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Ontology driven analysis of microarray data 

ABSTRACT 

Motivation: Microarray technology makes it possible to measure thousands of 
variables and to compare their values under hundreds of conditions. Once microarray data 
are quantified, normalized and classified, the analysis phase is essentially a manual and 
subjective task based on visual inspection of classes in the light of the vast amount of 
information available. Currently, data interpretation clearly constitutes the bottleneck of 
such analyses and there is an obvious need for tools able to fill the gap between data 
processed with mathematical methods and existing biological knowledge. 

Results: THEA (Tools for High-throughput Experiments Analysis) is an integrated 
information processing system allowing convenient handling of data. It allows to 
automatically annotate data issued from classification systems with selected biological 
information coming from a knowledge base and to either to manually search and browse 
through these annotations or to automatically generate meaningful generalizations 
according to statistical criteria (data mining).  

Availability: The software is available on the web site: http://thea.unice.fr/ 

Contact: claude.pasquier@unice.fr 

Supplementary Information: Supplementary tables as well as files containing the 
biological data used in this publication can be downloaded from our website: 
http://bioinfo.unice.fr/publications/thea_article/ 
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INTRODUCTION 

During the last decade, the various genomes sequencing projects fed the biological 
databanks with an extraordinary amount of data that remains of little use if not 
transformed into knowledge. Currently, the laborious process of annotation is carried out 
jointly by human experts and data-processing programs. Similarly, new technologies 
(proteomics, transcriptomics) start to produce mountains of data. The goal, from now, is 
more to track the activity of whole genomes, temporally and spatially than to thoroughly 
study biological objects taken separately. Knowledge is deduced from overall gene 
expression measurements in particular experimental contexts. The assumption is that a set 
of gene products is probably involved in a functional module when their levels of 
expression vary in a coordinated manner (Segal et al., 2003). Work thus consists in two 
distinct phases: identifying these modules and then understanding their roles. 

The first phase is now abundantly studied (Quackenbush, 2002). Numerous 
approaches dedicated to the acquisition, normalization, filtering and clustering of such 
high throughput results are available (Chuaqui et al., 2002). In the end, treated data are 
more reliable and organized, but still very numerous. There is more than ever a need for 
automatic or semi-automatic approaches relying on structured and controlled vocabularies 
(ontologies) to analyze large quantities of data in order to discover meaningful patterns 
and rules (Attwood and Miller, 2001). 

The THEA project is dedicated to the elaboration of tools and methods suited for 
the analysis of post-genomic data. In this paper, we present the first module developed in 
the frame of the project. It belongs to the field of knowledge discovery and is focused on 
the exploration and annotation of data generated by microarray experiments (Schena et 
al., 1995). 

SYSTEMS AND METHODS 

Two basic requirements of knowledge discovery are the access to the most complete 
and up to date information and its rapid availability (Fayyad et al., 1996). In THEA, these 
requirements have led to the elaboration of ALLONTO, a dedicated data warehouse 
which stores selected data extracted from electronic resources, supplemented by a 
mediator which dynamically queries required and specific complementary informations 
over the internet. 

In order to fully exploit data, knowledge discovery systems rely on a formal 
representation of information based on a well defined semantic (Simoff and Maher, 1998). 
This formal system is represented in ALLONTO by ontologies, which constitute a 
popular way to modelize biological concepts and their relationships. 

Ontologies of biological concepts 

THEA is designed to make use of Ontologies described as Directed Acyclic Graphs 
(DAGs). A DAG is a structure composed of nodes (representing terms) and oriented arcs 
(representing relationships between terms) containing no cycle. This means that if there is 
a path from one node to another, then there is no way back. Such a modelization is very 
popular because it is intuitive, easily editable and less limited than hierarchical structures 
since terms can be source and target of many relationships. DAG based ontologies cover 
many biological domains (see for example the list collected by OBO at 
http://obo.sourceforge.net/list.shtml). 
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Presently ALLONTO includes two ontologies. Gene Ontology (GO) (Ashburner et 
al., 2000) is a controlled vocabulary developed by a consortium of scientists. It can be 
used to describe (‘annotate’) a gene product in regard to its molecular functions (GO:MF), 
cellular localizations (GO:CL) and biological processes (GO:BP). Specific vocabularies 
dedicated to Drosophila melanogaster are developed by FlyBase 
(The_Flybase_Consortium, 2003), they describe the developmental stages and the 
anatomy of the fly: Drosophila Developmental Stages (FB:DDS) and Drosophila Gross 
Anatomy (FB:DGA), respectively. Progresses are being made to incorporate other 
ontologies as they develop.  

