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SHORT COMMUNICATION

An hierarchical artificial neural network system for the
classification of transmembrane proteins

C.Pasquier and S.J.Hamodraka’ developed—for example, von Heijne (1992), Cseretoal.
(1997) and Pasquieet al. (1999), to mention just a few.
However, these algorithms focus on the localization of trans-
membrane segments in known integral membrane proteins and
'To whom correspondence should be addressed are not suited to the discrimination of membrane proteins from

This work presents a simple artificial neural network which ~ hon-membrane proteins. _
classifies proteins into two classes from their sequences Recently, we have published the PRED-TMR method in an
alone: the membrane protein class and the non-membrane attempt to improve the fine localization of transmembrane
protein class. This may be important in the functional —segments, by coupling a hydrophobicity analysis with a detec-
assignment and analysis of open reading frames (ORF’s) tion of potential termini (starts and ends) of transmembrane
identified in complete genomes and, especially, those ORF’s regions (Pasquieet al, 1999). Now we have extended this
that correspond to proteins with unknown function. The  application with a pre-processing stage, represented by an
network described here has a simple hierarchical feed- artificial neural network, which attempts to classify proteins
forward topology and a limited number of neurons which  into either membrane or non-membrane proteins.
makes it very fast. By using only information contained in Several applications of neural networks to the prediction of
11 protein sequences, the method was able to identify’ transmembrane segments or secondary structure predlctlon can
with 100% accuracy, all membrane proteins with reliable ~ be found in the literature (Reczko, 1993; Restal, 1994;
topologies collected from several papers in the literature. Fariselli and Casadio, 1996; Alogt al, 1997; Diederichs

Applied to a test set of 995 globular, water-soluble proteins, et al, 1998). Most of them use a local encoding for each
the neural network classified falsely 23 of them in the amino acid and produce as output a classification for the amino

membrane protein class (977% of correct assignment)_ acid in the middle of the input window. When an hierarchical

The method was also applied to the complete SWISS- feed-forward topology is used (the connectivity graph contains
PROT database with considerable success and on ORF's Nno loop), each network output is independent of the results
of several complete genomes. The neural network developed ©Obtained by previous processing. This causes little or no
was associated with the PRED-TMR algorithm (Pasquier,C., Problem when the output of the network consists of continuous
Promponas,V.J., Palaios,G.A.,, Hamodrakas,J.S. and Values (coordinates for example; Diederices al, 1998).

Hamodrakas,S.J., 1999) in a new application package called However, when a threshold parameter is used for the choice
PRED-TMR2. A WWW server running the PRED-TMR2 of binary output, the absence of correlation between the
software is available at http://02.db.uoa.gr/PRED-TMR2 ~ possible structure of adjacent residues frequently results in

Keywords membrane proteins/neural network/prediction/pro-incoherent topologies (a transmembrane segment composed of
tein structure only one residue for example). This problem can be solved by

designing recurrent neural networks which use additional
information obtained with the processing of previous patterns
Introduction (Reczko, 1993) or by building a system of casca_ding neural
] ] ] networks (Rostet al, 1994; Fariselli and Casadio, 1996).

The number of protein sequences stored in public databasegevertheless, these techniques are not appropriate for the
(78197 in SWISS-PROT release 37, 178 773 in TrEMBL;correct classification between membrane and non-membrane
Bairoch and Apweiler, 1998) is considerably larger than thaproteins because they are too focused on one-residue topology
of known protein structures (9129 in PDB; Sussnenal,, prediction.
1998): a gap that will continue to increase, as the experimental This paper presents an artificial neural network which does
determination of the three-dimensional structure of a proteimot predict the exact location of transmembrane segments, but
is a time consuming process compared with the time needggkoduces instead a unique output showing whether an analyzed
for the determination of the protein sequence. This is especialljart of a sequence is related to a transmembrane region or not.
true for transmembrane proteins which are difficult to solve
by X-ray crystallography. Materials and methods

Usually, the structure of a new protein having homologies . )
above a certain level to another sequence of known structuf@formation gathering
can be predicted with reasonable accuracy (Persson and Argdseven proteins with known topologies were used for the
1994; Rostet al,, 1994, 1995). However, the majority do not training of the network: six transmembrane proteins containing
belong to this ideal case. For this set of proteins, predictiom total of 19 transmembrane segments [CB21_PEA,
methods that do not depend on sequence alignments but usi@PT_GRILO, LECH_HUMAN, FCE2 _HUMAN (SWISS-
solely information contained in a sequence itself are necessarROT codes), 1IPRCH, 1PRCL (NRL3D codes)], two fibrous

