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Summary. We consider optimal experimental design for parameter estimation in
nonlinear situations where the optimal experiment depends on the value of the
parameters to be estimated. Setting a prior distribution for these parameters, we
construct criteria based on quantiles and probability levels of classical design cri-
teria and show how their derivatives can easily be approximated, so that classical
algorithms for local optimal design can be used for their optimisation.
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1 Introduction

Classical criteria for optimum experimental design for parameter estimation
are functions of a normalized information matrix, which generally takes the
form

M(ξ, θ) =

∫

X

M(x, θ) ξ(dx) (1)

with θ ∈ R
p the parameters of interest and ξ the design, that is, a probability

measure on some given region X of R
q. Typically, in nonlinear situations the

p× p matrix M(x, θ) depends on θ to be estimated. For instance, a design ξD

is D-optimal for LS estimation in the nonlinear regression model with scalar
observations Yk = η(xk, θ) + εk and i.i.d. errors εk with zero mean and finite
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variance (k = 1, 2 . . .) when it maximizes log detM(ξ, θ) with M(x, θ) the
rank-one matrix

M(x, θ) =
∂η(x, θ)

∂θ

∂η(x, θ)

∂θ⊤
. (2)

Classically, a prior guess θ̂0 for θ is used to design the experiment, with the
hope that the local optimal design for θ̂0 will be close to the optimal one
for the unknown θ. When the alternation of estimation and design phases is
possible, sequential design permits to progressively adapt the experiment to an
estimated value of θ that (hopefully) converges to its unknown true value, see
e.g. Wu (1985); Chaudhuri and Mykland (1993) for maximum-likelihood and
Spokoinyi (1992); ?) for Bayesian estimation. In many circumstances, however,
the repetition of experimentation phases is impossible, and a single design ξ∗

must be determined, based on the prior information available. Two types of
approaches have been suggested to achieve some robustness with respect to
a misspecification of θ. Let Φ(ξ, θ) denote the criterion to be maximized with
respect to ξ, for instance, Φ(ξ, θ) = Ψ [M(ξ, θ)] with M(ξ, θ) the information
matrix (1) and Ψ(·) a concave function on the space of non-negative definite p×
p matrices, with p = dim(θ). Average optimal design puts a prior probability
measure π on θ and maximizes

ΦA(ξ) = IEπ{Φ(ξ, θ)} =

∫

Θ

Φ(ξ, θ)π(dθ)

with Θ ⊂ R
p the support of π, see, e.g., Fedorov (1980); Chaloner and Larntz

(1989); Chaloner and Verdinelli (1995). In maximin-optimal design Φ(ξ, θ)
is replaced by its worst possible value for θ in Θ and the criterion to be
maximized is

ΦM (ξ) = min
θ∈Θ

Φ(ξ, θ) ,

see, e.g., Melas (1978); Fedorov (1980); Müller and Pázman (1998). Compared
to local design, average and maximim optimal design do not create any spe-
cial difficulties (other than heavier computations) for discrete designs of the
form ξ = (1/n)

∑n
i=1 δxi

, with δx the delta measure that puts mass 1 at x
and n fixed (usually, algorithms for discrete design do not exploit any special
property of the design criterion, but only yield local optima). For compu-
tational reasons, the situation is simpler when π is a discrete measure and
Θ is a finite set (however, a relaxation algorithm is suggested in (Pronzato
and Walter, 1988) for maximin-optimal design when Θ is a compact set, and
stochastic approximation can be used for average-optimal design in general
situations, see, e.g., Pronzato and Walter (1985)). When optimizing a design
measure (approximate design theory), the concavity of Φ is preserved, which
yields Equivalence Theorems, and globally convergent algorithms can be con-
structed, see, e.g., Fedorov and Hackl (1997). Although attractive, average
and maximim optimal design nevertheless raise several important difficulties
among which are the following.
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(i) A design ξ∗A optimal for ΦA can perform poorly for “many” values of θ,
in the sense that π{Φ(ξ∗A, θ) < u} may be larger than α for some unacceptably
low value for u and high level α.

