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Let X be a complex analytic manifold. Given a closed subspace Y ⊂ X of pure codimension p ≥ 1, we consider the sheaf of local algebraic cohomology H p [Y ] (O X ), and L(Y, X) ⊂ H p [Y ] (O X ) the intersection homology D X -Module of Brylinski-Kashiwara. We give here an algebraic characterization of the spaces Y such that L(Y, X) coincides with H p [Y ] (O X ), in terms of Bernstein-Sato functional equations.

Introduction

Let X be a complex analytic manifold of dimension n ≥ 2, O X be the sheaf of holomorphic functions on X and D X the sheaf of differential operators with holomorphic coefficients. At a point x ∈ X, we identify the stalk O X,x (resp. D X,x ) with the ring O = C{x 1 , . . . , x n } (resp. D = O ∂/∂x 1 , . . . , ∂/∂x n ).

Given a closed subspace Y ⊂ X of pure codimension p ≥ 1, we denote by H p

[Y ] (O X ) the sheaf of local algebraic cohomology with support in Y . Let L(Y, X) ⊂ H p

[Y ] (O X ) be the intersection homology D X -Module of Brylinski-Kashiwara ([5]). This is the smallest D X -submodule of H p

[Y ] (O X ) which coincides with H p

[Y ] (O X ) at the generic points of Y ( [START_REF] Brylinski | La classe fondamentale d'une variété algébrique engendre le D-module qui calcule sa cohomologie d'intersection[END_REF], [START_REF] Barlet | Le réseau L 2 d'un système holonome régulier[END_REF]). A natural problem is to characterize the subspaces Y such that L(Y, X) coincides with H p [Y ] (O X ). We prove here that it may be done locally using Bernstein functional equations. This supplements a work of D. Massey ([15]), who studies the analogous problem with a topological viewpoint. Indeed, from the Riemann-Hilbert correspondence of , [START_REF] Mebkhout | Une équivalence de catégorie. Une autre équivalence de catégorie[END_REF]), the regular holonomic D X -Module H p

[Y ] (O X ) corresponds to the perverse sheaf C Y [np] ( [START_REF] Grothendieck | On the de Rham cohomology of algebraic varieties[END_REF], [START_REF] Kashiwara | On the holonomic systems of differential equations II[END_REF], [START_REF] Mebkhout | Local cohomology of an analytic space[END_REF]) where as L(Y, X) corresponds to the intersection complex IC • Y ( [START_REF] Brylinski | La classe fondamentale d'une variété algébrique engendre le D-module qui calcule sa cohomologie d'intersection[END_REF]). By this way, this condition L(Y, X) = H p

[Y ] (O X ) is equivalent to the following one: the real link of Y at a point x ∈ Y is a rational homology sphere.

1 First of all, we have an explicit local description of L(Y, X). This comes from the following result, due to D. Barlet and M. Kashiwara.

Theorem 1.1 ([3]) The fundamental class C Y X ∈ H p [Y ] (O X ) ⊗ Ω p X of Y in X belongs to L(Y, X) ⊗ Ω p X .
For more details about C Y X , see [START_REF] Barlet | Familles analytiques de cycles et classes fondamentales relatives[END_REF]. In particular, if h is an analytic morphism (h 1 , . . . , h p ) : (X, x) → (C p , 0) which defines the complete intersection (Y, x) -reduced or not -, then the inclusion L(Y, X) x ⊂ H p

[Y ] (O X ) x may be identified with:

L h = 1≤k 1 <•••<kp≤n D • . m k 1 ,...,kp (h) h 1 • • • h p ⊂ R h = O[1/h 1 • • • h p ] p i=1 O[1/h 1 • • • ȟi • • • h p ]
where m k 1 ,...,kp (h) ∈ O is the determinant of the columns k 1 , . . . , k p of the Jacobian matrix of h. In the following, J h ⊂ O denotes the ideal generated by the m k 1 ,...,kp (h), and

δ h ∈ R h the section defined by 1/h 1 • • • h p .
When Y is a hypersurface, we have the following characterization.

