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A NONLINEAR POISSON FORMULA FOR THE SCHRÖDINGER

OPERATOR

RÉMI CARLES AND TOHRU OZAWA

Abstract. We prove a nonlinear Poisson type formula for the Schrödinger
group. Such a formula had been derived in a previous paper by the authors,
as a consequence of the study of the asymptotic behavior of nonlinear wave
operators for small data. In this note, we propose a direct proof, and extend
the range allowed for the power of the nonlinearity to the set of all short range
nonlinearities. Moreover, H

1-critical nonlinearities are allowed.

1. Introduction

For n > 1, define the Schrödinger group as U(t) = ei t
2∆, where ∆ stands for the

Laplacian of R
n. We normalize the Fourier transform on R

n as follows:

(1.1) Ff(ξ) = f̂(ξ) =
1

(2π)n/2

∫

Rn

f(x)e−ix·ξdx.

For r > 2, we define

δ(r) =
n

2
−
n

r
·

The main result of this note is:

Theorem 1.1. Let n > 1, and fix 1 + 2/n < p < ∞ if n 6 2, 1 + 2/n < p 6

1+4/(n−2) if n > 3. Then for every φ ∈ Xp, and almost all ξ ∈ R
n, the following

identity holds:

(1.2)

∫ ±∞

0

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
(ξ)dt =

=

∫ ±∞

0

|t|n(p−1)/2−2U(t)

(∣∣∣U(−t)φ̂
∣∣∣
p−1

U(−t)φ̂

)
(ξ)dt,

where the space Xp is defined as follows:

• If 1 + 2/n < p < 1 + 4/n, then Xp = {f ∈ L2(Rn) ; |x|δ(2p)f ∈ L2(Rn)}.
• If p = 1 + 4/n, then Xp = L2(Rn).

• If p > 1 + 4/n, then Xp = Hδ(p+1)(Rn), the inhomogeneous Sobolev space.

For p = 1 + 4/n, the above result was proved in [1]. It was also established for
1 + 2/n < p < 1 + 4/n if n 6 2, and 1 + 4/(n+ 2) < p < 1 + 4/n if n > 3, provided
that φ ∈ H1 ∩ F(H1). The proof in [1] relies on pseudo-conformal invariances for
the nonlinear Schrödinger equation, as well as the explicit computation of the first
non-trivial term in the asymptotic expansion of nonlinear wave operators near the
origin. In this note, we provide a direct proof of the above identity, which relies on
the usual factorization of the Schrödinger group. Moreover, we extend the range of
values allowed for p, and we consider a broader class (when p 6= 1 + 4/n) for the
function φ. We also show that both terms in (1.2) become infinite when p = 1+2/n

1



2 R. CARLES AND T. OZAWA

and φ is a Gaussian function (see §3). Note that p = 1 + 2/n corresponds to the
long range case for the scattering theory associated to the nonlinear Schrödinger
equation with nonlinearity |u|p−1u; see e.g. [2, 3] and references therein.

Let us point out some similarities between (1.2) and the usual Poisson formula.

First, if we write U(t) = F−1e−i t
2 |ξ|

2

F , we see that the right hand side of (1.2) has
an additional Fourier transform compared to the left hand side. Moreover, we will
see in the proof that (1.2) relies on an inversion t 7→ 1/t. This is the same as for the
Poisson formula associated to the heat equation, or to the Jacobi theta function;
see e.g. [5].

Note also that the definition of the space Xp (which will become natural in the
course of the proof of the above result) is reminiscent of the discussion related to
scattering theory for the nonlinear Schrödinger equation with nonlinearity |u|p−1u.
The case p = 1 + 4/n corresponds to the L2-critical nonlinearity. For p < 1 + 4/n,
it is usual to work in weighted L2 spaces, while for p > 1 +4/n, Sobolev spaces are
more convenient (see e.g. [6]). Also, note that for p > 1 + 4/n, the upper bound
for p allows H1-critical nonlinearities (p = 1 + 4/(n − 2) for n > 3), thanks to
endpoint Strichartz estimates. As mentioned above, when p reaches the long range
case p = 1 + 2/n, (1.2) becomes irrelevant.

2. Proof of Theorem 1.1

We recall the classical factorization of the Schrödinger group: U(t) = MtDtFMt,

where Mt is the multiplication by ei|x|2/(2t), F is the Fourier transform (1.1), and
Dt is the dilation operator

Dtf(x) =
1

(it)n/2
f
(x
t

)
.