(ii) For g(·) an increasing real function, the maximization of g[Φ(ξ, θ)] is
equivalent to that of Φ(ξ, θ), but maximizing IEπ{g[Φ(ξ, θ)]} is not equivalent
to maximizing IEπ{Φ(ξ, θ)} in general, so that a single design criterion for
local optimality yields infinitely many criteria for average optimality.

(iii) Quite often an optimal design ξ∗M for ΦM is such that minθ∈Θ Φ(ξ∗M , θ)
is reached for θ on the boundary of Θ, which makes ξ∗M very sensitive to the
choice of Θ. Also, if Θ is taken too large, it may contain values of θ such that
M(ξ, θ) is singular for all ξ and an optimal design may not exist.

(iv) The maximin criterion ΦM is not differentiable everywhere, which
induces some difficulties for its optimisation; in particular, the steepest-ascent
direction does not necessarily correspond to a one-point delta measure.

This paper suggests new stochastic design criteria based on the distribution
of Φ(ξ, θ) when θ is distributed with some prior probability measure π on
Θ ⊂ R

p. In particular, we shall consider the probability levels

Pu(ξ) = π{Φ(ξ, θ) ≥ u} (3)

and the quantiles

Qα(ξ) = max{u : Pu(ξ) ≥ 1 − α} , α ∈ [0, 1] , (4)

with u and α considered as free parameters, to be chosen by the user. When
the range of possible values for Φ is known (which is the case for instance
when Φ is an efficiency criterion with values in [0, 1]), one can specify a target
level u and then maximize the probability Pu(ξ) that the target is reached (or
equivalently minimize the risk 1 − Pu(ξ) that it is not). In other situations,
one can specify a probability level α that defines an acceptable risk, and
maximize the value of u such that the probability that Φ(ξ, θ) is smaller than
u is less than α, which corresponds to maximizing Qα(ξ). We shall assume
that Φ[(1 − γ)µ + γν, θ] is continuously differentiable in γ ∈ [0, 1) for any θ
and any probability measures µ, ν on X such that M(µ, θ) is non degenerate.
We also assume that Φ(ξ, θ) is continuous in θ and that the measure π has a
positive density on every open subset of Θ. This implies that Qα(ξ) is defined
as the solution in u of the equation 1 − Pu(ξ) = α, see Figure 1.

One may notice that the difficulties (i-iii) mentioned above for average
and maximin optimal design are explicitly taken into account by the pro-
posed approach: the probability indicated in (i) is precisely 1 − Pu(ξ) which
is minimized; (ii) substituting g[Φ(ξ, θ)] for Φ(ξ, θ) with g(·) increasing leaves
(3) and (4) unchanged; (iii) the role of the boundary of Θ is negligible when
a small probability is attached to it (and for instance probability measures
with infinite support are allowed); (iv) kernel smoothing makes Pu and Qα

differentiable, see Sect. 2. When Φ(ξ, θ) is concave in ξ for any θ, ΦA and
ΦM are concave. Unfortunately, Pu and Qα are generally not, which is prob-
ably the main drawback of the approach. However, Qα obviously satisfies the
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Fig. 1. Probability levels and quantiles for a design criterion Φ(ξ, θ).

following: let Θ denote the support of π, and suppose it is compact; then,
Qα(ξ) → ΦM (ξ) when α → 0, and a design optimal for Qα will tend to be op-
timal for ΦM and vice versa. In the next section we show how the directional
derivatives of Pu(ξ) and Qα(ξ) can be computed, to be used in steepest-ascent
optimization algorithms that converge to a local optimum (at least). An il-
lustrative example is presented in Sect. 3 and Sect. 4 gives some conclusions
and perspectives.