Theorem 1.2 Let Y ⊂ X be a hypersurface and h ∈ O X,x denote a local equation of Y at a point x ∈ Y . The following conditions are equivalent:

1. L(Y, X) x coincides with H p [Y ] (O X ) x .
2. The reduced Bernstein polynomial of h has no integral root. 

(s) ∈ C[s] such that: b(s)f s = P (s) • f s+1 in O[1/f, s]f s , where P (s) ∈ D[s] = D ⊗ C[s].
The existence of such a nontrivial equation was proved by M. Kashiwara ([8]). When f is not a unit, it is easy to check that -1 is a root of b f (s). The quotient of b f (s) by (s+1) is the so-called reduced Bernstein polynomial of f , denoted bf (s). Let us recall that their roots are rational negative numbers in ]n, 0[ (see [START_REF] Saito | On microlocal b-function[END_REF] for the general case, [START_REF] Varchenko | Asymptotic Hodge structure in the vanishing cohomology[END_REF] for the isolated singularity case).

Example 1.3 Let f = x 2 1 + • • • + x 2 n .
It is easy to prove that b f (s) is equal to (s + 1)(s + n/2), by using the identity:

∂ ∂x 1 2 + • • • + ∂ ∂x n 2 • f s+1 = (2s + 2)(2s + n)f s
In particular, R f coincides with L f if and only if n is odd.

These polynomials are famous because of the link of their roots with the monodromy of the Milnor fibration associated with f . This was established by B. Malgrange [START_REF] Malgrange | Polynôme de Bernstein-Sato et cohomologie évanescente[END_REF] and M. Kashiwara [START_REF] Kashiwara | Vanishing cycle sheaves and holonomic systems of differential equations[END_REF]. More generally, by using the algebraic microlocalization, M. Saito [START_REF] Saito | On microlocal b-function[END_REF] prove that {e -2iπα | α root of bf (s)} coincides with the set of the eigenvalues of the monodromy acting on the Grothendieck-Deligne vanishing cycle sheaf φ f C X(x) (where X(x) ⊂ X is a sufficiently small neighborhood of x). Thus the equivalence 2 ⇔ 3 is an easy consequence of this deep fact.

We give a direct proof of 1 ⇔ 2 in part 4.

Remark 1.4 In [START_REF] Barlet | Multiple poles at negative integers for A f λ in the case of an almost isolated singularity[END_REF], D. Barlet gives a characterization of 3 in terms of the meromorphic continuation of the current X(x) f λ . Remark 1.5 The equivalence 1 ⇔ 3 for the isolated singularity case may be due to J. Milnor [START_REF] Milnor | Singular points of complex hypersurfaces[END_REF] using the Wang sequence relating the cohomology of the link with the Milnor cohomology. In general, this equivalence is well-known to specialists. It can be proved by using a formalism of weights and by reducing it to the assertion that the N-primitive part of the middle graded piece of the monodromy weight filtration on the nearby cycle sheaf is the intersection complex (this last assertion is proved in [START_REF] Saito | Mixed Hodge modules[END_REF] (4.5.8) for instance). It would be quite interesting if one can prove the equivalence between 1 and 3 by using only the theory of D-modules.

In the case of hypersurfaces, it is well known that condition 1 requires a strong kind of irreducibility. This may be refinded in terms of Bernstein polynomial.

Proposition 1.6 Let f ∈ O be a nonzero germ such that f (0) = 0. Assume that the origin belongs to the closure of the points where f is locally reducible. Then -1 is a root of the reduced Bernstein polynomial of f .

Example 1.7 If f = x 2 1 +x 3 x 2 2 , then (s+1) 2 divides b f (s) because f -1 {0} ⊂ C 3 is reducible at any (0, 0, λ), λ = 0 (in fact, we have: b f (s) = (s+1) 2 (s+3/2)).
What may be done in higher codimensions ? If f ∈ O is such that (h, f ) defines a complete intersection, we can consider the Bernstein polynomial b f (δ h , s) of f associated with δ h ∈ R h . Indeed, we again have nontrivial functional equations: b(s)δ h f s = P (s) 

′ f (h, s) the monic generator of the ideal of polynomials b(s) ∈ C[s] such that: b(s)δ h f s ∈ D[s](J h,f , f )δ h f s . (1) Lemma 1.9 The polynomial b ′ f (h, s) divides b f (δ h , s), and b f (δ h , s) divides (s + 1)b ′ f (h, s). In other words, b ′ f (h, s) is either b f (δ h , s) or b f (δ h , s)/(s + 1).
The first assertion is clear since

D[s]δ h f s+1 ⊂ D[s](J h,f , f )δ h f s .
The second relation uses the identities:

(s + 1)m k 1 ,...,k p+1 (h, f )δ h f s = p+1 i=1 (-1) p+i+1 m k 1 ,..., ǩi ,...,k p+1 (h) ∂ ∂x k i ∆ h k 1 ,...,k p+1 • δ h f s+1 for 1 ≤ k 1 < • • • < k p+1 ≤ n,
where the vector field ∆ h k 1 ,...,k p+1 annihilates δ h . In particular, we have:

(s + 1)b ′ f (h, s)δ h f s ∈ D[s]δ h f s+1
, and the assertion follows.

