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The present work considers the turbulent Von Karridw generated by two coaxial counter-rotating stho
(viscous stirring) or bladed (inertial stirring)séls enclosed by a cylindrical vessel. Numericatljptéons based
on one-point statistical modeling using a low Regisahumber second-order full stress transport cloREM)
are compared to velocity measurements perform&Eat An efficient way to model the rule of straigilades
is proposed. The influences of the rotational Reymaiumber, the aspect ratio of the cavity, thetirgadisk
speed ratio and of the presence or not of impe#lezsinvestigated to get a precise knowledge ofdgmamics
and the turbulence properties in the Von Karmarfigaration. In particular, we highlighted the tritim be-
tween the Batchelor [1] and the Stewartson [25] feimuctures and the one between the merged andasegpa
boundary layer regimes in the smooth disk cased®¥ermined also the transition between the oneagellthe
two cell regimes for both viscous and inertialrsigs.

Keywords: Von Karman flow, counter-rotating disks, turbulence modeling, Reynolds Stress Model

Introduction relative to the steady rotationally-symmetric vissdlow
between two infinite disks. In the exactly

The flow between two finite counter-rotating disks counter-rotating regime, the distribution of tantgn
enclosed by a cylinder, known as the Von Karmar [27 velocity is symmetrical about the mid-plane andikith
geometry, is of practical importance in many indast five zones: one boundary layer on each disk, asitian
devices. Counter-rotating turbines may indeed leelis  shear layer at mid-plane and two rotating coregitrer
drive the counter-rotating fans in gas-turbine argines. side of the transition layer. As stated by Batchélion-
Moreover, this configuration is often used for sting self, “this singular solution may not be realizalex-
fundamental aspects of developed turbulence ane- espperimentally, of course”. In 1953, Stewartson [&&]nd
cially of magneto-hydrodynamic turbulence. that the flow is divided into three zones for largdues

From an academic point of view, the laminar flow of the Reynolds humber based on the interdisk apatdi

between two infinite disks has indeed justified gian Rey =QHZ/v>100 (Q the rotation rate of the disks
works since the beginning of the controversy betwee andv the kinematic viscosity of the fluid): one boungar
Batchelor [1] and Stewartson [25] on the flow stane.  |ayer on each disk separated by a zone of zeretuiad)
Batchelor [1] solved the system of differential ajons  velocity and uniform radial inflow. Kreiss and Rarf15]
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have proved the existence and non-uniqueness of solinduction. Numerous experimental [26] or numerical

tions at sufficiently large Reynolds numbers foe th
two-disk configuration. Thus, both Batchelor anév&t
artson solutions are possible depending on theligihd
boundary conditions but the Batchelor predictios hat
been mentioned in the literature for
counter-rotating disk case. The reader is refetoethe
work of Holodniok et al. [13] and to the review of
Zandbergen and Dijkstra [28] for a more extensive s
vey until 1987.

In the turbulent case, the Von Karman flow is a slod
flow to study the turbulence characteristics on lsma
scales. The main flow is axisymmetric and so offens
interesting intermediate situation
two-dimensional and three-dimensional flows. Mawger
al. [17] established, using low-temperature heligas,
the turbulence characteristics (structure functidrBF
of the velocity differences) and confirmed thabtuence
on small scales has universal properties indepenafen
the forcing. Mordant et al. [19] investigated thendmi-
cal behavior of the Von Karman flow at moderatéigh

Reynolds numbers using spatially averaged measureg - —

ments. Data of the power input and of pressureuaic
tions at the wall are sufficient to calculate thaimtur-
bulence characteristics. Cadot and Le Maitre [Glsob
ered the turbulent flow between two counter-rotatin
stirrers. They measured the instantaneous torquésgl
the flow and compared them to similarity laws haviro

between

[4,23] studies have then been dedicated to mag-
neto-hydrodynamics turbulence in the Von Karman ge-
ometry.

