
HAL Id: hal-00170394
https://hal.science/hal-00170394

Submitted on 7 Sep 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Worst-Case Evaluation of Flexible Solutions in
Disjunctive Scheduling Problems

Mohamed Ali Aloulou, Christian Artigues

To cite this version:
Mohamed Ali Aloulou, Christian Artigues. Worst-Case Evaluation of Flexible Solutions in Disjunc-
tive Scheduling Problems. International Conference on Computational Science and its Applications
(ICCSA 2007), 2007, Kuala Lumpur, Malaysia. pp.1027-1038, �10.1007/978-3-540-74484-9_89�. �hal-
00170394�

https://hal.science/hal-00170394
https://hal.archives-ouvertes.fr

ha
l-

00
17

03
94

, v
er

si
on

 1
 -

 7
 S

ep
 2

00
7

Worst-case evaluation of flexible solutions in

disjunctive scheduling problems

Mohamed Ali Aloulou1 and Christian Artigues2,3

1 LAMSADE – Université Paris Dauphine
Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France

aloulou@lamsade.dauphine.fr,
WWW home page: http://www.lamsade.dauphine.fr/∼aloulou/

2 LIA – Université d’Avignon
339 chemin meinajariés, Agroparc, BP 1228, 84911 Avignon Cedex 9, France

christian.artigues@univ-avignon.fr
3 CRT – Université de Montréal

C.P. 6128, succursale Centre-ville Montréal, QC H3C 3J7, Canada
artigues@crt.umontreal.ca

Abstract. In this paper, we consider the problem of evaluating the
worst case performance of flexible solutions in non-preemptive disjunctive
scheduling. A flexible solution represents a set of semi-active schedules
and is characterized by a partial order on each machine. A flexible solu-
tion can be used on-line to absorb the impact of some data disturbances
related for example to job arrival, tool availability and machine break-
downs. Providing a flexible solution is useful in practice only if it can be
assorted with an evaluation of the complete schedules that can be ob-
tained by extension. For this purpose, we suggest to use only the best case
and the worst case performance. The best case performance is an ideal
performance that can be achieved only if the on-line conditions allow to
implement the best schedule among the set of schedules characterized by
the flexible solution. In contrast, the worst case performance indicates
how poorly the flexible solution may perform. These performances can
be obtained by solving corresponding minimization and maximization
problems. We focus here on maximization problems when a regular min-
max objective function is considered. In this case, the worse objective
function value can be determined by computing the worse completion
time of each operation separately. We show that this problem can be
solved by finding an elementary longest path in the disjunctive graph
representing the problem with additional constraints. In the special case
of the flow-shop problem with release dates and additional precedence
constraints, we give a polynomial algorithm that determines the worst
case performance of a flexible solution.

1 Introduction

We consider a general non preemptive disjunctive problem in which a set of
operations has to be scheduled on a set of machines, each operation requiring a

2

single machine during its execution and each machine being able to process only
one operation simultaneously. The operations are linked by simple precedence
constraints that do not necessarily form chains. Such a model encompasses the
standard flow-shop and job-shop models.

An important issue in scheduling concerns the support provided to the end-
user(s) on line schedule execution after the off line scheduling phase which con-
sists in providing an optimal or suboptimal schedule.

In disjunctive scheduling, as soon as a regular minmax objective function
is considered, the support for on line scheduling often lies in providing for each
machine the mandatory sequence of operations, and for each operation an earliest
and a latest start time yielding operation slacks. The sequences and the time
windows are such that scheduling the operations in the predetermined order
and inside their time windows is feasible and keeps the objective function in a
range of acceptable values. Such a flexibility provided to the end-user is referred
to as temporal flexibility. This paper addresses the problem of providing more
flexibility than the classical temporal one in disjunctive scheduling problems
where the objective is to minimize a regular minmax objective function. As
already considered in previous studies [2,3,5,6,7,12], this can be achieved by
defining only a partial order of the operations on each machine, leaving to the
end-user the possibility to make the remaining sequencing decisions. This is the
principle of the groups of permutable operations model that has been studied by
several authors [3,5,6,7,12]. The group model sets restrictions on the proposed
partial orders that we relax in this paper. Indeed we represent the partial orders
through general precedence constraints between operations of the same machine,
that have not to be distinguished from the structural precedence constraints.