A number of methods or algorithms designed to locate theroteins [CH16_DROME and ELS_CHICK (SWISS-PROT
transmembrane regions in proteins, without the need focodes)] and three globular ones [ADH1_CHICK, ANGI_CH-
multiple-sequence alignment information, have beerlCK, CONA_CANEN (SWISS-PROT codes)]. The sequences
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used, and other information concerning the application, are

available on our web site at http://02.db.uoa.gr/PRED-TMR2//able I. Propensity values and corresponding input used in the neural
’ network for the 20 amino acid residue types that belong to transmembrane

ReS_UItS/),' . . segments, calculated from the entire SWISS-PROT database
Five different test data sets of transmembrane proteins with
reliable topologies were collected from the literature. Test seResidue P NN input

1 includes 64 sequences from the set of Retstl. (1995)

Phenylalanine F 2.235 1.000

the sequences 2MLT, GLRA_RA_T, GPLB_HUMAN_, Isoleucine | 2083 0.929
IGGB_STRSP and PT2M_ECOLI, which were not found in | gycine L 1.845 0.817
the public databases, were not used), sets 2 and 3 of 48 am@ptophan w 1.790 0.791
83 proteins respectively were taken from Restal. (1996), Valine v 1.756 0.775
set 4 comprises the 44 sequences used by Cstraio(1997) Mgtr:‘i'r?é"”e IS Lo s
and set 5 is composed of 92 sequences from Fariselli ang, cieine C 1202 0514
Casadio (1996). Glycine G 1.158 0.494

A test data set of globular proteins was extracted from thé&yrosine Y 1.075 0.455
Protein Data Bank (PDB), using the list of n0n-homologousgh“?o”'”e ; g-%g gggg
sequences of PDBSELECT (Hobohenh al, 1994). The 25% o~ b 0597 0230
thr_eshold I!st was usgd, excluding entries of membrane- angdjstigine H 0.395 0.135
lipid-associated proteins (1AIJ, 1ALY, 1AR1, 1ATY, 1BEH, Asparagine N 0.389 0.132
1BHA, 1BQU, 1BXM, 1FTS, 1lIXH, 1JDW, 1KZU, 1LGH, Glutamine Q 0.273 0.078
1LML, 1NKL, 10CC, 1PRC, 1QCR, 1SQC, 1TLEXDT, émmicca;é?d E 31231’ ggﬁ
1YST, 2CPS, 2MPR, 20MF, 2POR, 7AH1). This set of water-ginine R 0.124 0.007
soluble proteins consists of 995 sequences. Lysine K 0.108 0.000
Calculation of amino acid residue transmembrane
propensities (potentials) SYTKIWAA[TLLLGYSVFLIIVSDLOPATIGTPLIGQRKMTS Analyzed sequence
As described by Pasquiet al. (1999), a propensity for each ui4 4:.|1 ai: oi: ois uia Di‘ oio 4:|.4 nis Carresponding input values
residue to be in a transmembrane region was calculated using 000D« v« OODOD  mpurayer

the formula
Fi-n\/I \ /
P = E 1)

whereP; is the propensity value (transmembrane potential) of 2000C o000 0@ Output Layer

; . ™ . . .
residue typ_e| an.d F™ andF; are the frequenues (.)f thieh .Fig. 1. Schematic architecture of the neural network. Amino acids of the
type of residue in transmembrar_‘e segments and in th_e entifghut sequence are converted to unique input values corresponding to the
SWISS-PROT database respectively. Values above 1 indicatgopensity for each amino acid to be located inside a transmembrane region
a preference for a residue to be in the lipid-associated structukeee Table I). Output of the network consists of values between 0 and 1.
of a transmembrane protein, whereas propensities below \fllues_ above 0.9 (shown in black on the figure) indicate a detection of a

- - otential transmembrane segment.

characterize unfavorable transmembrane residues. The propepn—

sity values for the 20 amino acid residues are given in Table It'hen calculated, feeding forward layer-by-layer from the inputs

