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Abstract

The stability of the perfect screw dislocation in silicon has been investigated using both

classical potentials and first principles calculations. Although a recent study stated that

the stable screw was located both in the ’shuffle’ and ’glide’ sets of {111} planes (Koizumi

et al, 2000, Phil. Mag. A, 80, 609), it is shown that this result depends on the classical

potential used, and that the most stable configuration belongs to the ’shuffle’ set only, in the

centre of one (1̄01) hexagon. We also investigated the stability of an sp2 hybridization in

the core of the dislocation, obtained for one metastable configuration in the ’glide’ set. The

core structures are characterized in several ways, with a description of the three dimensional

structure, differential displacement maps, and derivatives of the dis-registry.

1 Introduction

Dislocations in silicon have been the subject of many investigations, both experimental, compu-

tational and theoretical, not only because they can appear in microelectronic devices, but also

because of their own properties, closely related to the covalent nature of bonding in this mate-

rial. In ordinary conditions, silicon is brittle below about 600◦C (Hirsch, Samuels and Roberts

1989, George and Michot 1993). Above this temperature, TEM observations show dissociated

dislocations (Ray and Cockayne 1971) which thus lie between the narrowly spaced {111} planes

i.e. belonging to the glide set. On the basis of computed generalized stacking-fault energy and
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entropy calculations, on {111} narrowly spaced (glide set) and widely spaced (shuffle set) respec-

tively (Kaxiras and Duesbery 1993), the idea was put forward of the possibility of a transition :

at low temperature, perfect dislocations are easier to nucleate and move in the shuffle set, while

the activation barrier for glide becomes lower for dissociated dislocations in the glide set at high

temperature (Duesbery and Joos 1996).

Thus, experiments have been undertaken in which, in order to achieve plastic deformation

at temperatures as low as room temperature, the silicon sample is either submitted to a high

confining pressure, of the order of 5 GPa (Rabier et al 2001) or subject to a surface scratch

test (Rabier et al 2000). Under these conditions, the microstructure has been found formed

of non-dissociated dislocations, supposed to belong to the shuffle set. Favoured dislocation

orientations appear to be screw, 60◦, 30◦ and also 41◦. Similarly, deformation experiments in

III-V compounds such as GaAs, InP, InSb, performed down to 77K by applying a high confining

pressure (Suzuki et al 1998, 1999a, b), indicate that the low temperature plastic deformation is

governed by kink pair formation on undissociated screw dislocations moving in the shuffle set

planes.

Theoretical investigations of the core structures of dislocations in silicon are then clearly

required to bring additional insights. However, despite a large number of existing atomistic

computations, most of these were devoted to partial dislocations of the glide set, with a partic-

ular attention to core reconstructions of the 30◦ and 90◦ partials and to mobility properties (cf.

for instance the review by Bulatov et al 2001). Less information is available about perfect dis-

locations: In his pioneer examination of dislocation cores in diamond cubic structures Hornstra

(1958) quite naturally placed the screw dislocation line furthest away from any atom row, that is

at the center of the hexagon formed by six neighbouring ¡110¿ dense atom rows; the dislocation

then belongs to the shuffle set, more precisely it is located at the intersection of two {111} shuf-

fle planes at 71.53◦. By somewhat artificially rebonding atoms, Hornstra also proposed another

structure for the screw core, the interesting idea being that the core is spread over two adjacent

hexagons sharing a common small edge. Arias and Joannopoulos (1994) performed DFT calcu-

lations of the shuffle screw in silicon: they found the first configuration proposed by Hornstra

to be stable with respect to spontaneous dissociation and they calculated energy parameters for

the core. Finally, in a recent study, Koizumi, Kamimura and Suzuki (2000) have investigated

the core configuration and the mobility of the (a/2)¡110¿ screw using the Stillinger-Weber (1985)

potential for silicon. They found two stable configurations: the configuration at the centre of

the hexagon, denoted A, has a higher energy and the lower energy configuration (denoted B)

can be regarded as belonging to both a {111} shuffle plane and the {111} glide plane at 71.53◦.

