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SURFACE STEP EFFECTS ON Si (100) UNDER UNIAXIAL TENSILE STRESS, BY 

ATOMISTIC CALCULATIONS.
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Cedex, France

Abstract

This paper reports a study of the step influence at a silicon surface under an uniaxial tensile stress, 
using an empirical potential. Our aim was to find conditions leading to a nucleation of dislocation 
from the  step.  We obtained that  no  dislocations could be  generated with such conditions.  This 
behaviour, different  from the one predicted for metals, could be attributed either to the covalent 
bonding or to the cubic diamond structure.
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1. Introduction

Dislocation formation at surface defects is a process of particular importance in nanostructured 
materials submitted to large stresses, such as nanograined systems, or nanolayers in heteroepitaxy for 
microelectronic devices. The dimension of these materials is typically below few tens of nanometres, 
which  is  too  small  for  a  Frank-Read  mechanism  of  dislocation multiplication to  operate.  The 
dislocations are then likely to have formed at surface or interface defects, such as surface steps. For 
example, the appearance of dislocations from the cleavage ledge, when silicon is plastically deformed 
at low temperature, has been recently observed [gally].
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Figure 1. Orientation and geometry of the slab for a rebonded DB step on (100) surface :  is the applied uniaxial stress, 
pi , ni point to the <111> planes of the shuffle set.

The  very  first  stages  of  dislocation formation  are  still  out  of  the  scope  of  experimental 
investigations, and atomic scale simulations are expected to bring up useful informations. Several 
simulations have already been performed,  in  which for  instance  the  energy of  a  dislocation is 
computed as it approaches the free surface [1-3], a dislocation is nucleated from a stressed surface [4-
7]. Finite elements calculations have also determined the critical  configuration for nucleating the 
dislocation from the cleavage ledge [Xu]. In the simulations by Brochard  et al.  [8],  focussed on 
metallic systems (Al, Cu), dislocations have formed at the surface step under the simple application of 
a uniaxial stress. The dislocation is created by localization in a glide plane of a shear whose amplitude 
and extension increase strongly with the imposed stress. In the present work, a similar study is done, 
but for silicon, chosen as a model for semiconductors. 

2. Model

The Si  surfaces used for epitaxy or growth  have mainly {100}  or  {111} orientations,  easily 
obtained  by  cleavage.  Here,  the  {100}  surface  has  been  selected owing  to  its  simple  atomic 
configuration compared to the {111} surface. The (100) surface mostly minimizes its energy via a 
2x1 reconstruction forming dimers rows [9]. There are two possible step orientations: [011] and [0 1
1], along the dense directions, which are the intersection of {111} glide planes and the (100) surface. 
Depending if one considers a single or double step, two reconstructions are possible. In this study, the 
most stable step configurations have been chosen. 

We modelled the system by a slab with axis along [100], [011] and [0 1 1], this last direction 
corresponding to the surface dimerization (Fig. 1). In these conditions, the step line in the rebonded 
SA and DB configurations is along [0 1 1] [10]. Along the surface axis [011] and [0 1 1], usual periodic 
boundary conditions have been applied, which implies the presence of two steps in opposition at the 
surface. Along the direction perpendicular to the surface, one side of the system (hereafter named 
bottom) is frozen in order to simulate the silicon bulk. 

The system dimensions must be chosen so that the interactions between the two steps or between 
the free surface and the slab bottom are negligible. Here, different system sizes have been tested, up 
to 30000 atoms. In the step line direction, the slab exhibit a periodicity of two planes due to the 2x1 
reconstruction, but here we used 4 planes for technical reasons. 60 planes have been necessary in the 
direction normal to the surface, and 64 planes along [011], perpendicular to the steps line.