To our knowledge, only very few numerical works

the exacthave been devoted to the characterization of thanme

and turbulent flow properties in the Von Karman mpee
try. Kilic et al. [14] performed a combined numeadiand
experimental study of the transitional flow between

smooth counter-rotating disks fdr<T'<0, Re=10°

and G=H/R=0.12, wherE is the ratio between the rotat-
ing speeds of the two disks and G is the aspeict ot
the cavity. They compared mean radial and tandentia
velocity measurements using a single-componentr lase
Doppler anemometer with computed results eithdas ¢
sical low-Reynolds number «-turbulence model or a
laminar elliptic code. Fdr =-1, the weakly turbulent
flow is of Stewartson type, whereas the laminar gom
tations and measurements produce a Batchelor tipe o
flow. The transitions from laminar to turbulent g
and from Batchelor to Stewartson flow structureuscc
-0.4. A good agreement is obtained in the ro-
tor-stator configuration [=0) and in the exactly
counter-rotating regimel{=-1) but at intermediate val-
ues offl, the agreement is less satisfactory.

In this paper, we present comparisons between nu-
merical predictions using a Reynolds Stress Mode},

dependence on the Reynolds number with a good -agre@oted RSM, and velocity measurements performed at

ment. Ravelet et al. [22,24] reported experimeptat
dence of a global bifurcation on a highly turbuléotv
between two counter-rotating impellers. The tramsit
between the symmetric and the unsymmetric solutions
subcritical and the system keeps a memory of ghj.
Monchaux et al. [18] investigated the propertiesthaf
mean and most probable velocity fields in the saore
figuration. They showed that these two fields aee d
scribed by two families of functions depending antb
the viscosity and the forcing. For large valuestiod
Reynolds number, a tendency for Beltramization haf t
flow is obtained. Boronski [3] simulated the laminén
Karman flow between two counter-rotating disks
equipped or not by straight blades. For a rotati&ey-
nolds number based on the disk radius R, equabD@ 5
the poloidal-to-toroidal ratio is increased fron?d & the
smooth disk case to 51% in the bladed disk case.

A renewal of interest for the Von Karman flow isrbo

CEA for the turbulent flow between two counter-totg
disks. The main objective is to acquire a precisevk-
edge of both the flow structure and the turbulemem-
erties of the high turbulent Von Karman flow betwee
smooth disks for a large range of the flow conpal
rameters. A second objective is to propose an aady
efficient way to model impellers and to quantifyeith
effect on the Von Karman flow at high Reynolds nemb

Experimental Procedure
Geometrical model

We consider the Von Karman flow generated by two
counter-rotating disks enclosed by a cylindricased, as

illustrated in Fig. 1. The cylinder radius and heigre
respectively, Rc=100 mm and Hc=500 mm. The radius
ratio R/Rc between the rotating disk radius R amel t
cylinder radius is fixed to 0.925. The distancewssn

the inner faces of the disks H can vary betweerarid

from the dynamo experiments. The flow betweeni80 mm. We use bladed disks to ensure inertiairsgior

counter-rotating impellers is indeed considered g®s-

flat disks for viscous stirring. The impellers aven by

sible candidate for the observation of a homogesieoutwo independent 1.8 kW motors, with speed servg loo
fluid dynamo less constrained than the Riga andcontrol. The motor rotation rate®; and Q, can be

Karlsruhe devices. The flow needs to be highly wiebt
in order for nonlinearities to develop in the maime

varied independently in the range 0-900 rpm,
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Fig. 1 Sketch of the cavity and relevant notation.

Flow control parameters

The main flow is controlled by the ratio betweee th
two rotation ratef =-Q,/Q4, the aspect ratio of the

cavity G=H/Rc and the rotational Reynolds num-
berRe=QlR§/v. In the case of inertial stirring, the

Turbulent Von Karman fletwieen two counter-rotating disks

The differential Reynolds Stress Model (RSM)