The authors discussed in detail the very special part that configuration B might play in cross-

slip mechanism and in the transition of dislocation glide from the shuffle set to the glide set.
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It remains to be confirmed if these results are general and not specific to the Stillinger-Weber

potential. Regarding the glide set, previous works essentially focused on partial dislocations,

and, to our knowledge, there are no available studies of the perfect screw configurations.

Thus, it is of interest to investigate the core properties of perfect dislocations in the shuffle

and glide sets, and particularly the existence and relative stability of all proposed configurations

of the screw orientation. This paper reports on such calculations, using both (i) the Density

Functional Theory (DFT) formalism and (ii) several semi-empirical potentials. After a descrip-

tion of the methods and computational details, we present the different energetic and structural

parameters associated with each configuration. These quantities are then discussed in relation

with the previous results, dislocation mobilities and validity of the classical potentials.

2 Computational methods

The atomistic calculations have first been carried out using semi-empirical potentials. We have

employed (i) the SW potential of Stillinger-Weber (1985), used as reference and also for com-

parison with previous work from Koizumi et al (2000), (ii) the Tersoff potential (1988) which

is able to give a better representation of a number of defects than Stillinger-Weber, and (iii)

EDIP (Justo et al 1998) constructed so as to benefit from the successes of earlier potentials

and incorporating data obtained from DFT calculations, such as the gamma-surfaces. It has

to be noted that for dislocation calculations, EDIP is the only semi-empirical potential able to

account for reconstructions of both 30◦ and 90◦ partials in the glide set. The main advantage

of empirical potentials is their low computational cost, which allows for a fast calculation of

several configurations. Potentials suffer from limitations, implicitly related to their functional

form or limited fitting database, and calculated energies may prove to be relatively inaccurate,

especially for configurations involving highly distorted or broken bonds, as encountered in dis-

location cores. However, by using three different types of potentials, we expect to overcome this

issue and obtain reliable results.

First principles calculations have also been carried out, in order to discriminate between

configurations, and to calculate more precise defect energies. In addition, comparisons with

empirical potential allowed us to check their reliability for dislocation core investigations. We

performed DFT calculations (Hohenberg and Kohn 1964, Kohn and Sham 1965) in the local

density approximation at zero temperature with the ABINIT code (ABINIT, 2002). The ionic

interactions were represented by norm-conserving pseudopotentials (Trouiller and Martins 1991).

We used a plane-wave basis with an energy cutoff of 10 Ry and two special k-point along the

dislocation line (Monkhorst and Pack, 1976). Tests with Generalized Gradient Approximations

(GGA), a higher energy cutoff or a finer k-point sampling have also been conducted for selected
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configurations. We found an error on the defect energy lower than 0.5% using 5 special k-points

and a cutoff of 14 Ry, and about 5% when using GGA.

At first, semi-empirical potential calculations were made, for a fast exploration of several

system sizes, thus determining the size effects of the simulation slab on the results. Suitable

simulation box sizes were then selected, small enough for DFT calculations to remain tractable

and large enough for the computed energies to be meaningful.

3 Simulation model

Ideally, we would consider an isolated straight screw dislocation in an infinite bulk. Along the

dislocation line, provided that there is no reconstruction, we have a periodic situation with a

period equal to the Burgers vector 1

2
[110]a0. The use of periodic boundary conditions is then the

obvious suitable choice along the dislocation line. In the plane perpendicular to the dislocation

line, a long-range strain field will be generated by the dislocation, and should be taken into

account in the calculation. Two different methods could be employed. In the first one, no

periodic boundary conditions perpendicular to the dislocation line are applied, and only one

dislocation is located in the centre of the simulation box (figure 1A). The atomic positions at

the boundaries are then initialized to values calculated with elasticity theory using a numerical

code adapted from ANCALC (Stroh, 1958,1962) or with a more precise model (Lehto and Öberg

1998). The computational box has to be large enough to prevent a fictitious interaction between

fixed boundaries and the dislocation core. In addition, atoms located at the edges of the system

are not in a bulk-like environment, and defect energies can not be directly extracted from total

energy calculations. Here, we used such an approach for semi-empirical potential calculations

only, because the simulation box could be enlarged at will, due to the low computational cost, and

also because defined individual atomic energy allows an easy determination of defect energies.