As a consequence of this result, b ′ f (h, s) coincides with bf (δ h , s) when -1 is not a root of b ′ f (h, s); but it is not always true (see part 3). We point out some facts about this polynomial in part 3.

Theorem 1.10 Let Y ⊂ X be a closed subspace of pure codimension p + 1 ≥ 2, and x ∈ Y . Let (h, f ) = (h 1 , . . . , h p , f ) : (X, x) → (C p+1 , 0) be an analytic morphism such that the common zero set of h 1 , . . . , h p , f is Y in a neighbourhood of x. Up to replace h i by h m i for some non negative integer m ≥ 1, let us assume that Dδ h = R h . The following conditions are equivalent:

1. L(Y, X) x coincides with H p [Y ] (O X ) x .
2. The polynomial b ′ f (h, s) has no strictly negative integral root.

Let us observe that the condition Dδ h = R h is not at all a constraining condition on (Y, x). Moreover, using the boundaries of the roots of the classical Bernstein polynomial, on can take

m = n -1 (since 1/(h 1 • • • h p ) n-1 generates the D-module O[1/h 1 • • • h p ], using Proposition 4.2 below
). Finally, one can observe that this technical condition Dδ h = R h is difficult to verify in practice. Thus, let us give an inductive criterion.

Proposition 1.11 Let h = (h 1 , . . . , h p ) : (X, x) → (C p , 0) be an analytic morphism defining a germ of complete intersection of codimension p ≥ 1. Assume that -1 is the only integral root of the Bernstein polynomial b h 1 (s). Moreover, if p ≥ 2, assume that -1 is the smallest integral root of b h i+1 (δ hi , s) with hi = (h 1 , . . . , h i ) : (X, x) → (C i , 0), for 1 ≤ i ≤ p -1. Then the left D-module R h is generated by δ h . Example 1.12 Let n = 3, p = 2, h 1 = x 2 1 + x 3 2 + x 4 3 and h 2 = x 2 1 - x 3 2 + 2x 4 3 .
As h 1 defines an isolated singularity and h = (h 1 , h 2 ) defines a weighted-homogeneous complete intersection isolated singularity, we have closed formulas for b h 1 (s) and b h 2 (δ h 1 , s), see [START_REF] Yano | On the theory of b-functions[END_REF], [START_REF] Torrelli | Équations fonctionnelles pour une fonction sur une intersection complète quasi homogène à singularité isolée[END_REF]. From the explicit expression of these two polynomials, we see that they have no integral root smaller than -1. Thus δ h generates R h . Aknowledgements. This research has been supported by a Marie Curie Fellowship of the European Community (programme FP5, contract HPMD-CT-2001-00097). The author is very grateful to the Departamento de Álgebra, Geometría y Topología (Universidad de Valladolid) for hospitality during the fellowship, to the Lehrstuhl VI für Mathematik (Universität Mannheim) for hospitality in November 2005, and to Morihiko Saito for judicious comments.

The proofs of

Bernstein polynomials associated with a section of a holonomic D-module

In this paragraph, we recall some results about Bernstein polynomials associated with a section of a holonomic D X -Module.

Given a nonzero germ f ∈ O X,x ∼ = O and a local section m ∈ M x of a holonomic D X -Module M without f -torsion, M. Kashiwara [START_REF] Kashiwara | On the holonomic systems of differential equations II[END_REF] proved that there exists a functional equation:

b(s)mf s = P (s) • mf s+1 in (Dm) ⊗ O[1/f, s]f s , where P (s) ∈ D[s] = D ⊗ C[s] and b(s) ∈ C[s] are nonzero. The Bernstein polynomial of f associated with m, denoted by b f (m, s), is the monic generator of the ideal of polynomials b(s) ∈ C[s] which satisfies such an equation. When f is not a unit, it is easy to check that if m ∈ M x -f M x , then -1 is a root of b f (m, s).
Of course, if M = O X and m = 1, this is the classical notion recalled in the introduction.