An  uniaxial  tensile  stress  along  [011]  was  applied,  i.e.  contained in  the  surface  plane  and 
perpendicular to  the  step line. A homogeneous strain was achieved by fixing atomic positions, 
including those of the frozen bottom region, as deduced from anisotropic linear elasticity [11], the 
elastic  coefficients  being  calculated with  the  atomistic  potential.  Interatomic  interactions were 
represented by the potential of Stillinger-Weber [12], the large number of atoms, configurations and 
long relaxation times preventing the use of costly methods such as ab initio techniques. Originally 
built for describing bulk and liquid phases of Si, the validity of the Stillinger-Weber potential has 
been proved for small and elastic deformations [13]. Subsequently, in our calculations, we focussed 
on the effects before the onset of plastic deformations, and we expect that the precursory effects of 
dislocations nucleation could be detected, as shown by Brochard et al for metals [8]. 

In order to find the most stable state for each configuration (step geometry, system size, stress 
value),  two  methods  have  been  employed. In  the  first  one  we  performed conjugate  gradients 
minimization for a static relaxation. Then, we also considered molecular dynamics [14]. We let the 
system evolve at T≠0 during 50 ps in order to enhance the exploration of configurations space. Next, 
a quench is applied for convergence. For both methods, the convergence is reached when the resulting 
force on every atoms is less than 10-3 eV/Å.



Table 1. Evolution of elastic limit for different steps and temperatures. The stresses have been  evaluated using linear 
elasticity.

Crystal 
geometry

Bulk
Perfect 
surface

SA step
DB step 

rebonded
DB step non 

rebonded
DB step 

rebonded
DB step 

rebonded
Temperature (K) 0 0 0 0 0 300 1200
Elastic limit (%) 32 ± 1 28.3 ± 0.5 24.7 ± 0.5 24.1 ± 0.5 22.9 ± 0.5 14.3 ± 0.5 12.0 ± 0.5

Stress (GPa) 48 ± 2 42.5 ± 0.8 37.1 ± 0.8 36.2 ± 0.8 34.4 ± 0.8 21.5 ± 0.8 18.0 ± 0.8

3. Steps and temperature influence on yield stress: plastic effects

The first calculation dealt with a perfect surface at 0 K. Here, the elastic limit corresponded to a 
strain of 28.3% (Tab. 1), plastic deformations appearing from the bottom of the system. This effect 
has been explained by the non-physical discontinuity between frozen and relaxed zones. In fact, the 
applied strain is so large that the system is beyond the linear range of elasticity. For such large 
deformations a misfit is created between the frozen slab bottom and the relaxed zone. For a bulk 
system, where there is no frozen part, the calculated elastic limit is larger. 

a b

Figure 2. Double height steps: a- rebonded DB and b- non rebonded DB.

Systems with rebonded SA and DB steps on a (100) surface have been tested at 0 K. We have also 
investigated the effects  of  a  non rebonded DB for  which the step front  is  more abrupt than the 
rebonded DB step (Fig. 2). The Table 1 shows the effects of the step nature on the elastic limit. The 
presence of steps on the surface decreases the yield stress, compared to the system without step, for 
all cases. This is a consequence of the symetry breaking and the structure weakening at the step. 
However, the strain values remain large, which can be explained by the very small concentration of 
stress at the step, as shown by Poon et al [ ].It has to be noted that the problem of the discontinuity 
between frozen and relaxed zones will not  have consequences on results for  systems with steps 
because the elastic limit is larger without step than with step. Using different step configurations 
modifies only slightly the yield stress, about 2%. However, we note that the elastic limit is decreasing 
when the defect height is increasing, or when the step front is more abrupt. 
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Figure 3. Snapshots showing the evolution of the slab fracture at a rebonded DB step, at 0 K, and for a deformation of 
24.1%.



Additional calculations have been  done at  non-zero temperatures,  in  order to  introduce more 
flexibility in the configuration space exploration, and eventually to nucleate a dislocation. Here, only 
the  system with  a  rebonded  DB step  has  been  studied.  This  case  corresponds  precisely to  the 
emergence of a 60° perfect dislocation at the (100) surface, i.e. a step composed of 2 atomic planes. 
For ambient  conditions  (300 K),  the yield stress is  strongly reduced (Tab. 1).  The elastic limit 
decreases again, but slightly, for a temperature of 1200 K. In fact, the higher the temperature, the 
stronger the thermal vibrations, and the probability to initiate a crack via a bond breaking increases, 
reducing the elastic limit.