2 Evaluations of criteria and their derivatives

Computation of derivatives. Let ξ = (1 − γ)µ + γν and consider the deriva-
tives ∂Pu(ξ)/∂γ and ∂Qα(ξ)/∂γ at γ = 0. Since Qα(ξ) satisfies the implicit
equation PQα(ξ)(ξ) = 1 − α, we can write

{∂Pu(ξ)/∂γ + [∂Pu(ξ)/∂u][∂Qα(ξ)/∂γ]}|u=Qα(ξ) = 0 ,

which gives
∂Qα(ξ)

∂γ
= −

(

∂Pu(ξ)

∂γ
/
∂Pu(ξ)

∂u

)

|u=Qα(ξ)

. (5)

To compute the derivatives ∂Pu(ξ)/∂γ and ∂Pu(ξ)/∂u we write Pu(ξ) as

Pu(ξ) =

∫

Θ

I[u,∞)[Φ(ξ, θ)]π(dθ) =

∫

Θ

I(−∞,Φ(ξ,θ)](u)π(dθ)

with IA(·) the indicator function of the set A. When approximating the indi-
cator step-function by a normal distribution function with small variance σ2,
the two expressions above respectively become

Pu(ξ) ≈

∫

Θ

IFu,σ2 [Φ(ξ, θ)]π(dθ) =

∫

Θ

[1 − IFΦ(ξ,θ),σ2(u)]π(dθ)
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with IFa,σ2 the distribution function of the normal N (a, σ2). Differentiating
these approximations respectively with respect to γ and u, we get

∂Pu(ξ)

∂γ |γ=0

≈

∫

Θ

ϕu,σ2 [Φ(µ, θ)]
∂Φ(ξ, θ)

∂γ |γ=0

π(dθ) , (6)

∂Pu(ξ)

∂u |γ=0
≈ −

∫

Θ

ϕΦ(µ,θ),σ2(u)π(dθ) , (7)

with ϕa,σ2 the density of IFa,σ2 , which can be substituted in (5) to form an
approximation of ∂Qα(ξ)/∂γ|γ=0. As shown below, this type of approximation
can be related to another one, namely kernel smoothing.

Kernel smoothing. In order to estimate Pu(ξ), Qα(ξ) and their derivatives,
one can also approximate the probability density function (p.d.f.) of Φ(ξ, θ) by

a standard kernel estimator φn,ξ(z) = 1/(nhn)
∑n

i=1 K
{

[z − Φ(ξ, θ̂i)]/hn

}

.

Here K is a symmetric kernel function (the p.d.f. of a probability measure

on R with K(z) = K(−z), e.g. ϕ0,1(·)) and θ̂i (i = 1, . . . , n) is a sample of
possible values for θ (e.g. independently randomly generated with the prior
measure π). The bandwidth hn tends to zero as n → ∞. From this we obtain
directly

Pu(ξ) ≈ P̂n
u (ξ) =

∫ ∞

−∞

I[u,∞)(z)φn,ξ(z) dz ,

which is easily computed when
∫∞

u
K(z)dz has a simple form. The value of

Qα(ξ) can then be estimated by Q̂n
α(ξ) = {u : P̂n

u (ξ) = 1 − α}, which is
easily computed numerically. Consider now the computation of derivatives,
with again ξ = (1 − γ)µ + γν. Direct calculations give

∂P̂n
u (ξ)

∂γ |γ=0

=
1

nhn

n
∑

i=1

∂Φ(ξ, θ̂i)

∂γ |γ=0

K

(

u − Φ(µ, θ̂i)

hn

)

, (8)

∂P̂n
u (ξ)

∂u |γ=0
= −

1

nhn

n
∑

i=1

K

(

u − Φ(µ, θ̂i)

hn

)

. (9)

Notice that taking σ2 = hn and π the discrete measure with mass 1/n at

each θ̂i in (6, 7) respectively gives (8) and (9) with K = ϕ0,1, the density of
the standard normal. Obviously, the accuracy of these kernel approximations
improves as n increases (with the only limitation due to the computational
cost that increases with n).

3 Example

To illustrate the feasibility of the approach we consider D-optimal design
for the nonlinear regression model η(x, θ) = βe−λx, with θ = (β , λ)⊤ the
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vector of parameters to be estimated. The information matrix M(ξ, θ) for a
design measure ξ then takes the form (1, 2). We suppose that β > 0 and take
X = [0,∞). The local D-optimal experiment ξD(θ) that maximizes detM(ξ, θ)
puts mass 1/2 at x = 0 and x = 1/λ, the associated value of detM(ξ, θ) is
detM[ξD(θ), θ)] = β2/(4e2λ2). We consider the D-efficiency criterion defined