Our database schema is designed as an extension of the GO one. This compatibility 
allows us to directly import the gene ontology from GO database as SQL tables 
(downloadable from http://www.godatabase.org/dev/database/archive/). FlyBase 
ontologies are reconstructed from flat files (available at 
http://flybase.bio.indiana.edu/docs/flydocs/flybase/controlled-vocabularies.txt) and 
integrated into the SQL tables. 

Ontologies associations 

Ontology constitutes a mechanism for expressing and sharing biological concepts 
which, in order to be useful, must be used as qualifiers for underlying data. Associations 
between gene products and GO terms are imported from text files elaborated by a growing 
number of biological databases 
(http://www.geneontology.org/doc/GO.current.annotations.shtml). Concerning 
Drosophila ontologies, associations are queried from the “Gene Expression” page of 
FlyBase (http://flybase.bio.indiana.edu/cgi-bin/expat). 

Genome data 

As no single source contains all the necessary information, one of the most 
fastidious tasks in functional genomics is finding the correspondences among the multiple 
identifiers of genes or gene products. To assist the knowledge discovery process, we have 
collected cross-links about all known genes, transcripts and proteins for nine organisms 
(Homo sapiens, Mus musculus, Rattus norvegicus, Danio rerio, Fugu rubripes, Anopheles 
gambiae, D. melanogaster, Caenorabditis elegans and Caenorabditis briggsae), from the 
Ensembl database (Hubbard et al., 2002). Thereafter ALLONTO provides relationships 
between various identifiers from diverse sources, including organism-specific databases 
[FlyBase (The_Flybase_Consortium, 2003) for D. melanogaster, MGD (Blake et al., 
2003) for M. musculus, SGD (Weng et al., 2003) for Saccharomyces cerevisiae, RGD 
(Steen et al., 1999) for R. norvegicus and Wormbase (Harris et al., 2003) for C. elegans] 
and general databases (e.g. SwissProt, PDB, PIR, PFAM, Ensembl, LocusLink, OMIM 
and EMBL). 

GenBank files (Benson et al., 2003), which contain annotations for raw genomic 
sequences, are also used to retrieve knowledge at both DNA and protein levels. 
Information concerning open reading frames (ORFs) include raw DNA sequences and 
physical maps. For corresponding proteins, translated sequences and gene symbols are 
collected. When available, references to Affymetrix probes identifiers are also extracted 
and stored. Specifically for D. melanogaster, we extract the identifiers of the Drosophila 
Gene Collection (DGC) cDNA clones (releases 1 to 3) (http://www.fruitfly.org/DGC) and 
link them to the corresponding gene products. Concerning S. cerevisiae, we extract the 
cross-links information, ORF name and localization from a flat file available at SGD 
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(ftp://ftp.yeastgenome.org/yeast/data_download/chromosomal_feature/chromosomal_feat
ure.tab). 

Data stored in our database contains only information needed by the data mining 
process. Other information, usually targeted for a human user are displayed when required 
as web pages retrieved by the mediator. 