Typical computational cells involved about 10000 atoms (dimensions 133 Å×132 Å×11.5 Å for

a (40 × 84 × 3) cell). The anisotropic elastic energy per unit length of the dislocation is given

by the well known formula (Hirth and Lothe 1982)

E =
Kb2

4π
ln

(

R

r0

)

The second method involves periodic boundary conditions along the directions perpendicular

to the dislocation line. In that case, annoying difficulties arise owing to discontinuities at the

boundaries, in particular for a single dislocation. Spurious shear strain associated with these

discontinuities could then have a significant influence on the dislocation core structure and

energetics. These difficulties can be smoothed by considering dipolar (figure 1B) or quadrupolar

(figure 1C) arrangements of dislocations in the cell. Whether a dipole or a quadrupole should
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be favoured depends on the character of the dislocation: a dipole is best suited for an edge

dislocation whereas a quadrupole minimizes the residual strain associated with a quadrupole of

screw dislocations (Lehto and Öberg 1998). With the second choice, four dislocations should be

included in the cell, with separation distances large enough to prevent a spurious interaction,

which would lead to large cell sizes. However, as suggested by Bigger et al (1992), the system

could be divided by a factor of two by relaxing the orthogonality constraints on the periodic

cell (figure 1D). In this work, the quadrupolar arrangements of dislocations (figure 1C and

1D) have been considered for both semi-empirical and first principles calculations. The semi-

empirical calculations were useful for investigating easily several cell sizes and estimating the

non-elastic core-core energy contributions possibly present for very small cells. We considered

computational cells ranging from (40 × 84 × 3) to (6 × 12 × 3). For ab initio calculations, the

largest (12 × 12 × 1) cell encompasses 144 atoms, with 2 dislocations.

For a quadrupolar distribution and four dislocations in an orthogonal cell, the anisotropic

elastic energy per unit length is obtained by summation of the interactions between dislocation

pairs, calculated using a code adapted from ANCALC (Stroh, 1958,1962). The total energy can

be split up into an interaction energy inside the cell (Eintra) and half the interaction energy

between the quadrupole and all its periodically repeated images (Einter). A reference (zero)

of the elastic energy is required for determining Eintra, and is chosen as the elastic energy of

a dislocations quadrupole whose distance along the edge is d0. In that case, it can be shown

that the reference distance d0 is equal to the core radius r0 obtained for a single dislocation. In

fact, if the quadrupole is extremely large such that the four dislocations can be considered as

isolated, the elastic energy amounts to four times the self energy of a single dislocation. The

determination of Einter should require an infinite summation, which has to be dealt with care.

A quick convergence may be obtained by summing the interaction energy between quadrupoles.

It has to be noted that this is not the case for a dipolar arrangement, and special handling of the

summation is required (Cai et al 2001). The derivation of the elastic energy for a quadrupolar

distribution in a non-orthogonal cell (two dislocations per cell instead of four, see figure 1) is

straightforward.

4 Results

The table 1 shows the elastic constants calculated with the semi-empirical potentials and first

principles. These constants are used for generating the initial configurations from anisotropic

elasticity theory, and extracting core energetics from relaxed systems.

In figure 2, we show a (1̄01) section of the cubic diamond structure, with three possible

locations of the dislocation line. A corresponds to the original position at the center of one
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hexagon (Hornstra 1958), for a screw dislocation belonging to two shuffle planes. B was recently

proposed by Koizumi et al (2000), at the middle of one long hexagon bond. It is interesting

to point out that in this case, the dislocation is located at the crossing of both a shuffle and

a glide {111} plane. Finally, another high symmetry location on the structure is point C, at

the middle of a short hexagon bond, with the screw dislocation belonging to two glide planes.