by Φ(ξ, θ) = {detM(ξ, θ)/detM[ξD(θ), θ]}1/2
, with Φ(ξ, θ) ∈ [0, 1]. Due to

the linear dependency of η(x, θ) in β, ξD(θ) and Φ(ξ, θ) only depend on λ and
we shall simply write ξD(λ), Φ(ξ, λ). Supposing that λ = 2 when designing
the experiment, the efficiency Φ[ξD(2), λ] is plotted in solid line in Figure 2.
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Fig. 2. D-efficiencies as function of λ for different designs; solid line: local D-optimal
ξD(2); dashed line: optimal for P0.75; dash-dotted line optimal for Q0.10.

Suppose now that we only know that λ ∈ [1/2, 7/2] and put a uniform
prior for λ on that interval; ξD(2) is then optimal for the midpoint, but its
efficiency is less than 53% for the endpoint λ = 1/2. We approximate Pu(ξ)

and Qα(ξ) by kernel smoothing with K = ϕ0,1 for n = 100 values λ̂i equally
spaced in [0.5, 3.5]. No special care is taken for the choice of hn, and we simply
use the rule hn = σ̂n(Φ)n−1/5 with σ̂n(Φ) the empirical standard deviation
of the values Φ(ξ, λi), i = 1, . . . , n. Figure 3 shows the estimated values P̂n

u

(left) and Q̂n
α (right), in dashed lines, as functions of u and α respectively,

for ξ = ξD(2). One can check the reasonably good agreement with the exact
values of Pu and Qα, plotted in solid lines (increasing n to 1 000 makes the
curves almost indistinguishable).

The optimisation of P̂n
0.75 and Q̂n

0.10 with a vertex-direction (steepest-
ascent) algorithm on the finite design space {0, 0.1, 0.2, . . . 5} respectively gives
the four-point designs

ξ∗(P0.75) ≈

{

0 0.3 0.4 1.7
0.4523 0.0977 0.2532 0.1968

}

,

ξ∗(Q0.10) ≈

{

0 0.3 0.4 1.3
0.4688 0.1008 0.2634 0.1670

}

,
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Fig. 3. Left: P̂ n

u (ξ) (dashed line) and Pu(ξ) (solid line) as functions of u; right:
Q̂n

α(ξ) (dashed line) and Qα(ξ) (solid line) as functions of α; ξ = ξD(2), n = 100.

where the first row indicates the support points and the second one their
respective weights. They satisfy P̂n

0.75[ξ
∗(P0.75)] ≈ 0.9999 and Q̂n

α[ξ∗(Q0.10)] ≈
0.783. The efficiencies of these designs are plotted in Figure 2. The exact value
Pu[ξ∗(P0.75)] equals one, indicating that the efficiency is larger than 75% for
all possible values of λ. The optimisation of Q̂n

0.01 gives a design very close to
ξ∗(P0.75) which, together with the shape of the curve in dashed line on Figure
2, suggests that ξ∗(P0.75) is almost maximin optimal. Accepting a small loss
of efficiency for about 10% of the values of λ produces a significant increase
of efficiency on most of the interval, see the curve in dash-dotted line.

4 Conclusions and further developments

The paper shows the feasibility of optimal design based on quantiles and
probability level criteria in the situations where the local optimal experiment
depends on the unknown parameters to be estimated. In particular, kernel
smoothing permits to optimise design measures with classical algorithms bor-
rowed from local optimal design. Adapting the sample size n, the kernel K and
the bandwidth hn to a particular problem, and maybe a particular algorithm,
may deserve further studies. In particular, one might think of letting n grow
with the number of iterations of the algorithm, as in stochastic approximation
methods, see, e.g., Chapter 4 of (Kibzun and Kan, 1996).

Notice, finally that the ideas presented in the paper are very general and
could also be applied to discrete design based on more accurate descriptions
of parameter uncertainty than functions of information matrices, such as the
volumes of confidence regions (Hamilton and Watts, 1985), the mean-squared
error (Pázman and Pronzato, 1992; Gauchi and Pázman, 2006) or the entropy
of the distribution of the LS estimator (Pronzato and Pázman, 1994).
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