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Dislocation formation from a surface step in semiconductors: an ab initio study
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The role of a simple surface defect, such as a step, for relaxing the stress applied to a semi-
conductor, has been investigated by means of large scale first principles calculations. Our results
indicate that the step is the privileged site for initiating plasticity, with the formation and glide of
60◦ dislocations for both tensile and compressive deformations. We have also examined the effect
of surface and step termination on the plastic mechanisms.
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The plasticity of semiconductors has been extensively
studied for the last decades in both fundamental and
applied research, leading to significant progresses in the
understanding of the key mechanisms involved. Several
issues remain unsolved, however, one of the most essen-
tial being the formation of dislocations in nanostructured
semiconductors such as nano-grained materials, or nano-
layers in heteroepitaxy, systems extensively used in de-
vices. While in bulk materials the few native dislocations
are able to multiply via Frank-Read type mechanisms to
ensure plasticity, the situation is different in nanostruc-
tured materials where dimensions are too small to allow
dislocation multiplication [1]. The presence of disloca-
tions in these materials appears to be more controlled
by nucleation than by multiplication processes. It has
been proposed that surfaces and interfaces, which be-
come prominent for small dimensions, play a major role.
Several observations support this assumption, especially
for strained layers and misfit dislocations at interfaces
[2, 3, 4]. The formation at surfaces is also relevant where
large stresses exist, like near a crack [5, 6, 7, 8, 9].

Since in situ experimental observations of dislocation
nucleation is not yet possible due to the very small di-
mensions and short observation timescales, the forma-
tion of dislocations at surfaces has been mainly investi-
gated theoretically, particularly with continuum models
and elasticity theory [10, 11, 12]. However, in these ap-
proaches, the predicted activation energy is very large,
in disagreement with experiments. It has been proposed
that surface defects, such as steps, help the formation
by lowering the activation energy. This is supported by
experimental facts in the context of dislocation nucle-
ation at or near crack fronts, with dislocation sources
located on the cleavage surface and coinciding with cleav-
age ledges [13, 14, 15, 16]. In addition, it has been shown
that, in a stressed solid, a surface step is a source of local
stress concentration [17, 18, 19], although not as efficient
as a crack tip. Therefore, a number of continuum mod-
els have been developed, taking into account the energy
gain associated to the step elimination in the process of

dislocation nucleation [20, 21, 22, 23]. Atomistic calcu-
lations have also been performed for characterizing the
energetics, the processes involved, and the role of surface
defects [24, 25, 26, 27, 28, 29, 30].

These studies led to a better knowledge of the dislo-
cation formation from surface steps or cleavage ledges,
but we are still far from a complete understanding of the
phenomenon. Furthermore, studies were mostly focussed
on ductile materials, such as metals, using empirical po-
tentials. In contrast, there is a certain lack of knowledge
regarding semiconductors, for which a different behavior
is expected. Also, the role of the step has not been iden-
tified. Another point of concern is the interatomic poten-
tial for modeling dislocations. While sufficiently reliable
potentials have been developed recently for some metals,
the same is not yet true for a model semiconductor such
as silicon [31, 32].

In this work, we report investigations of the disloca-
tion formation from a surface step in a stressed semi-
conductor, here silicon. An ab initio approach has been
employed because of the insufficient reliability of empiri-
cal potentials for modeling the rearrangement of atomic
bonds that occurs during the formation and propagation
of dislocations. Our calculations clearly indicate that a
step is a privileged site for initiating plastic deformation.
Indeed, a 60◦ dislocation forms from the step both in
compression and traction simulations. We also show the
importance of surface and step termination, finding that
the dislocation forms below the surface when the surface
and the steps are passivated.

Our calculations use density functional theory, in the
local density approximation, and norm-conserving pseu-
dopotentials [33]. We have used the SIESTA method
[34, 35] with a basis set of atomic orbitals. In order to
simulate the largest possible systems, we searched care-
fully the least expensive basis, able to accurately model
the dislocation formation. We used a minimal basis of
optimized orbitals with a maximum range of 6 Å . The
grid for numerical integration in real space has an energy
cutoff of 150 Ry. Two or four special k-points [36] were
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FIG. 1: Different stages of the compression process for a 196 atoms unit cell: (a) Unstrained system, (b) strain of −10.4%, (c)
strain of −11.5%, (d-f) strain of −13.6%. The dashed line shows the shuffle plane where the dislocation glides. Two unit cells
are drawn for clarity.

used for the Brillouin zone sampling, depending on the
size of the system. These parameters lead to accurate
values for the lattice parameter and elastic coefficients.
Another test was the energy variation when bulk silicon
is strained along the {111} dense planes in the 〈110〉 di-
rection, the direction of Burgers vector dislocations in
the diamond cubic structure [37]. The calculated shear
strength is 28% larger than the one obtained with another
basis, more accurate but much more expensive, but it is
reached for the same shear strain [32]. Therefore we ex-
pect that the minimal basis set is adequate to study the
mechanisms of dislocation formation.