Providing a partial solution through partial orders is useful in practice only
if it can be assorted with an evaluation of the complete solutions that can be
obtained by extension. More precisely, given a reasonable decision policy followed
by the decision maker, the following questions have to be answered. Do there
remain decisions (following the decision policy) leading to a feasible schedule
? What is the best and the worse objective function value reachable by the
remaining set of decisions ? Answering these questions provides a performance
guarantee if the given on line policy is followed.

In this paper, we focus on the worst case performance evaluation. We con-
sider disjunctive problems with a minmax objective function. We assume that
the decision maker follows a semi-active schedule policy to extend the proposed
partial orders. A schedule is called semi-active if the operations cannot be shifted
to start earlier without changing the operation sequences or violating precedence
constraints or release dates [4]. In this case, the worse objective function value
can be determined by computing the worst-case completion time of each opera-
tion separately. We show that the problem of computing the worse completion
time of an operation in all feasible semi-active schedules can be done by finding
an elementary longest path in the disjunctive graph representing the problem
with additional constraints. This gives a general framework integrating previous
studies [1,3,5,6,7,12].

3

In the special case of the flow-shop problem with release dates and addi-
tional precedence constraints, we give a polynomial algorithm that computes
the maximal completion times of all operations in all feasible semi-active sched-
ules. These results generalize some results previously established for the single
machine version of this problem [1].

In section 2, we present the problem in more details. Then, we discuss the
related work in section 3. In section 4, the longest path formulation of the prob-
lem is given. In section 5, we present the polynomial algorithm for the flow-shop
case. Finally, we provide a conclusion in section 6.

2 Problem setting

We consider the following disjunctive scheduling problem. There is a set N =
{1, . . . , n} of operations to be scheduled on m machines. mi, pi and ri denote the
machine, processing time and release date of operation i, respectively. The release
date is the earliest time when the operation processing can start. Each operation
is associated with a non-decreasing cost function fi(Ci) of its completion time
Ci. We introduce two dummy operations 0 and n + 1 such that p0 = pn+1 =
0. This problem is represented by a disjunctive graph G = (V, C, D) [11]. V
is the set of vertices corresponding to operations i ∈ N and the two dummy
operations 0 and n+1. C is the set of conjunctive arcs representing the precedence
constraints between the operations. Each conjunctive arc (i, j) is valuated by pi.
D is a set of pairs of disjunctive arcs {(i, j), (j, i)} for each pair of operations
i, j ∈ N requiring the same machine for their execution (mi = mj). We have
D = {{(i, j), (j, i)}|i 6= j and mi = mj}. Arc (i, j) represents the decision to
sequence i before j, whereas arc (j, i) represents the decision to sequence j
before i on the machine. In the remaining a pair of disjunctive arcs {(i, j), (j, i)}
is called a disjunction and denoted by eij or eji.

Let D denote the set of all disjunctive arcs, i.e. D = {(i, j)|eij ∈ D}. A
selection π is a (possibly empty) set of arcs such that π ⊆ D and |π ∩ eij | ≤ 1,
for all eij ∈ D. Let D(π) = {eij ∈ D|eij ∩ π = ∅}. A selection is complete if
D(π) = ∅, otherwise it is partial. The disjunctive graph issued from a complete
or partial selection π is denoted by G(π) = (V, C ∪ π, D(π)). Given a set of arcs
E, let G(E) denote graph (V, C ∪ E). A complete selection π is feasible if the
graph G(π) = (V, C ∪ π) is acyclic. The completion time Ci(π) of any operation
i ∈ N in the semi-active schedule derived from the complete feasible selection
π is equal to the length of the longest path in G(π) from 0 to i plus pi. Let
Π denote the set of feasible complete selections. The objective of the classical
scheduling problem is to find a complete feasible selection π ∈ Π such that a
regular minmax objective function F (C1(π), . . . , Cn(π)) = maxi=1,...,n fi(Ci(π))
is minimized.

Here, we assume the decision maker makes on line the remaining sequenc-
ing decisions on each machine following a semi-active policy until obtaining a
complete selection π. A feasible semi-active schedule can be obtained by a list
scheduling algorithm as soon as C is acyclic : sort the operations in a non de-

4

creasing order of their level in G = (V, C) then sequence as soon as possible on
its machine each operation according to this order. The problem tackled in this
paper is the following problem (SP) : Given a disjunctive graph G = (V, C, D),
what is the worst case objective function value of the feasible semi-active sched-
ules, i.e compute maxπ∈Π F (C1(π), . . . , Cn(π)) ?