Let us recall that when M is a regular holonomic D X -Module, the roots of the polynomials b f (m, s) are closely linked to the eigenvalues of the monodromy of the perverse sheaf ψ f (Sol(M)) around x, the Grothendieck-Deligne nearby cycle sheaf, see [START_REF] Ph | Le théorème de comparaison pour les cycles évanescents, Éléments de la théorie des systèmes différentiels géométriques[END_REF] for example. Here Sol(M) denotes the complex RHom D X (M, O X ) of holomorphic solutions of M, and the relation is similar to the one given in the introduction (since Sol(O X ) ∼ = C X ). This comes from the algebraic construction of vanishing cycles, using Malgrange-Kashiwara V -filtration [START_REF] Malgrange | Polynôme de Bernstein-Sato et cohomologie évanescente[END_REF], [START_REF] Kashiwara | Vanishing cycle sheaves and holonomic systems of differential equations[END_REF]. Now, if Y ⊂ X is a subspace of pure codimension p, then the regular holonomic

D X -Module H p [Y ] (O X ) corresponds to C Y [n -p]. Thus the roots of the polynomials b f (δ, s), δ ∈ H p [Y ] (O X )
x , are linked to the monodromy associated with f : (Y, 0) → (C, 0). For more results about these polynomials, see [START_REF] Torrelli | Équations fonctionnelles pour une fonction sur un espace singulier[END_REF].

3 The polynomials b ′ f (h, s) and bf (δ h , s)

Let us recall that b ′ f (h, s) is always equal to one of the two polynomials b f (δ h , s) and bf (δ h , s). In this paragraph, we point out some facts about these Bernstein polynomials associated with an analytic morphism (h, f ) = (h 1 , . . . , h p , f ) : (C n , 0) → (C p+1 , 0) defining a complete intersection.

First we have a closed formula for b ′ f (h, s) when h and (h, f ) define weighted-homogeneous isolated complete intersection singularities. Proposition 3.1 ( [START_REF] Torrelli | Équations fonctionnelles pour une fonction sur une intersection complète quasi homogène à singularité isolée[END_REF]) Let f, h 1 , . . . , h p ∈ C[x 1 , . . . , x n ], p < n, be some weighted-homogeneous of degree 1, ρ 1 , . . . , ρ p ∈ Q * + for a system of weights α = (α 1 , . . . , α n ) ∈ (Q * + ) n . Assume that the morphisms h = (h 1 , . . . , h p ) and (h, f ) define two germs of isolated complete intersection singularities. Then the polynomial b ′ f (h, s) is equal to:

q∈Π (s + |α| -ρ h + q)
where |α| = n i=1 α i , ρ h = p i=1 ρ i and Π ⊂ Q + is the set of the weights of the elements of a weighted-homogeneous basis of O/(f, h 1 , . . . , h p )O + J h,f .

When h is not reduced, the determination of b ′ f (h, s) is more difficult, even if (h, f ) is a homogeneous morphism. Example 3.2 Let p = 1, f = x 1 and h = (x 2 1 + • • • + x 2 n ) ℓ with ℓ ≥ 1.
By using a formula given in [START_REF] Torrelli | Bernstein polynomials of a smooth function restricted to an isolated hypersurface singularity[END_REF], Remark 4.12, the polynomial bx 1 (δ h , s) is equal to (s+n-2ℓ) for any ℓ ∈ N * = C * ∩N. For ℓ ≥ n/2, let us determine b ′

x 1 (h, s) with the help of Theorem 1.10. From Example 1.3, we have

R h = Dδ h if ℓ ≥ n/2, and L h,x 1 = R h,x 1 if and only if n is even. If n ≤ 2ℓ is odd, b ′ x 1 (h, s) must coincide with b x 1 (δ h , s) = (s+1)(s+n-2ℓ) because of Theorem 1.10 (since L h,x 1 = R h,x 1 ). On the other hand, if n ≤ 2ℓ is even, we have b ′ x 1 (h, s) = (s + n -2ℓ) = bx 1 (δ h , s
) by the same arguments. Let us refind this last fact by a direct calculus.