A typical model used in our simulations is shown in
Figure 1-a. The slab includes two (100) surfaces, with a
p(2×1) reconstruction of asymmetric dimers. Steps ly-
ing along the [01̄1] directions, which correspond to the
intersection of {111} slip planes and the (100) surface,
are placed on both surfaces. We have used double layer
steps, as formed by the emergence of a perfect disloca-
tion at the surfaces [38]. Tilted periodic boundary con-
ditions are applied normal to the step direction, in order
to have only one step on each surface. For the periodic
boundary conditions along the step line direction [01̄1],
four atomic planes are considered, allowing the p(2×1)
reconstruction. The total number of atoms in the sys-
tem ranged from 124 to 508, depending on the number

of layers along [100] and [011], the normals to the step
line. We impose an increasing uniaxial stress contained in
the surface and making an angle α with the step normal
[011], by applying a strain. We have shown previously
from Schmid factor analysis and empirical potential cal-
culations that α = 22.5◦ was the easiest orientation to
form dislocations [38], then unless explicitly stated the
results presented here are for this stress orientation. Af-
ter each stress increment of 1.5 GPa (∼ 1% deformation),
the atomic positions were relaxed with a conjugate gra-
dient algorithm until the atomic forces were lower than
0.04 eV/Å. The relaxed configurations are then relevant
for a crystal at 0 K.

The short period along the step direction allows only
for the formation of straight defects, no half-loop dislo-
cations or even kinks can form. However, there is no
a priori restriction on the type of straight dislocation,
either perfect or partial, in the shuffle set or the glide
set [39]. These simulations are representative of the low
temperature behavior.

For a DB non rebonded step [40], we found that the
196 atoms system behaves elastically up to a compres-
sive strain of −13.6%, which corresponds to a linear
stress of 19.5 GPa= 0.16G, G being the shear modu-
lus (Fig. 1). This is lower than the theoretical shear
strength calculated using the same method, 0.21G. At
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FIG. 2: Different stages of the compression process for a 128 atoms system, with surfaces passivated with hydrogen atoms
(white balls). (a) Unstrained system projected along [01̄1], (b-c) −16.7% of strain, formation and glide of a dislocation dipole
in bulk associated with the shear strain of the (111) shuffle set plane crossing the steps. Two unit cells are drawn for clarity.

−11.5% there is first a formation of bonds between the
atoms of the step edges and those of the lower terraces
(Fig. 1-c). Then at −13.6%, as relaxation continues, a
defect is formed which, through successive breaking and
formation of bonds, glides from the top to the bottom
surface (Fig. 1-d,e). Finally, a new step forms on the
bottom surface, leaving a now perfect top surface (Fig. 1-
f). An analysis revealed that a perfect 60◦ dislocation
formed and slipped on the {111} shuffle plane that passes
through the step edge of the top surface. The process re-
moves almost all of the applied stress, with only 1.5 GPa
remaining. This stress value corresponds roughly to the
deformation increment of 1%. It is likely that this re-
maining stress could be reduced by using smaller incre-
ments.

Qualitatively, we found quite similar results for trac-
tion. Plasticity occurred at 21.9% (31.5 GPa= 0.26G)
with several atomic rearrangements in the vicinity of one
step, leading to a locally disordered crystal. Then, a 60◦

dislocation formed from this area and slipped in a shuffle
plane toward the opposite surface. Therefore, our results
clearly indicate that surface steps facilitate the formation
of dislocations in covalent materials. As a consequence,
the elastic limit is lowered, compared to the bulk or to
the perfect surface. The step breaks the surface symme-
try and facilitates the nucleation of plastic events in its
vicinity. This effect may be attributed either to a stress
concentration or to a local reduction of elastic constants.
A deeper analysis is difficult, since both contributions are
intimately linked.

In order to check whether the step geometry has an ef-
fect on the kind of formed dislocation, a calculation with
a DB rebonded step has also been carried out. This step
can be thought as formed by the emergence at the sur-
face of a perfect dislocation located in a glide set plane,
followed by surface reconstruction. In that case a 60◦ per-
fect dislocation is also nucleated in the shuffle set plane

near the step, but for a larger strain (16.7%), as already
observed with classical empirical potentials calculations
for α = 0◦ [44]. Thus this suggests that for all step
geometries, a 60◦ perfect dislocation is nucleated in a
shuffle set plane for this stress orientation. Such a re-
sult may be surprising, since it is known that plasticity
of silicon deformed at high temperature is governed by
dissociated dislocations located in the glide set. In that
case, dislocations move with the formation and migra-
tion of double kinks. However, it has been shown that
in the low temperature/high stress regime, the plastic-
ity is dominated by perfect dislocations located in shuffle
planes [7, 41, 42]. Also, theoretical investigations suggest
that the Peierls stress is lower for a shuffle than for a glide
dislocation [43]. Our results are then in agreement with
experiments and with bulk calculations.