Neural network topology and training parameters to the output. Once the network output value has been produced,
The neural network used here has a multi-layer feed-forwardt is compared with the target output specified in the training
(MLFF) topology. It consists of an input layer, one hiddendata set. Following this comparison, a backwards adjustment
layer and an output layer. Each of the units in the input layeof the weights (backpropagation) is performed in order to
are connected to all of the units in the hidden layer. The unitgninimize the differences between the computed output and
in the hidden layer are then connected to all of the units irthe desired output value. The algorithm is performed until the
the output layer. This is a ‘fully-connected’ neural network total error reaches a low enough value which means that the
where each unit of a given layer is connected to each unit network comes to approximate the target values, given the
of the next layer (Figure 1). The strength of each connectiofinputs in the training set.
is given by a weighty;. The states of each unit in the input During the prediction phase, the neural network is fed with
layer is assigned directly from the input data, whereas th@ew input data that are not in the training set. By a simple
statess of higher layerg are computed by the sigmoid function feed-forward process, using the previously obtained weight,
new output values are calculated and are taken as predictions

_ 1 @) of the network.
3 _ n ' Applied to our classification problem, the idea is to use as
1+e [Wot 2 WS ) input to the network a representation of a part of a sequence
i=1

in order to obtain a unique output showing whether the

analyzed segment is related to a transmembrane region or not.

wherew is a bias from the states of lower layers. The propensity values for the 20 amino acids given in
The network was trained using the backpropagation algoTable I, which can be regarded as numeric representations of

rithm. During this process, a data set, describing the states amino acids, are used to encode the input segment after being

of the input units and their desired output value is presentetinearly transformed to lie within the range 0 to1 (Figure

to the network. The activations of the units of the network arel). The output of the network consists of a unique value

632



Classification of transmembrane proteins

between 0 and 1, which gives the propensity that the input

segment is related to a transmembrane region. A high Outhf‘ble Il. Percentages of transmembrane proteins predicted by PRED-TMR2
on seven complete genomes

value (greater than 0.9) is used to trigger the detection of a

transmembrane segment. When at least one transmembragénome names Percentage of TM proteins
region is detected, a protein is classified in the membrane —
protein class, otherwise it is put in the non-membrane proEscherichia coli 24.6
tein class Haemophilus influenzae 21.2
o . . . . . Methanococcus jannaschii 19.8
Experimentation determined the optimal size of the inputyycoplasma genitalium 26.3
layer to be 30. Training proteins were converted to inputMycoplasma preumoniae 22.9
vectors by shifting a window of 30 residues successivelySaccharomyces cerevisiae 28.0

through the sequence, i.e. the first segment contains amirgynechocystis SP 26.5

acids from position 1 to 30, theth segment encodes amino
acids from positiom to n+30. The training set was accordingly
converted to 3140 input vectors of 30 values each. PROT database release 37 contains 10 743 entries. It has been
Considering an input vector of 30 amino acids, we decideduilt by selecting all the sequences containing the keyword
that it represents a significant transmembrane region if at leaStIRANSMEMBRANE' and having at least one transmembrane
10 amino acids in it belong to a transmembrane segment. Thsegment annotated. All the remaining sequences in the database
number was found by experimentation. Experimentation als@re not necessarily non-membrane proteins as some membrane
determined the optimal number of hidden layers to be 1 andequences might not have been annotated yet. A reliable set
the number of neurons in this layer to be 2. The network wasvas extracted by selecting, from the cluster of proteins not
totally connected between adjacent layers (Figure 1). classified as transmembrane proteins, only sequences with a
The neural network was trained with the 3140 input vectorknown three-dimensional structure (presence of the keyword
and their corresponding output values until convergence to 8D-STRUCTURE’). The set of non-membrane proteins con-

total error of less than 0.005. tained 2280 sequences.
The neural network was applied to the sets of membrane
Results and globular proteins collected. For the membrane proteins, it

Using only information contained in 11 sequences from thecorrectly classified 92.28% of them in the membrane protein
training set, the neural network was able to generalize theet (9914 out of 10 743). Our neural network was also tested
processing of a test set with very good reliability. Whenon proteins containing transmembrafiestrands (Diederichs
applied to the five test sets of membrane proteins (see Materiaét al, 1998) and it produced disappointing results. For the
and methods), the system gave a perfect prediction rating aflobular water-soluble proteins, it correctly classified 93.38%
100% by classifying all the sequences in the membrane clasef them (2129 out of 2280). The score obtained on this set of
A total of 101 non-homologous proteins constituted the finalglobular proteins is lower than the rating calculated on the set
test set (details are given at the Web address http://02.db.uoa.gaken from PDBSELECT but it should be a good indicator of
PRED-TMR). Six proteins of the training set were includedthe validity of the extraction method. The ratio of 93% of
in the test set. Removing them from the test set, the neuralorrect assignment (both for membrane and non-membrane
network still predicted the remaining 95 proteins as membraneroteins) should be representative of the predictive power of
proteins (100% accuracy). For the test set of 995 globulathe method when applied to complete genomes.