We first prove that both terms in (1.2) are well defined for φ ∈ Xp and almost all
ξ ∈ R

n:

Lemma 2.1. Let p as in Theorem 1.1, and φ ∈ Xp. Let F denote either of the two

terms in (1.2). Then F ∈ L2(Rn). More precisely, there exists C > 0 independent

of φ ∈ Xp such that:

‖F‖L2 6 C






∥∥∥|x|δ(2p)φ
∥∥∥

θp

L2
‖φ‖

(1−θ)p
L2 if 1 + 2/n < p < 1 + 4/n,

‖φ‖L2 if p = 1 + 4/n,
∥∥∥(−∆)δ(p+1)/2φ

∥∥∥
(1−σ)p

L2
‖φ‖σp

L2 if p > 1 + 4/n,

where θ and σ are given by:

θ =
4

n(p− 1)
− 1 ; σ =

n+ 4 − (n− 4)p

np(p− 1)
.

Remark 2.2. We check the following algebraic identities:

• 0 < θ < 1 ⇐⇒ 1 + 2/n < p < 1 + 4/n, and θ = 0 ⇐⇒ p = 1 + 4/n.
• σ < 1 ⇐⇒ p > 1 + 4 + n; σ = 1 ⇐⇒ p = 1 + 4 + n.
• σ > 0, since for n > 3, (n− 2)p 6 n+ 2.
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Proof. By symmetry, we consider only the plus sign in (1.2). We distinguish three
cases, according to the value of p.
First case: 1 + 2/n < p < 1 + 4/n. Let ψ ∈ L2(Rn), T > 0, and q be defined by
2/q = δ(p+1). Note that 0 < 2/q < 1, so the pair (q, p+1) is Strichartz admissible.
By duality, we have:

∣∣∣
〈 ∫ T

0

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt, ψ̂

〉∣∣∣ =
∣∣∣
∫ T

0

〈
|U(t)φ|p−1U(t)φ,U(t)ψ

〉
dt
∣∣∣

6

∫ T

0

‖U(t)φ‖
p
Lp+1 ‖U(t)ψ‖Lp+1 dt

6 T 1−n(p−1)/4 ‖U(·)φ‖p
Lq(0,T ;Lp+1) ‖U(·)ψ‖Lq(0,T ;Lp+1)

6 CT 1−n(p−1)/4 ‖φ‖
p
L2 ‖ψ‖L2 ,

where C, independent of T , is provided by Strichartz inequalities. Note that for
the Hölder inequality in time, we have used the formula:

1 =

(
1 −

n(p− 1)

4

)
+
p+ 1

q
.

We also have directly
∥∥∥∥
∫ ∞

T

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt

∥∥∥∥
L2

6

∫ ∞

T

∥∥∥ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)∥∥∥
L2
dt

6

∫ ∞

T

‖U(t)φ‖
p
L2p dt

6 C

∫ ∞

T

‖U(t)φ‖
p
L2p dt.

Using the factorization for the group U recalled above, we find:

‖U(t)φ‖L2p = t−δ(2p) ‖FMtφ‖L2p 6 Ct−δ(2p) ‖FMtφ‖Ḣδ(2p) ,

where we have used the critical Sobolev embedding. We infer
∥∥∥∥
∫ ∞

T

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt

∥∥∥∥
L2

6 C

∫ ∞

T

t−pδ(2p)
∥∥∥|x|δ(2p)φ

∥∥∥
p

L2
dt

6 CT 1−n(p−1)/2
∥∥∥|x|δ(2p)φ

∥∥∥
p

L2
.

We have finally, for any T > 0:
∥∥∥∥
∫ ∞

0

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt

∥∥∥∥
L2

6 C
(
T 1−n(p−1)/4 ‖φ‖

p
L2

+ T 1−n(p−1)/2
∥∥∥|x|δ(2p)φ

∥∥∥
p

L2

)
,

where C is independent of T . Optimizing in T , we find:
∥∥∥∥
∫ ∞

0

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt

∥∥∥∥
L2

6 C
∥∥∥|x|δ(2p)φ

∥∥∥
θp

L2
‖φ‖

(1−θ)p
L2 ,
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where θ = 4
n(p−1) − 1. For the other term involved in (1.2), we proceed in a similar