The influence of system size was checked by performing
additional simulations with 124 and 508 atoms. For the
smaller size the elastic limit was slightly larger, −14.6%,
whereas it remains at −13.6% for the larger size. These
results are consistent with the trend obtained from poten-
tial calculations, the elastic limit being larger for smaller
systems [38]. However, this effect is very small and there
were no noticeable differences on the dislocation forma-
tion process, suggesting that 196 atoms are enough. The
suitability of the minimal basis was checked by perform-
ing simulations with the smaller system and the more
accurate basis, leading to similar results. We also in-
vestigated the influence of the relative positions of the
steps on the top and bottom surfaces. In figure 1, the
two step edges belong to two distant shuffle planes, what
results in two opposite steps on the bottom surface af-
ter relaxation. We built a 128 atoms system with steps
lined up in the same shuffle plane. Under similar con-
ditions, we found the same behavior than with the 124-
atom system, though with a slightly larger elastic limit
of −15.6%. Thus, both the effects of system size and
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step location appear to be negligible for the process of
dislocation formation.

In a previous study, using classical potentials, we had
investigated the influence of several parameters such as
the step height and the orientation of the applied stress
[38]. We found that the step height has only a quan-
titative effect, a higher step lowering the elastic limit.
Such an investigation implies several simulations with
larger systems, and is beyond the scope of the present
work. However, we expect this conclusion to remain valid
in our case. Regarding stress orientation, it has been
shown that a perfect 60◦ dislocation is nucleated for a
wide range of stress orientations, in agreement with a
Schmid factor analysis [38]. However, an intriguing case
is α = 45◦, for which the Schmid factors are equal for
screw and 60◦ dislocations. We have performed the sim-
ulation in compression for this orientation, finding that
plasticity occurs at −20.2%. The analysis of atomic dis-
placements is difficult in this case. Some atoms are dis-
placed according to the formation of a 60◦, and others ac-
cording to the formation of a screw dislocation. However,
we were unable to clearly identify dislocations segments.

An important factor in the process of dislocation for-
mation is the surface and step termination. In fact, in
compression, the formation of bonds between the step
atoms and the lower terrace leads to an easier nucleation,
starting from the step edge. In traction, dislocation for-
mation also occurred in the vicinity of the step. There-
fore, surface and step termination are expected to play
a key role in realistic surfaces. We have then simulated
a system of 128 Si atoms, whose surfaces and steps were
passivated with hydrogen atoms (Fig. 2). In that case,
the dimers of the p(2×1) surface reconstruction are sym-
metric. The system is elastically strained up to −16.7%,
so that the shuffle plane passing through the step edge is
increasingly sheared. In that case, however, the hydrogen
atoms prevent the formation of bonds between step edge
atoms and the terrace, and plasticity first occurred in-
side the slab with the formation of a dislocation dipole,
each dislocation moving progressively towards one sur-
face. Thus, the relaxation mechanism clearly depends
on the surface and step state, with or without hydrogen
atoms. However, it is noteworthy that the calculated
elastic limits remain very similar.

In this work, we have considered a (100) surface. For
the cubic diamond structure, another important surface
orientation is (111). A simple Schmid factor analysis
suggests that larger applied stresses would be required
for forming dislocations. In addition, the same analysis
suggests that a screw dislocation would be nucleated for
the (111) surface instead of a 60◦ dislocation.

In conclusion, we have investigated the process of dis-
location formation from surface steps in a stressed cova-
lent solid, using first principles calculations. Our study
has been restricted to two-dimensional systems, in the
context of athermal nucleation at 0K. It has been shown

that a simple surface defect, such as a step, facilitates the
formation of dislocations, by lowering the elastic limit
and initiating the plastic deformation. For the orienta-
tions considered, perfect 60◦ dislocations were nucleated,
in agreement with a previous analysis [38]. It has also
been shown that, with passivated steps and surfaces, the
formation mechanism is different but occurs for similar
applied strains. Overall, the elastic limits are reached for
very large applied stresses, much higher than expected
in experiments. However, it is very likely that thermal
activation and higher defects will considerably decrease
these stresses, while preserving the formation mecha-
nisms. Performing ab initio finite temperature molecu-
lar dynamics for these systems remains presently a huge
task, but it is obviously the next goal to attain in the
future.
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