Other locations have been investigated, either inside the hexagon or at the exact position of one

Si atom, but in all cases, the system relaxed to one of the three selected configurations.

The different energetic values resulting from all our calculations are reported in table 2. The

energy differences show that with ab initio and all potentials but SW, A is the most stable

configuration. We were able to reproduce the results of Koizumi et al (2001), B appearing more

stable than A by using the SW potential. B is obtained as the second choice with ab initio

and EDIP potential, while it seems highly unfavourable with the Tersoff potential. Another

important point concerns the stability of the B configuration. Although the relaxation with

semi-empirical potentials was straightforward, the B geometry has been found extremely difficult

to retain within a first principles calculation, even using initial configurations relaxed with

potentials as a starting point. Some or all dislocations of the quadrupole generally evolved to an

A configuration, or annihilated themselves. Only in one case were we able to relax the structure.

Finally, for all calculations, C is never the most stable configuration, or is even unstable with

the SW potential.

Table 2 also reports the core radii obtained by matching the elastic energy with the calcu-

lated defect energy. For the empirical potential calculations and one unique dislocation in the

computational cell, the core radius r0 is determined by considering the defect energy contained

in the cylinder centered on the dislocation line, with radius R and height the Burgers vector

b (see formula above). The factor K determined from the calculated elastic constants is used.

We considered that the core radius r0 is already well converged for R = 60 Å. For example, the

core radius changes by less than 0.01 Å for R ranging between 40 and 60 Å, for a configuration

A and the SW potential. For first principles calculations and a quadrupolar distribution of

dislocations, the core radius is determined numerically by inverting the defect elastic energy.

We found that the core radius determination is already very precise for a (12× 12) cell, with an

uncertainty about 0.01 Å. For the smaller (6 × 6) cell, a 0.1 Å deviation from converged values

was obtained. Most of the values are close to about 1 Å, the commonly used 1/4 of the Burgers

vector. Only core radii for B and C with Tersoff and A with EDIP are slightly distant. In the

table 2 are also reported core energy values, often used in the literature, which are obtained

with a core radius equal to the Burgers vector.

In figure 3, differential displacement maps of the relaxed A, B and C configurations of

the screw dislocations, obtained from systems with one unique dislocation and relaxed with
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an empirical potential. For the configuration A, the distortion is uniformly distributed on

the hexagon ring encircling the dislocation line. It is also clear from the picture that the

displacements are identical along the two ’shuffle’ planes (see figure 2). The configuration B

is characterized by a maximal distortion on the two atoms on both sides of the ’shuffle’ plane.

Most of the constraints are located on the hexagon rings sharing these atoms. In the case of

C, the maximal distortion is also located on two atoms, but on both sides of a ’glide’ plane.

Average deformations are observed for all four hexagon rings around these two atoms, and

equivalent displacements along the two glide planes passing through the C screw core. It is

noteworthy that for each geometry, almost identical pictures have been obtained regardless of the

potential considered. One exception is the C configuration with the SW potential, which relaxes

to the C’ configuration represented in figure 3. The initial differential displacement located

on the two atoms next to the dislocation location vanished, and large distortions appeared

involving more distant atoms (see figure 3). We found this configuration to be unstable with

both EDIP and Tersoff, relaxing to A. In figure 4, the differential displacement map for a

quadrupolar distribution of A configuration, relaxed with first principles, is represented. Even

if the dislocation cores are close and interact together, it is noteworthy that the general pattern

obtained for a unique dislocation remains easily recognizable in that case.

To characterize the spatial extension of the dislocation core, we have determined the width

at half maximum (WHM) of the derivative of the dis-registry introduced by the dislocation. The

dis-registry is obtained by computing the difference of displacements along (1̄01) for atoms on

either sides of the glide (1̄11̄) plane (Figure 5). The calculated points are fitted on the simple

shape arctan
(

x
∆

)

of a dislocation (Hirth and Lothe, 1982). The determination of the WHM is

then straightforward. In table 3, we report all values, as well as the WHM calculated in the

same way for configurations built from anisotropic elasticity theory. In contrast to the energy

ordering, it appears that the WHM’s do not depend on the kind of classical potential, for a

given configuration. For C, the ab initio WHM is also equal to the classical one. It is also clear

that the B core is wider than the A core.