As bx 1 (δ h , s) = (s + n -2ℓ) divides b ′ x 1 (h, s), we just have to check that this polynomial (s + n-2ℓ) provides a functional equation for bx 1 (δ h , s) when n is even. First, we observe that

(s + n -2ℓ)δ h x s 1 = n i=1 ∂ ∂x i x i • δ h x s 1
If ℓ = 1, we get the result (since J h,x 1 = (x 2 , . . . , x n )O in that case). Now we assume that ℓ ≥ 2. Let us prove that x i δ h x s 1 belongs to D(J h,x 1 , x 1 )δ h x s 1 for 2 ≤ i ≤ n. We denote by g the polynomial

x 2 1 +• • •+x 2 n and, for 0 ≤ j ≤ ℓ-1, by N j ⊂ D(J h,x 1 , x 1 )δ h x s 1 the submodule generated by x 1 δ h x s 1 , x 2 g j δ h x s 1 , . . . , x n g j δ h x s 1 . In particular, h = g ℓ , N ℓ-1 = D(J h,x 1 , x 1 )δ h x s 1 and N j+1 ⊂ N j for 1 ≤ j ≤ ℓ -2. To conclude, we have to check that N 0 = N ℓ-1 .
By a direct computation, we obtain the identity:

∂ ∂x i 2(j -ℓ)g j-1 x 2 1 + n k=2 ∂ ∂x k x k g j • δ h x s 1 = 2(j-ℓ)(n+2(j-ℓ)-1)x i g j-1 δ h x s 1 for 2 ≤ i ≤ n, j > 0.
As n is even, we deduce that x i g j-1 δ h x s 1 belongs to N j for 2 ≤ i ≤ n. In other words, N j-1 = N j for 1 ≤ j ≤ ℓ -1; thus N 0 = N ℓ-1 , as it was expected.

As the polynomial b ′

f (h, s) plays the rule of bf (s) in Theorem 1.10, a natural question is to compare these polynomials b ′ f (h, s) and bf (δ h , s). Of course, when (s + 1) is not a factor of b ′ f (h, s), then b ′ f (h, s) must coincide with bf (δ h , s); from Theorem 1.10, this sufficient condition is satisfied when Dδ h = R h and R h,f = L h,f . But in general, all the cases are possible (see Example 3.2); nevertheless, we do not have found an example with f and h reduced and b

′ f (h, s) = b f (δ h , s). Is b ′ f (h, s) always equal to bf (h, s) in this context ?
The question is open. Let us study this problem when (h, f ) defines an isolated complete intersection singularity. In that case, let us consider the short exact sequence:

0 → K ֒→ D[s]δ h f s D[s](J h,f , f )δ h f s ։ (s + 1) D[s]δ h f s D[s]δ h f s+1 → 0
where the three D-modules are supported by the origin. Thus the polynomial b ′ f (h, s) is equal to l.c.m(s+1, bf (δ h , s)) if K = 0 and it coincides with bf (δ h , s) if not. Remark that K is not very explicit, since there does not exist a general Bernstein functional equation which defines bf (δ h , s) -contrarily to bf (s), see part 4. In [START_REF] Torrelli | Polynômes de Bernstein associés à une fonction sur une intersection complète à singularité isolée[END_REF], [START_REF] Torrelli | Bernstein polynomials of a smooth function restricted to an isolated hypersurface singularity[END_REF], we have investigated some contexts where such a functional equation may be given. In particular, this may be done when the following condition is satisfied:

A(δ h ) :
The ideal Ann D δ h of operators annihilating δ h is generated by Ann O δ h and operators Q 1 , . . . , Q w ∈ D of order 1.

Indeed, because of the relations:

Q i • δ h f s+1 = (s + 1)[Q i , f ]δ h f s , 1 ≤ i ≤ w,
we have the following isomorphism:

D[s]δ h f s D[s]( J h,f , f )δ h f s ∼ = -→ (s + 1) D[s]δ h f s D[s]δ h f s+1 where J h,f ⊂ O is generated by the commutators [Q i , f ] ∈ O, 1 ≤ i ≤ w.
Thus bf (δ h , s) may also be defined using the functional equation:

b(s)δ h f s ∈ D[s]( J h,f , f )δ h f s and K = D[s]( J h,f , f )δ h f s /D[s](J h,f , f )δ h f s .
For more details about this condition A(δ h ), see [START_REF] Torrelli | On meromorphic functions defined by a differential system of order 1[END_REF].

The proofs

Let us recall that bh (s) may be defined as the unitary nonzero polynomial b(s) ∈ C[s] of smallest degree such that:

b(s)h s = P (s) • h s+1 + n i=1 P i (s) • h ′ x i h s (2) 
where P (s), P 1 (s), . . . , P n (s) ∈ D[s] (see [START_REF] Malgrange | Le polynôme de Bernstein d'une singularité isolée[END_REF]).