To illustrate this problem, consider the following 2-machine and 4-job flow-
shop problem. This gives 8 operations and the flow-shop context sets m1 =
m3 = m5 = m7 = 1 and m2 = m4 = m6 = m8 = 2. Furthermore, we have
p1 = 1, p2 = 6, p3 = 2, p4 = 5, p5 = 4, p6 = 6, p7 = 6 and p8 = 1. All release
dates are equal to 0 except for r5 = 2. All objective functions are the comple-
tion times of the activities. Let us consider additional precedence constraints
{(1, 3), (1, 5), (1, 7), (3, 7), (2, 4), (2, 6), (6, 8)}. We obtain the disjunctive graph G
displayed in Figure 1.

3

7

1

6

8

0 9

2

4

5

Fig. 1. The disjunctive graph for a partial selection

The precedence constraints restrict the possible sequences to (1, 3, 5, 7) and
(1, 5, 3, 7) on machine 1 and (2, 4, 6, 8), (2, 6, 4, 8) and (2, 6, 8, 4) on machine 2.
We obtain the 6 schedules displayed in Figure 2. Note that such restriction
cannot be modeled by the group of permutable operation representation used in
[1,5,6,7,12]. The solution of problem SP is 20 which is the worst-case makespan
value of the 6 semi-active schedules. Note that the optimal makespan of the
flow-shop problem is 19.

3 Literature review

Problem SP can be viewed as a maximization problem of an objective function
that is naturally minimized. Several works have aleady been proposed in this
domain. In particular, Aloulou, Kovalyov and Portmann [1] adapt the traditional
three-field notation α|β|γ to this class of problems.

They denote this family of considered maximization problems as
α(sa)|β|(f →max). The first field α provides the shop environment. Here α ∈

5

1 3 5 7

1 5 3 7

1 5 3 7

1 3 5 7

1 5 3 7

1 3 5 7

8 4

8 4

2 4 6 8

2 4 6 8

2 6 4 8

2 6 4 8

62

2 6

Fig. 2. Sequences and semi-active schedules compatible with the partial selection

{1, F, J} for respectively single machine (1), flow shop (F) and job shop (J)
problems. sa indicates that we search for the worst schedule among all semi-
active schedules, which correspond to the considered online scheduling policy.
The second field gives additional constraints on operations. The third field con-
tains information about the criterion to maximize.

To the best of our knowledge, the first related results we are aware are due to
Posner [10]. Posner studied reducibility among single machine weighted comple-
tion time scheduling problems including minimization as well as maximization
problems. In these problems, the jobs may have release dates and deadlines but
there are no precedence constraints between the jobs. Besides, inserting idle
times between the jobs is allowed.

Aloulou et al [1] studied several maximization versions in a single ma-
chine environment. They examined problems 1(sa)|β|(γ→max), where β ⊆
{ri, prec} and γ ∈ {fmax, Cmax, Lmax, Tmax,

∑

(wi)Ci,
∑

(wi)Ui,
∑

(wi)Ti}. They
showed that these problems are at least as easy as their minimization counter-
parts, except for problems 1(sa)||(

∑

wiTi→max) and 1(sa)|ri|(
∑

wiTi→max),
which are still open. In particular, problems 1(sa)|ri, prec|(Lmax→max) and
1(sa)|ri, prec|(Tmax→max) can be solved in O(n3) times while the minimiza-
tion counterparts are strongly NP-hard, even if prec = ∅ [9].

This work is closely related to the work of the present paper. In-
deed, problem (SP) can be denoted, in the Aloulou et al notation, as
α(sa)|ri, prec|(fmax→max). Besides, we propose in section 5 an algorithm solv-
ing the flow-shop problem F (sa)|ri, preck|(fmax→max), generalizing the algo-
rithm of Aloulou et al for problem 1(sa)|ri, prec|(fmax→max) [1]. Here preck

denotes precedence constraints appearing only between operations scheduled on
the same machine, besides the classical flow-shop precedence constraints.