5 Discussion

The A configuration has been considered as the most plausible structure for the undissociated

screw dislocation in silicon. But a recent study by Koizumi et al (2000) concluded that the B

configuration is slightly more stable than A. Our calculations indicate that A is definitely the

most stable geometry for the screw, using ab initio and two classical potentials. However, with

the SW potential, we were able to reproduce the result of Koizumi et al, which proves that the

apparent stability of B over A is an artefact of the potential. With first principles calculations
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involving various cell sizes, the B configuration was found to be stable only in one case. It seems

that the slightest deformation could lead to the relaxation from B to A. We conclude that the

B configuration is weakly metastable. Additional insights are obtained from the analysis of the

core. The figure 6 shows three dimensional structures of three configurations. A is characterized

by the absence of atomic rearrangements in the core, the main distortions being located on all

bonds forming the hexagon ring encircling the dislocation core. On the contrary, for B, the main

deformations are located on the two atoms close to the core. They are bonded together and at

the same height along (1̄01) in the bulk. After introduction of the dislocation, the atoms have

now a height difference of half the Burgers vector along (1̄01), and they are separated by about

2.8 Å. Weak bonds with such an interatomic distance are possible for silicon. However, each of

these atoms has already a coordination 3 and would need to accommodate 2 extra bonds (see

figure 6), which is unlikely to occur. From the analysis of the electronic density, it appears that in

the B core, 2 rows of dangling bonds follow the dislocation line. On the one hand, these rows may

explain the very low stability of this configuration with first principles methods. On the other

hand, the large range of energy values illustrates the difficulty of describing dangling bonds with

the classical potentials. We investigated a possible reconstruction of the B configuration along

the dislocation line, for reducing the number of dangling bonds. Because the atoms involved

are located on either side of the ’shuffle’ plane, new bonds are formed only at the expense of

breaking other bonds. Interestingly, this by-hand reconstruction relaxed to the C configuration.

The WHM, and so the core extension, of B is larger than A, which may also explain why it is

less stable.

We also investigated the possibility of a screw dislocation in the glide set with the C con-

figuration. With all classical potentials and first principles method, it is found that A is more

stable than C, with a large energy difference. It is then unlikely that the C core could be formed

in bulk silicon. However, interesting features are associated with this structure. The examina-

tion of the geometry in the core revealed that the two atoms on either side of the dislocation

line (black balls in figure 6) have a coordination 3. Before the introduction of the dislocation,

these two atoms, were bonded together, with a height difference of half the Burgers vector along

(1̄01). After, they are still bonded together but located at the same height, one bond per atom

being broken. The ab initio interatomic distance between these two atoms is 2.16 Å, whereas

distances with neighbour atoms are about 2.29 Å. The three bonds for each atom are almost

co-planar, and the angle between them range from 117◦ to 123◦. All these quantities point at

an sp2 hybridization of these two atoms, with a double bond between them, which is confirmed

by the analysis of the electronic density. This possibility has already been proposed by Hornstra

(1958), on the basis of geometrical arguments only. An sp2 hybridization is not favoured in

silicon, which explained the large defect energy for the C configuration. However, it would be
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interesting to investigate the competition between screw configurations in diamond for example,

where sp2 is favoured over sp3. It is worth noting that a sp2 character is also present in recently

proposed metastable structures for the 30◦ and 90◦ partial dislocations in diamond (Ewels et al

2001, Blumenau et al 2002). One interesting aspect of the C configuration is the tightness of the

core. It is difficult to compare directly A and C since they are not located in the same family

of 111 planes. Nevertheless, insights could be gained by the comparison with the anisotropic

elastic solution (Table 3). It is clear that for all potentials, and especially for ab initio, the

relaxed A core is wider than the initial elastic configuration. The effect is even stronger for the

B configuration. However, in the case of C, the core is contracted by the atomic relaxation. The

narrowness of C could be partly attributed to the formation of the double bond in the core.