In  all  cases,  the elastic strain increases up to  a  point  (yield) where subsequent  deformations 
(plastic) occur by a depression which forms near the step, in the lower terrace,  where there is the 
maximal stress concentration (Fig. 3a). In this zone, the tension causes bond rupture (Fig. 3b), the 
system relaxing by appearance of many glide events preferentially along the (111) planes, with the 
propagation of the crack approximately along the [100] direction, normal to the surface (Fig. 3c). Our 
calculations have not clearly shown dislocation nucleations from the surface step, even with the 
introduction  of  temperature.  Still  we  have  shown  that  the  presence  of  steps  on  the  surface 
significantly reduces the strength of the system.

4. Discussion on elastic behaviour in (111) planes

In the simulation, the silicon sample remains elastic up to a very large elongation, around 25%. 
There is here a noteworthy difference with the simulation for fcc metals in which a glide occurred at 
the  step  around  a  8% elongation, preceded by  a  shear  deformation  starting  from the  step  and 
concentrated in the {111} future glide plane [8]. In the absence of surface step, the elastic field in the 
sample submitted to an uniaxial stress whose direction belongs to the surface plane is homogeneous. 
The aim here is to investigate the modification of the homogeneous elastic field by the step; one is 
looking mainly  for  the  occurrence  of  non  linear effects  such  as  {111} shear,  characteristic of 
dislocation pre-nucleation, in the neighbourhood of the step.

The  elastic  field  has  been  analysed  prior  to  plastic  deformation,  at  22.3%.  The  relative 
displacements between one atom in a (111) plane and its symetric equivalent in the adjacent parallel 
(111) plane have been calculated in the step region. These displacements includes the effect of the 
surface relaxation. Only the component along the <211> normal to the step line is considered, since it 
is the direction of the Burgers vector of an edge dislocation. In the diamond cubic structure, the {111} 
planes where dislocations can glide are divided into two sets: the widely spaced (1/4<111>) shuffle 
set planes and the narrowly spaced (1/12<111>) glide set planes [11].

We have considered both a rebonded DB step and a non rebonded DB step, even though the latter is 
not the most stable step configuration. In all cases, the analysis of the relative displacements in the 
(111) planes of the glide set shows no evidence of shear. In the shuffle set, however, we observed 
small displacements, having a different sign on both sides of the step, corresponding to a compression 
on the upper terrace and a tension on the lower terrace (Fig.4 a-b’). This can be explained by the 
additional planes on the upper terrace, which increase the resistance of the structure.

For the rebonded step, the most important displacements occur in the plane passing through the 
step edge (n0) (Fig.4 a). This shear would yield to a shortening of the crystal, and is thus in the 
opposite sense to the dislocation nucleation. This important shear in n0 is not observed for the non 
rebonded step (Fig.4 b), where the shear of the upper terrace is distributed in several planes ni>0. The 
localisation in a single dense plane for the rebonded step can be directly linked to the rebonding 
effects.

For planes emerging on the lower terrace with a negative slope (Fig.4 a,  b,  ni<0),  the relative 
displacements are orientated for a dislocation nucleation (elongation), but the shear is not localised in 
a single plane, which would be a precursor of the nucleation. All these relative displacements are also 
very small, compared to those observed in metals. Moreover, in the elongated crystal, dislocation 



nucleation in  a  plane with  a  negative slope (ni)  would produce an  increase of  the  step height, 
energetically unfavourable.

In the planes with a positive slope, there is no localisation of shear in a particular plane, even when 
the shear is in the right sense for dislocation nucleation and step reduction, for both steps (Fig.4 a’b’, 
pi<0). Once again, all the relative displacements are very small compared to those calculated in metals. 
For example, in the p-1 plane, the displacement between both planes along <211>, is about 0.02 times 
the edge component of a perfect 60° dislocation, about one order of magnitude smaller than in metals, 
and too small for initiating a dislocation.