proteins (see Materials and methods), the neural network On the basis of these encouraging results, the neural network
predicted falsely 23 of them to be in the membrane classvas associated with the PRED-TMR algorithm (Pasogiiex.,
(97.7% of correct assignment). The proteins falsely classified999) in a new application package called PRED-TMR2. This
were 1AGN, 1AMU, 1ARZ, 1AWS8, 1BFD, 1BIB, 1BNK, program can be used directly for the prediction of unknown
1CD1, 1DLC, 1FGJ, 1IHP, 1KVE, 1LXT, 1MAZ, 1NOX, proteins or on the ORF’s predicted by the various genome
10VA, 1PS1, 1TAD, 1TAH, 1UAE, 1WER, 2ABK and 3R1R. projects.

These results are good but they cannot be easily generalizedlt is true that this neural network does not provide evidence
to decide the predictive power of the method applied on realor the presence of N-terminal signal peptides. Methods exist
cases, like the classification of open reading frames (ORF's}apable of identifying signal peptides and predicting their
identified in complete genomes. The test sets of membrangdeavage sites (e.g. Nielsehal,, 1997). If the set of membrane
proteins indeed seem too limited and composed exclusivelproteins (containing the keyword ‘TRANSMEM’) extracted
of proteins where reliable information about the locationfrom the SWISS-PROT database release 37, which contains
of transmembrane segments already exists. This does nt0 743 entries, is screened for the presence of signal peptides,
necessarily reflect the composition of the complete genome3558 sequences are found with no signal peptides. Of these,
In addition, the proteins used in these sets contain only888 are correctly classified with the use of the neural network
transmembranai-helices, which are easier to predict than (92.17% accuracy).
transmembran@-strand segments (Diedericbs al., 1998). PRED-TMR2 has been applied on seven complete genomes

Despite the errors contained in SWISS-PROT, it is thoughtind on the entire content of the SWISS-PROT database. The
that the annotations contained in this database can be usedpercentage of membrane sequences predicted in each genome
automatically extract two sets of membrane and non-membrarie given in Table Il. The results range from 19.8% for
proteins, which should be more representative of the composMethanococcus jannaschit 28% forSaccharomyces cerevis-
tion of complete genomes. These sets can serve as a commiae. Details of the results obtained can be downloaded together
test set that could be used for the rating and comparison afith the list of the transmembrane segment assignments from
similar methods. http://02.db.uoa.gr/PRED-TMR2/Results/. The results have not

The set of membrane proteins extracted from the SWISSbeen screened for the presence of N-terminal signal peptides.
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Discussion In addition, the simple feed-forward topology of the network

