	.823822	.190349
12	6	0	827234	576796	033439
13	8	0	367624	3.036014	296596
14	6	0	-2.368943	1.276494	.624110
15	6	0	-3.428831	.352932	1.150660
16	6	0	-3.937662	412519	036760
17	6	0	-3.155154	-1.306813	705647
18	6	0	-1.752794	-1.496706	482072
19	8	0	-5.238088	159078	343281
20	1	0	5.558258	1.788282	221923
21	1	0	5.475320	.141417	907981
22	1	0	5.446701	.378378	.868685
23	1	0	-3.624222	-1.949613	-1.449853
24	1	0	-4.247186	.902722	1.618551
25	1	0	-3.001893	346426	1.882264
26	1	0	-2.560444	2.345003	.591755
27	1	0	-1.359379	-2.453114	817727
28	1	0	2.814963	-3.482589	.460764
29	1	0	.385244	-3.042283	.387485
30	1	0	4.437019	-1.636710	.220276
31	1	0	-5.467440	557752	-1.195382
		1	2		3
		А	A		А
Frequencies	;	40.5628	78.199	95	86.3837
Red. masses	;	4.9080	4.514	49	4.1037
Frc consts		.0048	.010	63	.0180
IR Inten		2.9038	.536	60	1.7504

Theoretical data for compound 15c :

Final Energy in Hartrees: HF = -879.2055479 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.390492	-2.488787	.253725
2	6	0	3.337309	-1.455913	.166428
3	6	0	2.888422	138110	.019958
4	6	0	1.508911	.123409	047024
5	6	0	.544693	899304	.039652
6	6	0	1.029889	-2.222583	.201784
7	8	0	3.715588	.953953	081024
8	6	0	5.111041	.733664	041981
9	8	0	1.151601	1.439179	248596
10	6	0	156242	1.877657	168009
11	6	0	-1.192217	.867665	.138319
12	6	0	861061	536695	034373
13	8	0	336711	3.068720	345286
14	6	0	-2.425266	1.333980	.502878
15	6	0	-3.490545	.449728	1.067919
16	6	0	-4.097018	418521	051232
17	6	0	-3.198306	-1.358384	659633
18	6	0	-1.821369	-1.475951	466997
19	8	0	-5.309909	321441	329933
20	1	0	5.571413	1.718727	145046
21	1	0	5.445055	.089451	867620
22	1	0	5.426867	.284869	.910499
23	1	0	-3.688222	-2.134703	-1.244825
24	1	0	-4.299193	1.032836	1.515533
25	1	0	-3.058480	213151	1.834018
26	1	0	-2.622078	2.396647	.398796
27	1	0	-1.400211	-2.421288	812415
28	1	0	2.734202	-3.512162	.383788
29	1	0	.318616	-3.033377	.316397
30	1	0	4.395101	-1.682254	.221121
		1	2		3
D		A	A	1 4	A
Frequencies	3	39.8844	//.05	L 4	81.3043
Ked. masses	3	4.6962	4.266		4.4123
Frc consts		.0044	.014	19	.0172
IK Inten		.4875	3.654	4 /	.9263

Theoretical data for compound 6b :

Final Energy in Hartrees: HF = -879.7281245 (B3LYP/6-31++G(D,P))

Center Atomic Atomic			Coor	Coordinates (Angstroms)			
Number	Number	Туре		Х	Y	Z	
1	6		0	2.156982	-2.741821	383779	
2	6		0	3.197051	-1.808231	431506	
3	6		0	2.930417	449733	267431	
4	6		0	1.599094	038200	059659	
5	6		0	.548367	962563	.022299	
6	6		0	.850160	-2.325031	154006	
7	8		0	3.961138	.442011	401720	
8	6		0	4.288813	1.247751	.742391	
9	8		0	1.394338	1.320254	.068330	
10	6		0	.141566	1.890041	000246	
11	6		0	-1.017614	.970414	032739	
12	6		0	813478	442862	.281663	
13	8		0	.081709	3.100619	016327	
14	6		0	-2.187066	1.510666	525386	
15	6		0	-3.434384	.852616	747499	
16	6		0	-3.867534	219079	020772	
17	6		0	-3.143094	687464	1.206783	
18	6		0	-1.807881	-1.230920	.769667	
19	8		0	-5.001748	908645	293609	
20	1		0	2.370731	-3.796165	529112	
21	1		0	4.223597	-2.110031	611112	
22	1		0	.051522	-3.058214	132446	
23	1		0	5.180076	1.809913	.459434	
24	1		0	4.517963	.608531	1.604126	
25	1		0	3.479310	1.938216	.989882	
26	1		0	-2.113743	2.541348	863889	
27	1		0	-4.088692	1.269367	-1.511733	
28	1		0	-3.735047	-1.453220	1.711339	
29	1		0	-3.009920	.160082	1.892764	
30	1		0	-1.643788	-2.296794	.889977	
31	1		0	-5.363877	640438	-1.151309	
		1		2		3	
		A		A		A	
Frequencies		44.2913		59.73	389	70.4787	
Red. masses		5.6905		2.05	570	3.4938	
Frc consts		.0066		.00)43	.0102	
IR Inten		1.7936		3.84	44	.9854	