fashion:
∣∣∣
〈 ∫ ∞

1/T

tn(p−1)/2−2U(t)
( ∣∣∣U(−t)φ̂

∣∣∣
p−1

U(−t)φ̂
)
dt, ψ̂

〉∣∣∣ =

=
∣∣∣
∫ ∞

1/T

tn(p−1)/2−2
〈 ∣∣∣U(−t)φ̂

∣∣∣
p−1

U(−t)φ̂, U(−t)ψ̂
〉
dt
∣∣∣

6

∫ ∞

1/T

tn(p−1)/2−2
∥∥∥U(−t)φ̂

∥∥∥
p

Lp+1

∥∥∥U(−t)ψ̂
∥∥∥

Lp+1
dt

6

(∫ ∞

1/T

t(n(p−1)/2−2)/(1−n(p−1)/4)dt

)1−n(p−1)/4 ∥∥∥U(·)−1φ̂
∥∥∥

p

LqLp+1

∥∥∥U(·)−1ψ̂
∥∥∥

LqLp+1

6 CT 1−n(p−1)/4 ‖φ‖p
L2 ‖ψ‖L2 ,

for the same q as above, given by 2/q = δ(p+ 1). We also have directly

∥∥∥
∫ 1/T

0

tn(p−1)/2−2U(t)
( ∣∣∣U(−t)φ̂

∣∣∣
p−1

U(−t)φ̂
)
dt
∥∥∥

L2
6

6

∫ 1/T

0

tn(p−1)/2−2

∥∥∥∥
∣∣∣U(−t)φ̂

∣∣∣
p−1

U(−t)φ̂

∥∥∥∥
L2

dt

6

∫ 1/T

0

tn(p−1)/2−2
∥∥∥U(−t)φ̂

∥∥∥
p

L2p
dt

6C

∫ 1/T

0

tn(p−1)/2−2
∥∥∥U(−t)φ̂

∥∥∥
p

Ḣδ(2p)
dt

6C

∫ 1/T

0

tn(p−1)/2−2
∥∥∥φ̂
∥∥∥

p

Ḣδ(2p)
dt = CT 1−n(p−1)/2

∥∥∥|x|δ(2p)φ
∥∥∥

p

L2
.

We infer:
∥∥∥
∫ ∞

0

tn(p−1)/2−2U(t)
( ∣∣∣U(−t)φ̂

∣∣∣
p−1

U(−t)φ̂
)
dt
∥∥∥

L2
6 C

(
T 1−n(p−1)/4 ‖φ‖

p
L2

+T 1−n(p−1)/2
∥∥∥|x|δ(2p)φ

∥∥∥
p

L2

)
.

We can then conclude as above.
Second case: p = 1 + 4/n. In this case, note that the power of t in the second
term of (1.2) is zero: n(p − 1)/2 − 2 = 0. To prove the result in this case, just
notice that the above proof remains valid: for ψ ∈ L2(Rn) and T > 0, we now have

∣∣∣
〈 ∫ T

0

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt, ψ̂

〉∣∣∣ 6 CT 1−n(p−1)/4 ‖φ‖
p
L2 ‖ψ‖L2

6 C ‖φ‖p
L2 ‖ψ‖L2 ,

where C is independent of T . The estimate for the other term in (1.2) is straight-
forward, by duality.
Third case: p > 1 + 4/n. For ψ ∈ L2(Rn), we compute
∣∣∣
〈 ∫ ∞

0

ei t
2 |ξ|

2

F
(
|U(t)φ|p−1U(t)φ

)
dt, ψ̂

〉∣∣∣ 6

∫ ∞

0

‖U(t)φ‖
p
Lp+1 ‖U(t)ψ‖Lp+1 dt

6 ‖U(·)φ‖
(1−σ)p
L∞Lp+1 ‖U(·)φ‖

σp
LqLp+1 ‖U(·)ψ‖LqLp+1 ,
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for 2/q = δ(p+ 1), where we have used the identity 1 = σp/q + 1/q. We conclude

thanks to the Sobolev embedding Ḣδ(p+1) →֒ Lp+1 and Strichartz inequalities.
Note that for n > 3 and p = 1 + 4/(n− 2), we use endpoint estimates [4].

For the other term, write
∫ ∞

0

tn(p−1)/2−2
∥∥∥U(−t)φ̂

∥∥∥
p

Lp+1

∥∥∥U(−t)ψ̂
∥∥∥

Lp+1
dt 6

6

(
sup
t>0

tn(p−1)/2−2
∥∥∥U(−t)φ̂

∥∥∥
(1−σ)p

Lp+1

)∥∥∥U(·)−1φ̂
∥∥∥

σp

LqLp+1

∥∥∥U(·)−1ψ̂
∥∥∥

LqLp+1

6 C

(
sup
t>0

tn(p−1)/2−2
∥∥∥U(−t)φ̂

∥∥∥
(1−σ)p

Lp+1

)
‖φ‖σp

L2‖ψ‖L2.

We then remark that
∥∥∥U(−t)φ̂

∥∥∥
Lp+1

=
∥∥∥MtU(−t)φ̂

∥∥∥
Lp+1

=
∥∥∥D−tFM−tφ̂

∥∥∥
Lp+1

=
1

|t|δ(p+1)

∥∥∥FM−tφ̂
∥∥∥

Lp+1

6
C

|t|δ(p+1)

∥∥∥FM−tφ̂
∥∥∥

Ḣδ(p+1)
=

C

|t|δ(p+1)

∥∥∥|x|δ(p+1)M−tφ̂
∥∥∥

L2

6
C

|t|δ(p+1)

∥∥∥|x|δ(p+1)φ̂
∥∥∥

L2
=

C

|t|δ(p+1)
‖φ‖Ḣδ(p+1) .