The prediction of transmembrane segments within proteins ig@nd its limited number of connections allow proteins to be
a central problem of computational biology. A number of Processed very quickly and could open the way for a new
methods have been deve|oped over the past 20 years. Sowlementatlon able to handle |0nger SegmentS of amino acids
of them accomplish high accuracy and are available via th&nd, perhaps, complete sequences. . _
Internet [see, for example, Promponas al. (1999) and A WWW server running the PRED-TMR2 algorithm is
references therein]. However, most of these methods aréeely available at http://o2.db.uoa.gr/PRED-TMR2/
focused on the localization of transmembrane segments in
known integral membrane proteins and produce a number dkcknowledgements
false segment detections when applied to globular waterthe authors gratefully acknowledge the support of the EEC-TMR ‘GENE-
soluble proteins. The rate of over-prediction is not well knownQUIZ grant ERBFMRXCT960019.
as few works have been published on this subject. Two recent
papers tackle the problem of identification of transmembran&eferences
proteins. Kiharaet al. (1998) have tested their method on two Aloy.P., Cedano,J., Olivia,B., Aviles,X. and Querol,E. (19€ABIOS 13,
sets of 89 transmembrane proteins collected from the Iiteraturgazirsolc_hzg“én d Apweiler.R. (1998)ucleid Acids Res26, 38-42
and 928 globular proteins extracted from PDBSELECT. Theycserzo,k., wallin,E., Simon, ., von Heijne,G. and Elofsson,A. (18Bfein
announce a correct classification of 82 of the transmembraneengng 10, 673-676.
proteins (92.13%) and of 836 of the globular ones (90.1%)DPiederichs,K., Freigang,J., Umhau. S., Zeth,K. and Breed,J. (1988pin
Our neural network was found to perform slightly better thanFa?ig'é“? 'Pziﬁ‘é‘;igaio R (199BABIOS 12 4148
this method. Hirokawzet al. (1998) made the tests O.f they H'rokavv’a,'T., Boon—ChiénQ,S. and Mitaklj,S. (légBjolnformatics 14,
SOSUI system on a set of 92 transmembrane proteins listed37g_379.
by Fariselli and Casadio (1996) and 502 soluble proteinsiobohm,U. and Sander,C. (1998jotein Sci, 3, 522.
extracted from PDBSELECT and state that their systenKihara,D., Shimizu,T. and Kanehisa,M. (1998jotein Engng 11, 961-970.
discriminated all sequences correctly, except for one in eacH'i'selni'g" Engelbrecht,J., Brunak,S. and von Heijne,G. (1883pin Engng
set of data, resulting in an accuracy of more than 99O/oPasq’uier,é., Promponas,V.J.,  Palaios,G.A., Hamodrakas,J.S. and
Concerning the classification of transmembrane proteins, our Hamodrakas,S.J. (199%otein Engng 12, 381-385.
method produced similar results as SOSUI: an accuracy dfersson,B. and Argos,P. (199%)Mol. Biol., 237, 182-192.
100% was achieved on the same set and also on several otHgpmponas,V.J., Palaios,G.A., Pasquier,C.M., Hamodrakas,J.S. and
sets. For the globular proteins, SOSUI, with an incredible i:ﬁmogﬁasz;g\;v&??? ?'1'3’;8?,'\;’39%%' 1;2'2 865884
accuracy of 99.8%, seems to perform slightly better than Ougecz'ko',lvl. (19935AR and QSAR in Environmental Reseaf;Hl53-159.
neural network, which was tested on a larger set (995 protein®ost,B., Sander,C. and Schneider,R. (198ABIOS 10, 53-60.
extracted from PDBSELECT with an accuracy of 97.7%. AnRost,B., Casadio,R., Fariselli,P. and Sander,C. (18¢afein Sci, 4, 521-533.
execution of SOSUI on the 23 soluble proteins misclassifie Siﬁaf?rfe"h?gagd Ca?fr?gmﬁ”RM(igmtﬂnosc"p%iﬁZE;ENE?&er o and
by our system result_s in three of them being aSS|_gned t Abola,E.E. (1998Acta Crystallogr, 54, 1078-1084. o o
transmembrar_le proteins (1bnk, 1cd1, 1kve). Even with thesgn Heijne,G. (1992). Mol. Biol, 225, 487-494.
errors, the rating is still excellent and better than our method,
assuming that all remaining sequences are correctly predicté%?l?eived February 22, 1999; revised April 16, 1999; accepted May 17, 1999
by SOSUI.

The systems above do not use neural network systems for
the classification. We show here that a simple and very fast
neural network system can be successfully applied to this kind
of problem. The novelty in our network topology is the small
number of neurons and connections required. Most of the
neural network systems presented so far use the same local
encoding for each amino acid in a sequence (Qian and
Sejnowski, 1988; Reczko, 1993; Rost al, 1995; Fariselli
and Casadio, 1996; Alogt al, 1997; Diederichgt al., 1998),
i.e. each residue is represented by a vector of 20 or 21 values.
The input layer of the networks using this encoding must be
20 times the size of the input segment. In the case of a window
of 30 amino acids, this represents 600 neurons. In our system,
each amino acid is encoded with a unique value and only two
neurons in the hidden layer are used.

It is known that the successful generalization of a prediction
by a neural network requires a much larger number of cases
that the number of weights adjusted during the training
phase. With our architecture, the total number of connections
associated with a weight is only 62 (60 to connect 30 input
neurons to the hidden layer and 2 from this layer to the unique
output). This allows one to successfully train the network with
information on the topology of very few proteins. In our
application, the number of cases (3140) is larger than the
number of weights by a factor of 50.
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