To our knowledge, the A configuration has already been investigated with first principles

techniques in two previous studies. Arias and Joannopoulos (1994) found a core energy Ec =

0.56±0.21 eV.Å−1 whereas Miyata and Fujiwara (2001) obtained Ec equal to 0.95 eV.Å−1. These

results may be compared to our ab initio core energy of 0.52 eV.Å−1 (table 2), very close to the

value of the former study. However, this agreement seems fortuitous, the authors using isotropic

theory and a fitted K ≡ µ = 0.29 eV.Å−3. Miyata and Fujiwara (2001) followed a similar

approach, but with a fitted K ≡ µ = 0.48 eV.Å−3, and obtained a larger core energy. Instead,

here, K factors calculated within anisotropic theory and with the ab initio calculated elastic

constants, very close to the experimental values (see table 2), are employed. The disagreement

between the different works may be explained by the poor k-point sampling in the newer study,

as well as the use of isotropic theory with a fitted K factor.

We discussed our results in relation to the screw mobility. A being the most stable geom-

etry, possible paths from one minimum to another include saddle configurations B or C (see

Figure 2). Koizumi et al (2000) found a Peierls stress of about 2 GPa for the non-dissociated

screw dislocation, considering the path A→B→A. However, this relatively low value may be

explained by the use of the SW potential, and its failure to yield the correct stability of A

and B configurations. In fact, although the Peierls stress cannot be simply determined from

static calculations, several insights may be obtained from the analysis of the energy differences

between configurations. With SW, the energy difference between A and B is only 0.14 eV per

Burgers vector. With first principles, we determined a larger energy difference of 0.32 eV per

Burgers vector. It is then reasonable to assume that the Peierls stress for the path A→B→A

will be much higher than 2 GPa. This is confirmed by recent ab initio calculations from Miyata

and Fujiwara (2001), where the Peierls stress ranged from 22 to 30 GPa. Another possible path

for dislocation cross slip would be A→C→A. However, the large calculated energy difference

indicates a very large stress, and this possibility may be ruled out solely on the basis of energy

considerations.
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Finally, we compared the merits of each classical potentials we have used in this study. On

the basis of our three investigated configurations, it appears that EDIP is better suited that

SW or the Tersoff potential for this study, the stability and energy differences being close to

the ab initio results. This is not completely surprising since this potential has been designed

specifically to study defects (Justo 1998). The worst is maybe the SW potential, which yields

the B core as the most stable configuration. It is worth noting that although the stabilities of

the different core configurations very much depend on the kind of potential, we obtained similar

atomic structures in almost all cases. Consequently, for relaxing configurations prior to ab initio

calculations, one could use any classical potential. But for investigating stability, it is necessary

to consider several kind of potentials.

6 Conclusion

Using anisotropic elasticity theory, several semi-empirical classical potentials, and first principles

calculations, we have investigated the properties of the undissociated screw dislocation in silicon.

Considering previous studies and the geometry of the silicon atomic structure, three possible

structures have been selected and compared. We have shown that the configuration A, where the

dislocation core is located in the centre of one hexagon, in the shuffle set, is clearly more stable

than the two others. In a former study by Koizumi and Kamimura (2000), another configuration,

with the dislocation located in the centre of one long hexagon edge, was favoured. From our

calculations, it appears that this result is explained by the use of the Stillinger Weber potential,

this configuration being less stable with other classical potentials or ab initio methods. We

also investigated a third solution, with the dislocation in the glide set. Despite its high defect

energy, this configuration presents the interesting feature of an sp2 hybridization of the atoms

forming the core. Obviously, such a structure is worth to be studied in a material favouring

sp2, like diamond. We also characterized the spatial extension of the cores of each structure

by determining the derivative of the dis-registry. A possible continuation of this work includes

the determination of the mobility of the undissociated screw dislocation in silicon. The study

of other dislocation orientations, such as those recently observed at low temperature (Rabier et

al, 2000, 2001), would be another working direction.
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Table caption