Regular import of external data is necessary to allow up-to-date analyses. However, 
drastic changes in data stored in public databases structures may occur. For example, in 
the Release 3 of FlyBase (March 2003), numerous genes have been merged and/or split, 
resulting in changes in >40% of the predicted proteins (Misra et al., 2002). This can lead 
to important difficulties for the analysis of older experiments with a large majority of 
identifiers now obsolete. One then needs to track annotation history by collecting old or 
obsolete identifiers. We achieve this goal for D. melanogaster, by parsing a textual dump 
of the database (available at ftp://flybase.net/flybase/genes/genes.txt) which contains, for 
each entry, the corresponding FlyBase Id (identified by the special tag '*z') and the list of 
obsolete Ids (identified by the tags '*y'). This information, stored into ALLONTO, allows 
users to refer a gene product with any of its known identifiers. 

Classifications 

Basically, THEA takes the result of a hierarchical clustering performed on the data 
as primary input, in Newick format 
http://evolution.genetics.washington.edu/phylip/newicktree.html)  or standard output of 
common classification programs like SOTA (Herrero et al., 2001) or Cluster (Eisen et al., 
1998). It is also possible to analyze non-hierarchical clusters by building a fictive tree 
grouping the different classes. Alternatively, one can use the facilities proposed on the 
GEPAS site (http://gepas.bioinfo.cnio.es/) to build a hierarchy on top of classes generated 
by Self-Organizing Map (SOM) classification (Kohonen, 2001). 

ALGORITHM 

The Graphical User Interface of THEA allows users to explore biological data in a 
convenient way. It is possible to browse the ontologies, look for a particular field of 
knowledge and visualize associated leaves in the classification tree with colors markers. 
Successively Using a few terms will immediately reveal which of the clusters 
simultaneously pertain to different fields of knowledge, or if the classification can be 
broadly divided in different parts. This manual exploration is skewed as it is driven by the 
user’s knowledge and his field of interest. To overcome this bias, THEA includes several 
data mining algorithms allowing an entire classification to be automatically annotated. 

Ontology-based cluster annotation 

For each major branch of the ontologies, choosing a unique label, for a cluster of co-
expressed genes is difficult and it is illusory to try to elaborate a general and automatic 
tool to perform this task, as pertinence of the information is very user-dependent. It is one 
of the objectives of the project to take into account a user profile in the determination of 
labels. The current version does not include this feature and thus does not force the 
labeling of the clusters. Instead, a number of options allow to parameter the process. Two 
annotation processes have been found to be pertinent: 
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Identification of common biological features 

For each cluster, THEA is able to extract the biological terms characterizing a given 
proportion of genes. The proportion is computed for each term and each cluster by 
dividing the number of genes associated to this term or one of its children by the total 
number of genes in the cluster. With a proportion of 1.00, a term will be used to label a 
cluster only if each of its members has the relevant association. This condition, which is 
very stringent, produces an annotation for a limited number of clusters only; lowering the 
proportion cutoff increases the number of named clusters but lowers the pertinence of 
these labels. This method has a tendency to name clusters with very generic terms. 
However, in some cases, using a high proportion cutoff allows the user to simplify the 
classification by labeling a cluster of genes with a unique term. 

Identification of under and over represented terms 

For each cluster of transcripts, THEA performs a statistical analysis under the null 
hypothesis of a uniform distribution of annotations. A given cluster is considered 
significantly enriched for a term if the number of transcripts associated with it exceeds the 
number expected by chance. The hypergeometric distribution should be used in the 
calculation but, this law is indeed slow to calculate when one has to handle several 
thousand clusters. The binomial law, which is less computing-intensive and constitutes a 
good approximation of the hypergeometric law when the population is large, can most of 
the time, be used instead. THEA offers the possibility to choose between these two 
statistical laws. It has to be stated that all P-values given in this paper were computed with 
the binomial law. For a given term present in the total population with a frequency p, the 
laws calculate the probability (or P-value) of observing by chance at least k transcripts 
annotated with this term in a cluster of size n. Enriched terms are extracted by selecting 
those associated with a P-value under a given (adjustable) cutoff. The same principle is 
used to highlight under-represented terms by calculating the probability of observing a 
maximum of k transcripts annotated with a term in a cluster. It should be noted that absent 
calls or unreliable measurements (e.g. due to bad reporters) can make some transcripts 
show undetectable expression levels resulting into under-evaluation of the number of 
represented terms. This bias may increase the confidence level of the over-represented 
genes but lead to unreliable conclusions about under-represented terms, unless the 
hypothesis of uniform distribution of annotations is restricted to detected transcripts (see 
below). 