Theoretical data for compound 6c :

Final Energy in Hartrees: HF = -879.2136405 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	У	Z
1	6	0	2.185309	-2.715628	451150
2	6	0	3.217872	-1.771403	431789
3	6	0	2.923821	423348	232175
4	6	0	1.583825	021499	051986
5	6	0	.540493	964032	025046
6	6	0	.868203	-2.315249	244550
7	8	0	3.964942	.479378	298058
8	6	0	4.182045	1.301041	.854313
9	8	0	1.353882	1.316620	.103115
10	6	0	.054628	1.868787	057101
11	6	0	-1.051207	.949796	049098
12	6	0	829713	466556	.231270
13	8	0	.038906	3.088231	168476
14	6	0	-2.285405	1.469457	524359
15	6	0	-3.525127	.871852	677860
16	6	0	-4.016501	305670	006674
17	6	0	-3.154680	817968	1.157600
18	6	0	-1.813531	-1.295886	.678651
19	8	0	-5.105635	851162	266622
20	1	0	2.412757	-3.763479	628204
21	1	0	4.254602	-2.054259	586565
22	1	0	.074104	-3.053745	268230
23	1	0	5.095695	1.864704	.649285
24	1	0	4.333271	.677344	1.746501
25	1	0	3.348777	1.988128	1.018177
26	1	0	-2.197677	2.485931	906055
27	1	0	-4.268355	1.394281	-1.277253
28	1	0	-3.705123	-1.625502	1.647432
29	1	0	-3.021895	.003113	1.879168
30	1	0	-1.623113	-2.363224	.745801
		1	2		3
		А	А		A
Frequencies	;	45.9306	64.30	66	76.710
Red. masses	;	6.0821	4.12	44	2.095
Frc consts		.0076	.01	00	.007
IR Inten		.1810	.49	62	4.399

Theoretical data for compound 16b :

Final Energy in Hartrees: HF = -879.7239323 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.313636	-2.524717	034579
2	6	0	3.287402	-1.521575	.099172
3	6	0	2.910343	179384	.103795
4	6	0	1.540311	.140186	039847
5	6	0	.562022	850188	191302
6	6	0	.973919	-2.203104	173513
7	8	0	3.754516	.875101	.236832
8	6	0	5.145914	.612520	.383549
9	8	0	1.228656	1.467777	018631
10	6	0	066495	1.926123	115389
11	6	0	-1.143896	.922561	248391
12	6	0	835171	431947	327156
13	8	0	237690	3.126823	095946
14	6	0	-2.461224	1.502454	452011
15	6	0	-3.636450	.915388	146100
16	6	0	-3.710013	397449	.595603
17	6	0	-3.132057	-1.428045	328228
18	6	0	-1.828763	-1.442453	672601
19	8	0	-5.042575	786329	.918070
20	1	0	-5.402617	160838	1.560309
21	1	0	-3.095492	338933	1.508982
22	1	0	5.620201	1.590181	.471624
23	1	0	5.547183	.088860	492954
24	1	0	5.347403	.025226	1.287983
25	1	0	4.328959	-1.798242	.207039
26	1	0	2.621108	-3.565625	020080
27	1	0	.236486	-2.993098	246137
28	1	0	-1.478040	-2.262664	-1.292258
29	1	0	-2.464268	2.502364	875807
30	1	0	-3.821710	-2.173319	717202
31	1	0	-4.579352	1.376884	432097