6

Another class of related work in the context of flexibility generation for on-
line scheduling is linked to the concept of groups of permutable operations [5,6],
also called ordered group assignment [3,12]. A group of permutable operations
is a restriction of the sequential flexibility considered here in such a way that
each operation is assigned to a group and, there is a complete order between the
groups of operations performed on the same machine. There are no precedence
constraints between the operations of the same group. Heuristics have been de-
signed to generate groups of permutable operations for general disjunctive prob-
lems [5,6] and multiobjective methods have been designed to find a compromise
between flexibility and performance in the two-machine flowshop [7]. Artigues
et al [3] propose a polynomial algorithm to perform the exact worst-case eval-
uation of an ordered group assignment. This method is based on longest path
computations in a so-called worst-case graph, derived from the considered or-
dered group assignment. This method solves problem SP for general disjunctive
problems (e.g. job-shop) where the disjunctions appear only between operations
of the same group (inside each group the graph of disjunctions eij is a clique)
and when the precedence constraints are defined between operations of different
groups.

As an illustration, the selection π proposed for the flow shop example yielding
the 6 feasible schedules of Figure 2 with a worst-case makespan of 20 cannot be
represented by groups of permutable operations.

4 A longest path formulation of the problem

Let Ĉi denote the worst case completion time of operation i, i.e. Ĉi =
maxπ∈Π Ci(π). Computing Ĉi, for each i ∈ N solves problem SP since the objec-
tive function is a minmax function of non decreasing functions of the completion
times. Recall that D is the set of all disjunctive arcs. Let us now consider the
following Constrained Longest Path problem associated to operation i (CLP (i)).

Definition 1. Given a disjunctive graph G = (V, C, D) and an operation i,
problem CLP (i) consists in computing the longest elementary path L∗(0, i) from

0 to i in G(D) = (V, C ∪ D) such that G(L∗) = (V, C ∪ L∗(0, i)) is acyclic.

We have the following result.

Theorem 1. The worst case completion time Ĉi is equal to the length of path

L∗(0, i) solution of problem CLP (i).

Proof. We first show that (a) Ĉi is the length of an elementary path l from 0
to i in G(D) and that G(l) is acyclic. Let π ∈ Π such that we have Ĉi = Ci(π).
π is the complete selection such that Ĉi is the length of a longest path l from 0
to i in G(π). Since G(π) is acyclic, l is elementary and since l ⊆ π, G(l) is also
acyclic. Since π ⊂ D, l is also an elementary path in G(D) = (V, C ∪ D).

Let us show that (b) any elementary path L from 0 to i in G(D) verifying
G(L) is acyclic is such that there exists a feasible complete selection π ∈ Π

7

verifying C ∪ L ⊆ C ∪ π. Suppose that L includes only conjunctive arcs. Then
L ⊆ C and (b) is verified. Suppose now that L includes also disjunctive arcs.
Since L is elementary, we have |L ∩ eij | ≤ 1 for each disjunction eij . Hence
L \L∩C is a partial selection. Furthermore, since G(L) = G(V, C ∪L) is acyclic
C ∪ L defines a new acyclic precedence constraints graph and the disjunctive
problem defined by (V, C ∪ L, D(L)) is feasible. Hence L \ L ∩ C is included in
a feasible compete selection.

From (a) and (b) it follows that, Ĉi is the length of CLP (i)-solution. ⊓⊔

Note that in the general case, problem CLP (i) may be not easy to solve
since it admits as a particular case the search for the longest elementary path
in a graph with positive length cycles. This problem is known to be NP-hard
for general graphs [8]. In Figure 3 we illustrate the problem and the necessity of
the no-cycling condition in definition 1 for a job-shop with 2 machines, 3 jobs
and no release dates. Operations 1,4 and 5 are assigned to the first machine and
operations 2,3 and 6 are assigned to the second machine. Structural precendence
constraints are (1, 2), (3, 4) and (5, 6). (3, 2) and (1, 4) are additional precedence
constraints. The longest elementary path from 0 to 7 is displayed in bold. Such
a path is infeasible since it induces a cycle with precedence constraints (3, 4).

0

1 2

3 4

5 6

7

Fig. 3. A job-shop example and an infeasible elementary longest path

The following proposition shows on the opposite that the problem is simpli-
fied in a flow-shop context, since the no cycling condition is not necessary and
in next Section we show that the problem is polynomially solvable.

Proposition 1. Given a disjunctive graph G = (V, C, D) of a flow-shop with

additional precedence constraints and an operation i, if L(0, i) is an elementary

path from 0 to i in G(D) = (V, C ∪D) then G(L) = (V, C ∪ L) is acyclic.