The null hypothesis can be relative either to all genes associated to the ontologies, to 
the list of genes included in the classification or to a specific user-defined list. Using all 
GO annotations is a method commonly used (Draghici et al., 2003) but can be skewed if 
the assayed genes represent only a subset of the genome. For example, if using an array 
bearing reporters for each transcript known to or thought to be regulated during mitosis, 
most of the clusters obtained would show an artefactual over-representation of the term 
"mitosis" whatever the classification method used. In this case, it is better to perform the 
calculation under the null hypothesis of a uniform distribution of the associations 
restricted to the transcripts assayed by the array. Another option is to use as reference 
group, the set of transcripts included in the classification. Such an analysis does not give 
an idea of the biological concepts of importance in the experimental conditions studied 
but allows the user to automatically detect where the related transcripts are located in the 
classification and thus how they behave transcriptionaly. THEA allows the user to choose 
either solution. 



 6 

Analysis of transcription maps 

A second type of research handled by THEA consists of highlighting the possible 
correlations between expression levels of certain genes and their localization on the 
genome. A technique similar to the one used for the identification of an over-
representation of terms in a cluster is used. Under a null hypothesis of a uniform 
distribution of genes on each chromosome, we can calculate a P-value for a group of co-
localized genes to appear in the same cluster. The user has first to specify the maximum 
distance d between two genes to consider them co-localized. The measure of distance that 
we have chosen to use is the number of intergenic regions separating two genes: if one 
attributes an index for each gene on a chromosome (the closest gene to the 5’-end is #1, 
the second closest #2, etc), then the distance between two genes is the difference of their 
indices. For a given gene and a given distance d, there exist, in the whole genome, a 
maximum of 2d other genes in a distance less or equals to d (these neighborhood genes 
are those which are considered as co-localized). For each gene in a cluster we determine 
the number c of co-localized genes present in the same cluster and we use the binomial 
law to compute the probability of observing at least c genes in a cluster of size (n-1) by 
chance, considering a frequency of 2d/G (G representing the number of genes in the 
genome). This procedure can only detect groups of at least three genes (the gene taken as 
reference plus two genes present in its neighborhood). Genes that are considered co-
localized under a certain cutoff are highlighted with a marker similar to that used to label 
genes on the classification (Fig. 1). 

IMPLEMENTATION 

THEA is based on DAG-Edit, an open source software available from sourceforge 
(http://sourceforge.net/projects/geneontology/). It makes use of several other open source 
software including IzPack (graphical installer), Xerces (XML parser), Regexp (regular 
expression package), Ant (XML based makefile), Batik (SVG toolik), Connector/J (java 
driver for MySQL) and colt (statistical package). The relational database MySQL is used 
to store the information needed by the software. 

The architecture of THEA is based on the Model-View-Controller (MVC) design 
paradigm. Its interface is composed of plugins that users can choose to activate or not. 
Each plugin is dedicated to the display and/or edition of various information concerning 
both the underlying biological objects (genome data, ontologies and clustering results) or 
the software itself (captions, options, search parameters, etc). 

Figure 1 shows a typical layout of THEA’s user interface with six activated plugins: 
Terms Viewer (display of loaded ontologies), Gene Displayer (view of associated gene 
products), Tree View (visualization of clustering results), Classification Caption 
(information on the classification), Search Panel and DAG Viewer (a trimmed ontology 
leading to the selected term). From this integrated environment, users can explore the data 
in multiple ways, including queries of gene products associated with one or several terms, 
localization of gene products in the classification, visualization of terms characterizing 
gene products, automatic labeling of groups of co-expressed genes, simplification of 
classification tree by hiding details for clusters of similar genes, etc. 