Table 1: Experimental (Simmons and Wang 1971) and calculated elastic constants (in Mbar) for

the SW Stillinger-Weber (Stillinger and Weber 1985), Tersoff (Tersoff 1989) and EDIP (Justo

et al 1998) potentials as well as our ab initio results. The SW parameters have been rescaled

in order to fit the experimental cohesive energy of 4.63 eV. For a screw dislocation in a cubic

diamond structure, K = [C44(C11 − C12)/2]
−

1

2

Table 2: Calculated energetic parameters for A, B and C screw dislocations. ∆E is the energy

difference, in eV per Burgers vector, with an uncertainty of 0.01 eV/Bv. r0 is the core radius

(±0.03 Å). Ec is the core energy, obtained with a fixed core radius equal to the Burgers vector

(±0.02 eV.Å−1). Note that C is not stable with the SW potential, it relaxed to a configuration

with an energy 0.02 eV/Bv higher than A.

Table 3: WHM (in Å) obtained from elasticity (with experimental Cij), classical potentials, and

ab initio. Two values are undetermined, due to the instability of C with SW, and the difficulty

to obtain B with first principles in a large cell.
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exp. SW Tersoff EDIP ab initio

B 0.99 1.083 0.978 0.99 0.99

C11 1.67 1.617 1.425 1.75 1.64

C12 0.65 0.816 0.754 0.62 0.66

C44 0.81 0.603 0.687 0.71 0.78

C0
44 1.172 1.188 1.12 1.09

K 0.64 0.49 0.48 0.63 0.62

Table 1
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∆E (eV/Bv) Radius r0 (Å) Energy Ec (eV.Å−1)

EB − EA EC − EA A B C A B C

SW -0.14 0.82 0.91 0.55 0.51

Tersoff 1.08 0.54 0.78 0.35 0.52 0.55 0.84 0.70

EDIP 0.23 0.74 1.49 1.31 0.98 0.37 0.42 0.54

ab initio 0.32 0.86 1.22 1.03 0.74 0.52 0.60 0.74

Table 2
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Elastic SW Tersoff EDIP ab initio

A 2.7 3.1 3.2 3.2 3.6

B 2.6 3.9 4.0 4.0

C 1.2 0.9 0.9 0.9

Table 3

16



Figure captions

Figure 1: Models for straight dislocation simulations. In A, there is no periodic boundary

conditions and only one dislocation in the computational cell (dashed red line). B, C and D show

periodic boundary systems with dipolar (B) or quadrupolar (C,D) distributions of dislocations.

Figure 2: Ball and stick representation of the (1̄01) plane of the cubic diamond structure. The

three circles A, B and C mark the positions of the dislocation line. Dashed (dotted) lines show

the ’shuffle’ (’glide’) {111} planes.

Figure 3: Differential displacement maps of the screw dislocation in the configurations A, B, C,

and C’ (obtained with SW from C). The arrows are proportional to the out-of-plane [1̄01] shifts

between neighbour atoms introduced by the dislocation. The cross marks the position of the

dislocation line and the dashed line the cut plane.

Figure 4: Differential displacement maps of the screw dislocation in the configuration A, in the

quadrupolar distribution shown in the figure 1. The arrows are proportional to the out-of-plane

[1̄01] shifts between neighbour atoms introduced by the dislocation.

Figure 5: Variation of the dis-registry in the (111) plane along the [121] direction for the three

configurations. The solid lines are fits with the expression f(x) = b
[

1

π
arctan

(

x
∆

)

− 1

2

]

. The

insert graph shows the derivative of the dis-registry for A, and the definition of the WHM.

Figure 6: Ball-and-stick representation of the cubic diamond bulk (top left) and of the three

screw core configurations. A six atom ring (see figure 2) is represented by dark grey sticks, in

order to show the deformation due to the dislocation and the Burgers vector. Dangling bonds

(for B) and sp2 atoms (for C) are represented by black sticks and balls. The position of the

dislocation line is shown by the dashed lines.
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Figure 2
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Figure 4
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Figure 6
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