Remark 4.1 The equation ( 2) is equivalent to the following one:

b(s)h s = n i=1 Q i (s) • h ′ x i h s where Q i (s) ∈ D[s] for 1 ≤ i ≤ n. Indeed, one can prove that h s+1 ∈ D[s](h ′ x 1 , . . . , h ′ xn )h s i.e. h belongs to the ideal I = D[s](h ′ x 1 , . . . , h ′ xn ) + Ann D[s] h s .
This requires some computations like in [START_REF] Torrelli | Bernstein polynomials of a smooth function restricted to an isolated hypersurface singularity[END_REF] 2.1., using that:

h∂ x i -sh ′ x i ∈ I, 1 ≤ i ≤ n.
Proof of Proposition 1.6. By semi-continuity of the Bernstein polynomial, it is enough to prove the assertion for a reducible germ f . Let us write f = f 1 f 2 where f 1 , f 2 ∈ O have no common factor. Assume that -1 is not a root of bf (s). Then, by fixing s = -1 in (2), we get:

1 f ∈ n i=1 D f ′ x i f + O ⊂ O[1/f 1 ] + O[1/f 2 ] since f ′ x i /f = f ′ 1,x i /f 1 + f ′ 2,x i /f 2 , 1 ≤ i ≤ n. But this is absurd since 1/f 1 f 2 defines a nonzero element of O[1/f 1 f 2 ]/O[1/f 1 ] + O[1/f 2 ] under our assump- tion on f 1 , f 2 . Thus -1 is a root of bf (s).
The proofs of the equivalence between 1 and 2 in Theorem 1.2 and of Theorem 1.10 are based on the following result: Proposition 4.2 Let f ∈ O be a nonzero germ such that f (0) = 0. Let m be a section of a holonomic D-module M without f -torsion, and ℓ ∈ N * . The following conditions are equivalent:

1. The smallest integral root of b f (m, s) is strictly greater than -ℓ -1.

The D-module

(Dm)[1/f ] is generated by mf -ℓ . 3. The D-module (Dm)[1/f ]/Dm is generated by . mf -ℓ .
4. The following D-linear morphism is an isomorphism :

π ℓ : D[s]mf s (s + ℓ)D[s]mf s -→ (Dm)[1/f ] . P (s) • mf s → P (-ℓ) • mf -ℓ
Proof. This is a direct generalization of a well known result due to M. Kashiwara and E. Björk Let us prove 1 ⇒ 4 . First, we establish that π ℓ is surjective. It is enough to see that for all P ∈ D and l ∈ Z : (P • m)f l ∈ Dmf -ℓ . By using the following relations:

∂ ∂x i Q • m f l = ∂ ∂x i f -l ∂f ∂x i • ((Q • m)f l-1 )
where 1 ≤ i ≤ n, Q ∈ D and l ∈ Z, we obtain that for all P ∈ D, l ∈ Z, there exist Q ∈ D and k ∈ Z such that (P • m)f l = Q • mf k . Thus, we just have to prove that: mf k ∈ Dmf -ℓ for k < -ℓ.

Let R ∈ D[s] be a differential operator such that:

b f (m, s)mf s = R • mf s+1 (3) 
and let k ∈ Z be such that k < -ℓ. Iterating (3), we get the following identity in Dm[1/f, s]f s :

b f (m, s -ℓ -k -1) • • • b f (m, s + 1)b f (m, s) c(s) mf s = Q(s) • mf s-ℓ-k (4)
where Q(s) ∈ D [s]. By assumption on ℓ, we have: c(k) = 0. Thus, by fixing s = k in (4), we get mf k ∈ Dmf -ℓ and π ℓ is surjective.

Let us prove the injectivity of π ℓ . If we fix P (s) ∈ D[s], then we have the following identity in Dm[1/f, s]f s :

P (s) • mf s = (Q(s) • m)f s-l
where Q(s) ∈ D[s] and l is the degree of P . Assume that . P (s) • mf s ∈ ker π ℓ . Thus there exists a non negative integer j ∈ N such that f j Q(-ℓ) annihilates m ∈ M. In particular: P (s)