BIOLOGICAL APPLICATION 

A dataset consisting of 34 Affymetrix Genechip Drosophila Genome arrays 
hybridized with a time series of RNA extracts from flies challenged with bacterial or 
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fungal infection (De Gregorio et al., 2001) has been chosen to demonstrate the 
functionalities of THEA  

Annotation comparison 

The reanalysis of these data lead to the selection of 1270 regulated genes (see 
supplementary materials). Annotating this set with THEA takes ~1 mn on an standard 
computer and produces the following results: 64.4 % of the genes are associated to at least 
one term of GO, 13.9 % to at least one term of the FlyBase ontologies (FB) and 13.5 % to 
both. De Gregorio et al. had selected a set of 400 over- or under-expressed genes (List0). 
In their table 1 (p 12592) they manually identified groups among these genes, using the 
appropriate GO terms when available. From this table, we selected three groups for 
demonstration purposes (List1), comprising 7 peptidoglycan recognition proteins (PGRPs, 
GO:0016019), 8 Serine-protease inhibitors (serpins, GO:0004868) and 15 Antimicrobial 
peptides (AMPs, GO:0003795). These GO terms were used to extract the corresponding 
list of associated genes from our reanalyzed data according to THEA (List2). Merging the 
two lists resulted in a set of 50 genes. Figure 2 shows their expression profiles and color-
coded GO annotations: PGRPs (green), serpins (blue) or AMPs (pink). Genes from List1 
are depicted in pale tones, while genes found in List2 are highlighted with dark tones. 
Genes from List0 are labeled with grey bars. 

The first and most obvious observation is that all the genes labeled in pale tones 
(original paper) are also labeled in dark tones (THEA) , with the exception of CG10812. 
This shows that what had been done painfully by hand can be retrieved with THEA. 
CG10812 is a counter-example: in the original paper it was included in the AMPs 
(GO:0003795), when in fact its GO annotations are “defense response” (GO:0006952) 
and “defense/immunity protein activity” (GO:0003793), this last term being the parent of 
AMP. Therefore, the association of CG10812 to the term “antimicrobial peptide activity” 
(GO:0003795) was incorrect in GO sense, but might have been manually added by the 
authors according to their own expertise. 

The second interesting observation is that seven genes are labelled grey and dark but 
not pale: PGRP-SC1b, CG12780, CG13422, TepII, TepIV, CG16756, and nec. These 
genes were thus not associated in the original paper to any of the three selected GO terms. 
Such discrepancy might result from an improvement in GO since the original analysis, 
from errors in the ontology (manually corrected by the authors), or simply from 
overlooking of such associations (a frequent problem with manual annotations). For 
example, PGRP-SC1b shows similarity of sequence with other PGRP coding genes 
(Werner et al., 2003); this was probably overlooked by the authors, but is automatically 
retrieved by THEA. CG12780 and CG13422 had been included in a non-GO class 
(“GNBP” for Gram-Negative Binding Proteins), corresponding to the GO term “Gram-
negative binding activity” (GO:0008368”), to which they are presently associated. They 
were retrieved by THEA because GO:0008368 is a child of AMP. The authors described 
GNPB as involved in recognition and phagocytosis rather than in direct antimicrobial 
activities. TepII and IV had also been included in a non-GO class (“complement-like”), 
while they are presently described as being AMPs (Lagueux, Perrodou et al., 2000). 
Finally, the authors mentioned that nec codes for a serpin, but they included it under the 
Toll-Pathway term (GO:0008063), an association that THEA is also able to detect (data 
not shown). 

The last category of genes present in Figure 2 is labeled only with dark tones (they 
had not been retained in the original paper: no grey tab). In fact, the authors selected 400 
genes among more than 13000 represented on the chip, which was already a considerable 
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amount for a hand annotation process. However, since THEA allows immediate 
annotation of large datasets, we were not concerned about drastic limitation of the number 
of immune-responsive genes to be retained and therefore we analyzed a group three times 
larger the one described in the original publication. 

In conclusion, this comparison shows that THEA can emulate quite well what can 
be done by a human expert. If anything it is more complete and remarkably faster and 
much easier.  