Proof. Due to the flow-shop structure, the strong connected component of G(D)
include only operations assigned to the same machine. Hence any elementary
cycle of G(D) involves only operations assigned to the same machine. Let L
denote an elementary path in G(D). By definition L is acyclic and no cycle can
be created by adding structural precedence constraints to L. ⊓⊔

8

5 A polynomial algorithm for the flow-shop case

In this section, we consider the flow-shop problem with operation release dates
and additional precedence constraints appearing only between operations sched-
uled on the same machine, as in the example presented is section 2. In this case,
any sequence of operations compatible with the precedence constraints of ma-
chine k yields a feasible complete selection. For each operation j, let j− denote
its job predecessor. We assume that if j is the first operation of its job, then j− is
a dummy operation denoted j0. Let Γ−

j (resp. Γ+

j) denote the set of operations
that must be scheduled before (resp. after) j on machine mj . Let Ij denote the
set of operations of machine mj that are not linked to j with any precedence
constraint. We have

Γ−
j = {i 6= j|mi = mj and there is a path from i to j in G = (V, C)} (1)

Γ+

j = {i 6= j|mi = mj and there is a path from j to i in G = (V, C)} (2)

Ij = {i 6= j|mi = mj , i 6∈ Γ−
j and j 6∈ Γ−

i } (3)

Let us define Ĉj0 = rj . We have the following result.

Lemma 1. The worst case completion time of any operation j is given by

Ĉj = pj + max

rj , (a)

Ĉj− , (b)

max
i∈Ij∪Γ

−

j

{max(ri, Ĉi−) +
∑

x∈Ij∪Γ
−

j
\Γ
−

i

px} (c)

Proof. A recursion argument is used on machine k.
Consider machine 1, we have Ĉj− = Ĉj0 = rj , hence terms (a) and (b) are

redundant. Denote by S the schedule in which Cj(S) = Ĉj and the block B of
operations consecutive on machine 1, ending with j, is such that there is no idle
time between any two consecutive operations in B and B is of maximal size. B
always exists since we have at least j ∈ B. If B = {j}, then the starting time of
j, Sj , is such that Sj = rj and (a) is verified.

If |B| > 1, then we have Sj ≥ rj . Let i be the first operation of block
B. i is not a machine successor of j and i ∈ Ij ∪ Γ−

j . Similarly, by definition

all operations inside B, except j itself, belong to Ij ∪ Γ−
j \ Γ−

i (they cannot be
machine predecessors of i). Let us now consider the operations scheduled before i
on machine 1. Let x denote the operation scheduled at the largest position before
i such that x 6∈ Γ−

i . This operation could be inserted right after i increasing
the completion time of j which contradicts the maximality of Cj(S). Hence all
operations scheduled before i are in Γ−

i . This implies that all operations of

9

Ii ∪ Γ−
j \ Γ−

i are scheduled after i. Conversely, suppose that x is the operation
scheduled at the smallest position after j such that x is not a successor of j, i.e.
x /∈ Γ+

j . This operation could be inserted right before j, increasing the start time
of j which contradicts the maximality of Cj(S). Hence all operations scheduled
after j are successors of j. It follows that if Sj > ri then

Ĉj ≤ max
i∈Ij∪Γ

−

j

{ri +
∑

x∈Ij∪Γ
−

j
\Γ
−

i

px}. (4)

Can we have i ∈ Ij ∪ Γ−
j such that Ĉj < ri +

∑

x∈Ij∪Γ
−

j
\Γ
−

i

px ?

Suppose that i is such an operation. It is possible to build a feasible schedule in
which all the operations before i are machine predecessors of i and the operations
after j are only machine successors of j. This can be made by scheduling the
operations of Γ−

i in an order compatible with the precedence constraints within
this set, then the operations of Ii∪Γ+

j in an order compatible with the precedence

constraints within this set, then operation j, then the operations of Γ+

j in an
order compatible with the precedence constraints within this set. The operations
on machine 2 can be scheduled in any order compatible with the precedence
constraints of machine 2, and so on. In such a schedule S, we have Cj ≥ ri +