• mf s = (s + ℓ)(Q ′ • m)f s-l , where Q ′ ∈ D[s]
is the quotient of the division of Q by (s + ℓ). As in the beginning of the proof, we obtain that P (s) • mf s = (s + ℓ) Q • mf s-k where Q ∈ D[s] and k ∈ N * . From (3), we get: We have the following commutative diagram:

b f (m, s -1) • • • b f (m, s -k + 1)b f (m, s -k)
0 0 ↓ ↓ 0 → D[s]mf s+1 ֒→ D[s]mf s ։ D[s]mf s /D[s]mf s+1 → 0 ↓ ↓ ↓ υ 0 → D[s]mf s+1 ֒→ D[s]mf s ։ D[s]mf s /D[s]mf s+1 → 0 ↓ u ↓ Dmf k+1 i ֒→ Dmf k ↓ 0
where υ is the left-multiplication by (sk). Remark that the second column is exact (since 1 ⇒ 4 ), that u is surjective, and that i is an isomorphism (since mf -ℓ ∈ Dmf k+1 generates Dm[1/f ] by assumption). After a diagram chasing, one can check that υ is surjective. Thus the D-module D[s]mf s /D[s]mf s+1 is Artinian, as the stalk of a holonomic D-Module [indeed, it is the quotient of two sub-holonomic D-Modules which are isomorphic (see [START_REF] Kashiwara | B-functions and holonomic systems[END_REF], [START_REF] Kashiwara | On the holonomic systems of differential equations II[END_REF])]. As a surjective endomorphism of an Artinian module is also injective, υ is injective. But this is absurd since k is a root of b f (m, s). Hence, -ℓ is less or equal to the smallest integral root of f . f (h, s) has no strictly negative integral root, then Dδ h,f = R h,f (Lemma 1.9 and Proposition 4.2, using that Dδ h = R h ), and we just have to remark that δ h,f belongs to L h,f when -1 is not a root of b ′ f (h, s). Indeed, by fixing s = -1 in the defining equation of b

′ f (h, s): b ′ f (h, s)δ h f s ∈ D[s](J h,f , f )δ h f s
we get:

δ h f -1 ∈ n 1≤k 1 <•••<kp≤n Dm k 1 ,...,kp (h, f )δ h f -1 + Dδ h ⊂ R h [1/f ]. Thus δ h,f ∈ R h,f ∼ = R h [1/f ]/R h belongs to L h,f . Now let us assume that L h,f = R h,f . As L h,f ⊂ Dδ h,f , we also have Dδ h,f = R h,f i.e. -1 is the smallest integral root of b f (δ h , s) (Proposition 4.2, using the asumption Dδ h = R h ). So let us prove that -1 is not a root of b ′ f (h, s), following the formulation of [27] Lemma 1.3. Since δ h,f ∈ L h,f = 1≤k 1 <•••<kp≤n Dm k 1 ,...,kp (h, f )δ h,f , we have: 1 ∈ DJ h,f + Ann D δ h,f , or equivalently: 1 ∈ D(J h,f , f ) + Ann D δ h f -1 (using that Df (δ h f -1 ) = R h ).
Moreover, as -1 is the smallest integral root of b f (δ h , s), an operator P belongs to Ann D δ h ⊗ 1/f if and only if there exists Q(s) ∈ D[s] such that P -(s + 1)Q(s) ∈ Ann D[s] δ h f s (Proposition 4.2). Thus we have:

D[s] = D[s](s + 1, J h,f , f ) + Ann D[s] δ h f s .
In particular, if (s + 1) was a factor of b ′ f (h, s), we would have:

b ′ f (h, s) s + 1 ∈ D[s](b ′ f (h, s), J h,f , f ) + Ann D[s] δ h f s
But from the identity (1), we have:

b ′ f (h, s) ∈ D[s](J h,f , f ) + Ann D[s] δ h f s
and this is a defining equation of b ′ f (h, s). Thus:

b ′ f (h, s) s + 1 ∈ D[s](J h,f , f ) + Ann D[s] δ h f s
In particular, b ′ f (h, s) divides b ′ f (h, s)/(s + 1), which is absurd. Therefore -1 is not a root of b ′ f (h, s), and this ends the proof.

Proof of the equivalence between 1 and 2 in Theorem 1.2. Up to notational changes, the proof is the very same than the previous one. Assume that bh (s) has no integral root. On one hand, Dδ and δ h ∈ L h . Hence L h = R h . Now let us assume that L h = R h . As L h ⊂ Dδ h ⊂ R h , δ h generates R h . In particular, -1 is the only integral root of b h (s) by using Proposition 4.2 (since the roots of b h (s) are strictly negative). By the same arguments as in the proof of Theorem 1.10, one can prove that -1 is not a root of bh (s). Thus bh (s) has no integral root, as it was expected Remark 4.4 Under the assumption Dδ h,f = R h,f , we show in the proof of Theorem 1.10 that if δ h,f belongs to L h,f then -1 is not a root of b ′ f (h, s). As the reverse relation is obvious, a natural question is to know if this assumption is necessary. In terms of reduced Bernstein polynomial, does the condition: -1 is not a root of bh (s) caracterize the membership of δ h in L h ? x s 5 .