Searching for immunity-related genes 

Using THEA’s Search Panel or Terms Displayer allows the selection of a term of 
interest and the labeling of the associated genes in the classification. In this example, the 
selection of “immune response” (GO:0006955) labels 42 gene products, unevenly 
distributed in the classification (red tabs in Figures 1 and 3). Indeed the majority of them 
(35) is found in the lower part of the tree, which groups genes globally overexpressed 
after an immune challenge. Closer inspection reveals that most (25) are further regrouped 
in two clusters of closely co-regulated genes together with genes not known to participate 
in the immune response (see blue box in Fig. 3). 

Overall, THEA allows to rapidly pick out genes of interest among the whole 
clustering, which helps to get a general idea of their behavior. In our example, we 
discovered in a matter of minutes that, among regulated genes, those known to participate 
to the immune response are (1) as expected, well represented (42 out of 86 in the 
genome), (2) only weak minority (42 out of 1270 regulated), (3) mostly found among the 
genes overexpressed (35 out of 42) and (4) regrouped in two closely associated clusters 
(25 out of 42). Globally, this implies that our current GO-documented knowledge of the 
immune response is only able to account for a small fraction of the variability observed. 

High-level interpretation 

While the previous feature is useful when one knows what to look for, such an 
approach is still obviously skewed. To avoid this effect we can ask THEA to label the 
nodes of the classification, with over and under-represented terms. Figure 3 presents a 
fully labeled version of the classification. Overall 30 (61.2 %) of these nodes are labeled, 
with a mean number of 6.2 terms per node (max:9). Most of these terms come from GO 
(121 labels): 48 from GO:MF, 37 from GO:CC and 36 from GO:BF. Of the 37 FB names, 
27 come from FB:DGA and 10 from FB:DDS (see supplementary table S1). It might be 
noted that the six nodes named with a FB:DDS ontology under-represented term are 
occurrences of a single term: ‘embryonic stage’. This observation is coherent with the fact 
that the original study was conducted with RNAs extracted from adult flies. 

This allows a general view of the behavior of the transcriptome in the experimental 
conditions, by thinking in terms of concepts (the ontology terms displayed) rather than in 
terms of genes. A striking observation is that, when going from the root to the genes, the 
terms used to describe the successive nodes often become more precise. Therefore, as the 
clusters of genes have more coherent expression profiles, the precision of the associated 
information grows. 

Terms at the root show that, in Drosophila, genes regulated after infection are 
significantly enriched in genes coding for enzymes (GO:0003824), for proteins located in 
the mitochondrial inner membrane (GO:0005743), involved in the defense response 
(GO:0006952) and expressed in the fat body (FBbt:00005066) ; while those coding for 
proteins having nucleic acid binding activities (GO:0003676), located in the nucleus 
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(GO:0005634), involved in cell proliferation (GO:0008283) and expressed during the 
development (GO:0007275) are under-represented (see labels in Fig. 3). Taken together, 
this shows that the immune response induces major modification in the enzymatic 
capacities of the fly, especially in the mitochondria, while proteins located in the nucleus 
and involved in nucleic-acid-related processes are rather unaffected. It is also observable 
that, not surprisingly, infection induces a modification of the levels of expression of 
defense response genes and that it highly affects the fat body’s transcriptome, a fact that is 
well documented (Hoffmann, 2003).  