	1	2	3
	A	A	A
Frequencies	 38.5875	70.4761	86.3899
Red. masses	 5.0287	4.4451	4.4096
Frc consts	 .0044	.0130	.0194
IR Inten	 1.2567	1.2303	7.4491

Theoretical data for compound 16c :

Final Energy in Hartrees: HF = -879.1417281 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	2.281582	-2.524999	035969
2	6	0	3.261516	-1.525346	.089227
3	6	0	2.878583	184698	.093915
4	6	0	1.511165	.142633	042844
5	6	0	.525904	843638	185644
6	6	0	.942042	-2.196024	165001
7	8	0	3.737053	.873108	.221239
8	6	0	5.116740	.594821	.373757
9	8	0	1.202955	1.469012	024553
10	6	0	107562	1.928751	112176
11	6	0	-1.184774	.933225	210600
12	6	0	874951	430643	306307
13	8	0	243814	3.138224	114622
14	6	0	-2.506742	1.491459	388863
15	6	0	-3.682335	.871297	103912
16	6	0	-3.860251	452074	.665997
17	6	0	-3.185835	-1.396347	342675
18	6	0	-1.864998	-1.423881	663443
19	8	0	-5.115891	766033	.983134
20	1	0	-3.142960	385738	1.533909
21	1	0	5.607119	1.565853	.463721
22	1	0	5.521859	.063080	498288
23	1	0	5.312953	.003492	1.278647
24	1	0	4.303681	-1.803029	.192161
25	1	0	2.583543	-3.568496	018447
26	1	0	.195891	-2.979095	225125
27	1	0	-1.504932	-2.244669	-1.282131
28	1	0	-2.523449	2.508271	774003
29	1	0	-3.870579	-2.116700	792319
30	1	0	-4.626040	1.335332	392471
		1	2		3
		A	А		A
Frequencies	s 	37.4928	67.509	92	80.6873
Red. masses	s 	5.1564	4.87	78	4.1550
Frc consts		.0043	.013	31	.0159
IR Inten		1.7583	3.095	55	9.7902

Theoretical data for compound 17a :

Final Energy in Hartrees: HF = -879.7122644 (B3LYP/6-31++G(D,P))

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Ζ	
1	6	0	-1.407365	-2.617793	353510	
2	6	0	-2.511180	-1.883921	.091888	
3	6	0	-2.462644	484794	.108218	
4	6	0	-1.287271	.148718	338407	
5	6	0	185980	577743	788277	
6	6	0	249333	-1.976054	787739	
7	8	0	-3.465389	.330273	.524896	
8	6	0	-4.678081	263920	.977631	
9	8	0	-1.299485	1.539981	344698	
10	6	0	139932	2.263966	352519	
11	6	0	1.164359	1.466933	334175	
12	6	0	1.005148	.244309	-1.265935	
13	8	0	200152	3.467952	361076	
14	6	0	1.539576	1.167927	1.104427	
15	6	0	2.433881	.279614	1.565513	
16	6	0	3.336691	627133	.816218	
17	6	0	3.248774	862338	648456	
18	6	0	2.270067	540443	-1.509397	
19	8	0	4.215835	-1.221420	1.442351	
20	1	0	.722069	.661193	-2.245052	
21	1	0	1.916690	2.147923	750374	
22	1	0	-5.326816	.568478	1.251051	
23	1	0	-4.507617	898531	1.855855	
24	1	0	-5.153477	852466	.183552	
25	1	0	4.088711	-1.448926	-1.012734	
26	1	0	2.607253	.229950	2.637474	
27	1	0	-3.399649	-2.403535	.429164	
28	1	0	2.386401	900909	-2.530410	
29	1	0	-1.456377	-3.702220	353650	
30	1	0	.606695	-2.554914	-1.116441	
31	1	0	1.049379	1.795701	1.846893	

	1	2	3
	A	А	A
Frequencies	 25.4191	48.0998	70.2939
Red. masses	 8.2299	4.7776	4.2892
Frc consts	 .0031	.0065	.0125
IR Inten	 4.0869	1.8111	2.6267