Some remarks

-If p = 1, this condition Dδ h = R h just means that the only integral root of b h (s) is -1 (Proposition 4.2).

3. 1

 1 is not an eigenvalue of the monodromy acting on the reduced cohomology of the fibers of the Milnor fibrations of h around any singular points of Y contained in some open neighborhood of x in Y . Let us recall that the Bernstein polynomial b f (s) of a nonzero germ f ∈ O is the monic generator of the ideal of the polynomials b

  Theorems 1.2 & 1.10 are given in part 4. They are based on a natural generalization of a classical result due to M. Kashiwara which links the roots of b f (s) to some generators of O[1/f ]f α , α ∈ C (Proposition 4.2). The last part is devoted to remarks and comments about Theorem 1.10.

  for m = 1 ∈ O = M ([8] Proposition 6.2, [4] Proposition 6.1.18, 6.3.15 & 6.3.16).

P

  (s) • mf s = (s + ℓ) QS • mf s where S ∈ D[s]. By division of d(s) by (s + ℓ), we obtain the identity : d(-ℓ)P (s) • mf s = (s + ℓ)[ QS + e(s)P (s)] • mf s where e(s) ∈ C[s]. Remark that d(-ℓ) = 0 by assumption on ℓ. Thus P (s) • mf s ∈ (s + ℓ)D[s]mf s , and π ℓ is injective. Hence the condition 1 implies that π ℓ is an isomorphism. Observe that 4 ⇒ 2 and 2 ⇔ 3 are clear. Thus let us prove 2 ⇒ 1 . Let k ∈ Z denote the smallest integral root of b f (m, s). Assume that -ℓ > k.

Remark 4 . 3

 43 Obviously, the statement does not work for any ℓ ∈ Z (take m = 1 ∈ O = M and ℓ = -1). Nevertheless, it is true for any ℓ ∈ C such that for all root q ∈ Q of b f (m, s), we have:-ℓq ∈ N * = N ∩ C * .Obviously, Proposition 1.11 is obtained by iterating this result. Let us prove Theorem 1.10. Proof of Theorem 1.10. If b ′

  h coincides with R h = O[1/h]/O by Proposition 4.2 [take m = 1 and M = O]. On the other hand, by fixing s = -1 in (2)

  Let us point out some facts about Theorem 1.10:-The assumption Dδ h = R h is necessary. This appears clearly in the following examples.Example 5.1 Let p = 1 and h= x 2 1 + • • • + x 2 4 . As b h (s) = (s + 1)(s + 2), we have Dδ h = R h (Proposition 4.2). If f 1 = x 1 , then b ′ f 1 (h, s) = (s + 2) by using Proposition 3.1 where as L h,f 1 = R h,f 1 (Example 1.3, or because Dδ f 1 = R f 1 and b ′ f 1 (h, s) = (s + 3/2)). Now if we take f 2 = x 5 , we have L h,f 2 = R h,f 2 and b ′ f 2 (h, s) = 1 since:

.

  

-The condition L h = R h clearly implies Dδ h = R h , but it is not necessary; see Example 1.7 for instance. An other example with p = 1 is given by h

-Contrarly to the classical Bernstein polynomial, it may happen that an integral root of b

) ℓ and ℓ ≥ 2). In particular, 1 is an eigenvalue of the monodromy acting on φ f C h -1 {0} . For that reason, we do not have here the analogue of condition 3, Theorem 1.2.

-In [START_REF] Budur | Bernstein-Sato polynomials of arbitrary varieties[END_REF], the authors introduce a notion of Bernstein polynomial for an arbitrary variety Z. In the case of hypersufaces, this polynomial b Z (s) coincides with the classical Bernstein-Sato polynomial. But it does not seem to us that its integral roots are linked to the condition

. Meanwhile, by using [START_REF] Budur | Bernstein-Sato polynomials of arbitrary varieties[END_REF], Theorem 5, we get b Z (s) = (s + 3)(s + 5/2)(s + 2) if Z = V (h, f ) ⊂ C 6 .