A general observation is that under-represented terms are only found in the upper 
branch of the tree, which corresponds to genes globally repressed after infection (see 
heatmap). The correlation between under-expression and under-labeling is not easy to 
interpret, but biological meanings may exist. Labels used to describe this upper branch 
indicate that infection induces the repression of energetic pathways, a fact that was 
mentioned by De Gregorio et al. (2003) .They interpreted it as resulting from turning 
down unessential metabolic pathways in order to redirect the energetic and tranductionnal 
capacities towards defense response. Alternatively, we can postulate that infected flies 
might be a little cataleptic and/or feed less than healthy ones, thus needing less metabolic 
capabilities. The fact that genes expressed in the indirect flight muscles are also found to 
be repressed (an observation not made by the authors) can be interpreted in a similar 
manner: sick flies would be less mobile; moreover they might need to reallocate the huge 
amounts of amino acids stored in their muscles to synthesize defense response proteins in 
vast quantities. Induced genes are significantly enriched in genes coding for antibacterial 
peptides, involved in immune response and expressed in the fat body (Fig. 3, lower part). 
This perfectly reflects what is known of the humoral immune response in Drosophila: 
pathogens induce fast and massive release of small peptides having antimicrobial 
properties (AMPs) in the circulatory system of the fly (the hemolymph), the fat body 
being the major site of this AMP synthesis and secretion (Hoffmann, 2003). An 
interesting observation is that this branch is also labeled with the term “translocon”. 
Therefore THEA automatically detects that the translocon components and AMP coding 
genes are upregulated in a similar manner, a fact that was not reported in the original 
publication. The translocon is a multiproteic complex involved in the early steps of the 
secretion of proteins in the extracellular medium (Meacock et al., 2000). We interpret this 
observation as a functional adaptation of the flies to infection: the synthesis of huge 
amounts of circulating proteins as AMPs is likely to require a dramatic increase in the 
secretion capacity of the flies, hence the increase in translocon quantities. It is tempting to 
propose that this increased secretion capacity is mainly located in the fat body. 

CONCLUSION 

The use of automatic description of the nodes to interpret massive data-sets in terms 
of concepts, only briefly described here, changes drastically our way of analyzing chip 
data. The use of statistical criteria rather than manual inspection according to selected 
hypotheses makes this analysis as unbiased as possible. Using a previously published 
dataset we were able to reach similar conclusions and detect well-known characteristics of 
the immune response (as the overexpression of numerous AMPs) as well as less obvious 
observations (as the upregulation of genes participating in the secretion pathway), which 
were not reported in the original publication. The only limitation is inherent to the nature 
of the analysis: it cannot be better than the ontologies used, but ontologies are improving 
everyday.  
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Fig. 1: General view of THEA’s user interface, displaying fully annotated 
classification of the 1270 regulated genes.  

This example configuration of THEA’s user interface shows six activated plugins. 
Some of them are inherited from DAG-Edit 
(http://sourceforge.net/project/showfiles.php?group_id=36855): The Terms viewer (top 
left), allows to graphically browse through the loaded ontologies and select individual 
terms. The DAG Viewer (top right), displays a trimmed ontology leading to the selected 
term. 

Other plugins have been developed as part of the THEA project: The Gene 
Displayer (middle left) displays the genes associated to a given term and, eventually, its 
children (here the 86 genes associated to the term ‘immune response’ and their children 
are displayed) and provides access to the relevant publications and databases via Internet. 
The Search Panel (middle top) allows to search for specific terms or character strings 
among genes or terms. Complex queries are also possible. Here the term “immune 
response” has been selected. The Classification Tree Viewer (bottom right) allows the 
display of hierarchical clustering results of gene expression profiles. It is possible to 
navigate in the tree by zooming on the nodes. The expression profiles are displayed on the 
right in the classical form of a heatmap (à la TreeView (Eisen et al. 1998)). Genes 
associated to the selected term and their children are labeled with colored boxes. As in the 
Gene Displayer, right clicking on the genes gives access to any relevant information. The 
names automatically assigned to each cluster are displayed in this plugin as well. The 
Classification Caption (bottom left) displays the legends of the color-coded labels as 
well as some statistical information. 
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Fig. 2: Annotation of a subset of genes with GO, comparison of the analysis taken 
from the original publication with THEA (see text for details). 
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Fig. 3: Annotated classification of the 1270 regulated genes as displayed in the 

Classification Tree Viewer. 

Genes associated to the term “immune response”, selected via the Search Panel, are 
automatically labeled (red labels on the right of the classification), multiple selections 
being allowed (Fig. 2). For each node, terms statistically over-represented are shown in 
pink boxes while terms under-represented are in green boxes (see text for further details). 

 