In view of the identity (1 − σ)pδ(p+ 1) = n(p− 1)/2 − 2, this yields
∥∥∥∥
∫ ±∞

0

|t|n(p−1)/2−2U(t)

(∣∣∣U(−t)φ̂
∣∣∣
p−1

U(−t)φ̂

)
dt

∥∥∥∥
L2

6 C ‖φ‖
(1−σ)p

Ḣδ(p+1)
‖φ‖σp

L2,

which completes the proof of the lemma. �

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Recall the decomposition U(t) = MtDtFMt. Direct com-
putations yield:

FDt = D1/tF ,(2.1)

D−1
t = inD1/t,(2.2)

F−1D−1
t = inDtF

−1.(2.3)

We infer

U(−t) = U(t)−1 = M−tF
−1D−1

t M−t = inM−tDtF
−1M−t.

Since U(t) = F−1M−1/tF , we deduce

U(−t)F = inM−tDtU

(
1

t

)
,

which in turn implies

∣∣∣U(−t)φ̂
∣∣∣
p−1

U(−t)φ̂ = inM−t

∣∣∣∣DtU

(
1

t

)
φ

∣∣∣∣
p−1

DtU

(
1

t

)
φ

= int−n(p−1)/2M−tDt

(∣∣∣∣U
(

1

t

)
φ

∣∣∣∣
p−1

U

(
1

t

)
φ

)
.
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Using (2.1) and (2.2) again, we have then:

(2.4) U(t)

(∣∣∣U(−t)φ̂
∣∣∣
p−1

U(−t)φ̂

)
= t−n(p−1)/2MtF

(∣∣∣∣U
(

1

t

)
φ

∣∣∣∣
p−1

U

(
1

t

)
φ

)
.

Theorem 1.1 follows by integrating the above identity on a half line, and using the
change of variable t 7→ 1/t. �

Remark 2.3. The identity (2.4) can also be considered as a Poisson formula, by
writing U(t) on the left hand side, and F on the right hand side, as integrals.

3. The long range case

When φ is a Gaussian function, the value in (1.2) can be computed explicitly.
For Re z > 0, define:

gz(x) = e−z |x|2

2 , x ∈ R
n.

We have: ∫

Rn

gz(x)dx =

(
2π

z

)n/2

.

We compute:

Fgz(ξ) = z−n/2e−
|ξ|2

2z ,

and

U(t)gz(x) = (1 + itz)
−n/2

e−
z

1+itz

|x|2

2 .

Note that if z = a+ ib,

Re

(
z

1 + itz

)
=

a

(1 − tb)2 + a2t2
> 0.

For p > 1 and z = a+ ib, we find:

|U(t)gz|
p−1 U(t)gz =

e
− (p−1)a

(1−bt)2+(at)2
|x|2

2

((1 − bt)2 + (at)2)n(p−1)/4
(1 + itz)−n/2e−

z
1+itz

|x|2

2 .

Set

ζ =
(p− 1)a

(1 − bt)2 + (at)2
+

z

1 + itz
.

We have:

F
(
|U(t)gz|

p−1 U(t)gz

)
=

1

((1 − bt)2 + (at)2)
n(p−1)/4

(1 + itz)−n/2ζ−n/2e−
|x|2

2ζ .

Consider the case z ∈ R: b = 0. We find:

ζ =
a

1 + (at)2
(p− iat) .

We infer:

ei t
2 |x|

2

F
(
|U(t)gz|

p−1
U(t)gz

)
=

1

(1 + (at)2)
n(p−1)/4

(ζ(1 + ita))
−n/2

e(it− 1
ζ ) |x|2

2 .

We compute

it−
1

ζ
=

iatp− 1

a(p− iat)
−→
t→∞

−
p

a
.
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Also,

ζ(1 + ita) =
a

1 + (at)2
(p− iat)(1 + ita) −→

t→∞
a.

We have finally:

ei t
2 |x|

2

F
(
|U(t)gz |

2σ
U(t)gz

)
∼

t→∞

1

(1 + (at)2)
n(p−1)/4

1

an/2
e−p |x|2

2a .

Integrating with respect to t, the integral is convergent if and only if p > 1 + 2/n.
Since we also have

U(t)
(
|U(−t)ĝa|

p−1 U(−t)ĝa

)
=
a2 + itp

a+ it

1

(a2 + t2)
n(p−1)/4

e
− p+it

a2+itp

|x|2

2

−→
t→0

a1−n(p−1)/2e−
p

a2
|x|2

2 ,

we check that both terms in (1.2) become infinite for p = 1 + 2/n, due to a loga-
rithmic divergence.
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