∑

x∈Ij∪Γ
−

j
\Γ
−

i

px. Hence (5.3) is verified to equality and the recusion holds for

machine 1.
Suppose now the recusion holds for machine k−1. We can prove the recursion

is then verified on machine k with simular arguments.
We first consider the schedule S in which Cj(S) = Ĉj and the block B of

operations consecutive on machine 1, ending with j, is such that there is no idle
time between any two consecutive operations in B and B is of maximal size. If
|B| = 1 then we have either Cj(S) = rj + pj or Cj is set by Cj− . To maximize

this value we have Cj = Ĉj− + pj .
If |B| > 1 we can also state that an operation i ∈ Ij ∪ Γ−

j starts the block
with Si = ri or Si = Ci− . With similar arguments as for machine 1, we prove
that all operations of the set Ij∪Γ−

j \Γ−
i are in the block. Furthermore if Si > ri

then we have Si = Ci− = Ĉi− to have Ĉj maximal. Last we can show that for
any operation i ∈ Ij ∪ Γ−

j , we can build a feasible schedule S in which all the
operations before i are machine predecessors of i and the operations after j are
machine successors of j and Si = max(ri, Ĉi−). This achieves the recursion. ⊓⊔

Let ν = n/m be the number of jobs. Due to lemma 1, we have the following
result.

Theorem 2. Problem F (sa)|ri, preck|(fmax → max) can be solved in O(mν2)
times if each function fi is computable in O(1) time.

Proof. Once sets Γ−
j and Ij are built for each operation j, all worst-case com-

pletion times can be computed trivially via the proposed recursion by dynamic
programming in O(mν2) where ν = n/m. ⊓⊔

10

In the illustrative example of section 2, the worst case completion times
are given (in the order of their computation) by Ĉ1 = r1 + p1 = 1 (a), Ĉ3 =
r5 + p5 + p3 = 8 (c), Ĉ5 = r1 + p1 + p3 + p5 = 7 (c), Ĉ7 = r5 + p5 + p3 + p7 = 14
(c), Ĉ2 = Ĉ1 + p2 = 7 (b), Ĉ4 = Ĉ7 + p8 + p4 = 20 (c), Ĉ6 = Ĉ3 + p4 + p6 = 19
(c), Ĉ8 = Ĉ3 + p4 + p6 + p8 = 20 (c).

6 Conclusion

In this paper, we proposed a longest path formulation of the problem of evalu-
ating the worst case performance of flexible solutions in disjunctive scheduling
with minmax regular objective function. A flexible solution is defined by an oper-
ation partial order on each machine. We proved that this problem is polynomial
in the special case of the flow-shop problem with release dates and additional
precedence constraints between operations scheduled on the same machine.

We should now focus on extension of this approach to more general problems.
Unfortunately, extending this approach to the job shop is not trivial. A way to
solve it is to study the complexity of the problem of finding the constrained
longest elementary path in the disjunctive graph of the job-shop problem.

References

1. M. Aloulou, M. Kovalyov, and M.C. Portmann. Maximization in single machine
scheduling. Annals of Operations Research, 129:21–32, 2004.

2. M.A. Aloulou and M.-C. Portmann. An efficient proactive-reactive scheduling
approach to hedge against shop floor disturbance. In G. Kendall, E.K. Burke,
S. Petrovic, and M. Gendreau, editors, Multidisciplinary Scheduling: Theory and

Applications 1st International Conference, MISTA ’03 Nottingham, UK, 13-15 Au-

gust 2003. Selected Papers. Elsevier, 2005. to appear.

3. C. Artigues, J.C. Billaut, and C. Esswein. Maximization of solution flexibility for
robust shop scheduling. European Journal of Operational Research, 165(2):314–
328, 2005.

4. K. R. Baker. Introduction to sequencing and scheduling. Wiley, 1974.

5. J.C. Billaut and F. Roubellat. A new method for workshop real time scheduling.
International Journal of Production Research, 34(6):1555–1579, 1996.

6. J. Erschler and F. Roubellat. An approach for real time scheduling for activi-
ties with time and resource constraints. In R. Slowinski and J. Weglarz, editors,
Advances in project scheduling. Elsevier, 1989.

7. C. Esswein, J.C. Billaut, and V. Strusevich. Two-machine shop scheduling: Com-
promise between flexibility and makespan value. European Journal of Operational

Research, 167(3):796–809, 2005.
8. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman, 1979.
9. J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine

scheduling problems. Annals of Discrete Mathematics, 1, 1977.

10. M. E. Posner. Reducibility among wighted completion time scheduling problems.
Annals of Operations Research, pages 91–101, 1990.

11

11. B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes dis-
jonctives, 1964. D.S. vol. 9, SEMA, Paris, France.

12. S.D. Wu, E.S. Byeon, and R.H. Storer. A graph-theoretic decomposition of the job-
shop scheduling problem to achieve scheduling robustness. Operations Research,
47(1):113–124, 1999.