Figure 4. Relative displacements between two adjacent (111) shuffle set planes along <112> direction (unit bedge: edge 
component of perfect 60° dislocation with a/2<110> Burgers vector, a being the lattice parameter) versus the depth in 
the slab along <112>, a-a’ rebonded DB step, b-b’ non rebonded DB step, c-c’ point force. ni (pi) denote the planes with a 
negative (positive) slope. (Fig. 1), positive indexes (negative) corresponding to planes from the upper (lower) terrace. 
Bold curves correspond to the two planes closest  to the step edge.

Thus, no precursory shear in the (111) glide plane passing through the step edge (such as p-1), 
eventually helping for the dislocation nucleation, has been obtained for silicon. Using a point force 
model in which the inhomogeneous elastic field due to the step is produced by a point force applied at 
the step location on a flat surface, it has been possible to precise the origin of the shear localization 
for metals: the excess radial compression due to the point force increases, via the Poisson's ratio, the 
distance between the (111) planes passing through the step edge, resulting in an easier shearing of 
these planes [8].

It is thus of interest to investigate how the silicon crystal reacts to the application of a point force 

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

n0

n-3n-2
n-1

n2
n1

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3

n-2
n-1

n2

n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3n-2
n-1

n2
n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

a a’

b b’

c c’

Shear > 0

Shear < 0

Shear < 0

Shear > 0

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

n0

n-3n-2
n-1

n2
n1

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3

n-2
n-1

n2

n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3n-2
n-1

n2
n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

a a’

b b’

c c’

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

n0

n-3n-2
n-1

n2
n1

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3

n-2
n-1

n2

n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3n-2
n-1

n2
n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

n0

n-3n-2
n-1

n2
n1

-0.1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3

n-2
n-1

n2

n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p" -6 "
p" -4 "
p" -2 "
p"  0 "
p"  2 "
p"  4 "

n0

n-3n-2
n-1

n2
n1

-0.05

0

0.05

0      10      20      30      40      50      60      70      80      90      Å

(bedge)

p0

p2

p1

p-3

p-1

p-2

a a’

b b’

c c’

Shear > 0

Shear < 0

Shear > 0

Shear < 0

Shear < 0

Shear > 0

Shear < 0

Shear > 0



on the surface. Considering a perfectly flat surface, the point force is located on the surface atoms of 
the fictitious step line and is directed along [011], i.e.  along the direction of the applied uniaxial 
stress. The force points toward what would be the upper terrace and its amplitude is hσ per length 
unit,  h being the step height and σ the uniaxial stress. 

Fig. 4 (c, c’) shows that there is no significant difference between the point force model and the 
step configurations, the relative displacements remaining small and non localised in a single plane. As 
already observed with the non rebonded step, the point force model confirms that the rebonded effects 
are negligible, except in the n0 plane. Also, the non appearance of a localised shear precursor of 
dislocation nucleation can not be due to the step geometry, since it does not appear in the point force 
case. 

There  is  then  a  fundamental  difference  between  the  behaviours  of  prototype  metal  and 
semiconductor. Since the step geometry is clearly not responsible, two reasons could explain this 
difference. On the one hand, the silicon cubic diamond structure implies inequivalent (111) planes 
(shuffle and glide sets), which is not the case for fcc metals. On the other hand, the chemical bonding, 
covalent for semiconductors and metallic for metals, could be at the heart of the observed differences. 
However, it remains difficult to estimate the effects of each contribution. 

5. Conclusion

                                         
We have realised an atomistic simulation using an empirical potential to represent a slab of silicon 

with different surface steps under an uniaxial tensile stress. We have obtained a crack from the lower 
terrace near the step, for strains about 24% at 0 K. Contrary to metals, it has not been possible to 
nucleate any dislocation. Before plastic deformations, the upper (lower) terrace is in compression 
(tension) compared to the bulk. The (111) plane passing through the rebonded DB step edge shows a 
concentration of shear opposite to the dislocation nucleation. Using the point force model, we found a 
behaviour different from the one previously obtained for metals, what could be attributed either to the 
cubic diamond structure or to the covalent bonding. 
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