The flow studied here presents several complexities
(high rotation rate, wall effects, transitional egrshear
layer), which are severe demands for turbulenceetrod
ing methods. Our approach is based on one-poitis-sta
tical modeling using a low Reynolds number sec-
ond-order full stress transport closure derivednfrthe
Launder and Tselepidakis [16] model and sensitiwed
rotation effects [10]. This approach allows for etadled
description of near-wall turbulence and is freenfrany
eddy viscosity hypothesis. The general equationttier
Reynolds stress tensdrj can be written:

dRj
gt D *Dij + @i e + T @)

where Bj, Djj, ®j, gjand Tjrespectively denote

the production, diffusion, pressure-strain corielat
dissipation and extra terms. The diffusion t&ipis split

into two parts: a turbulent diffusiong , which is in-

terpreted as the diffusion due to both velocity anes-
v
I’
cannot be neglected in the low Reynolds numbeoregi
In a classical way, the pressure-strain correlatenm

sure fluctuations and a viscous diffusidd which

number of straight blades n and their dimensionlessq)ij can be decomposed as below:

height h*=h/Rc are also considered.
Measurement technique

Velocity measurements are done using a laser Doppleq) (1)

velocimetry (LDV). A basic measurement is a two min
utes acquisition of 190000 randomly sampled valies
one velocity component at one point of the flow.eDao
geometry reasons, we have access to the axigdnd

tangential Vg mean velocity components. From this raw

data, one may compute the time-averaged flow gont
point on a 11*15 grid.

Statistical modeling

oj oM +0®@ +oW )

1) 1) 1)

i is interpreted as a slow nonlinear return to gmyr
and is modeled as a quadratic development in tlessst
anisotropy tensor, with coefficients sensitizedthe in-

variants of anisotropy. This term is damped neanthll.

The linear rapid parttl)i(jz) includes cubic terms. A wall

correction cDi(JY") is applied to the linear part which is

modeled using the Gibson and Launder hypothesip [12
with a strongly reduced numerical coefficient. Hoee

The predictions of the Reynolds Stress Model (RSM)the widely adopted length scale®?/z is replaced by the

used in the present work have already been vatidiate
the rotor-stator configurationl{=0) [10,21] for a wide
range of aspect ratio G and Reynolds number Re.
showed that this level of closure is adequate ah glow
configurations, while the usual&model, which is blind
to any rotation effect presents serious deficiecldus,
the purpose of this paper relying on a well esthegld
turbulent model is to extend its application to niew
conditions and to get a better insight into theadyits of
the highly turbulent Von Karman flow. The readethas
referred to [9,10,20,21] for more details about tinedel
and the numerical method.

length scale of the fluctuations normal to the wahe
viscous dissipation tensor has been modeled inrdale

lEonform with the wall limits obtained from Tayloerses

expansions of the fluctuating velocities. The exgam
Tjjaccounts for implicit effects of the rotation oreth

turbulence field. It contains additional contrilmuts in
the pressure-strain correlation, a spectral jamnbénm,
inhomogeneous effects and inverse flux due to iotat
which impedes the energy cascade [7].

The dissipation rate equation to solve is the one
proposed by Launder and Tselepidakis [16]. Theuurb
lence kinetic energy k equation which is redundara
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RSM model is still solved, in order to get fastemreri- G=1.8 Re=2.1C° and straight blades (h*=0.2, n=8) to
cal convergence. It is verified that after conveaethe ' '

ST . study the influence of the trailing coefficiedf . The
turbulence kinetic energy is exactly equaRtp/2.

differences on the extrema of the tangential véjoci
Numerical method component are inferior to 0.5% fGp in the range

The computational procedure is based on a finite[o.1-2]. Thus, we have chosen to fix the value ©f
volume method using staggered grids for mean Jgloci equal to 0.5, which agrees with the values propdsed

components with axisymmetry hypothesis in the meangavins [2] in the case of a thin rectangular plagepen-
The computer code is steady elliptic and the nuraéri dicular to an uniform flow

solution proceeds iteratively. We have verified thd 202

mesh in the (r,z) frame is sufficient in smoothatitg Smooth disk case: viscous stirring

disk cases to get grid-independent solutions. Aneef . _ .

mesh 1602 is necessary to model flows with straight In this sect|on,_we consider the_turbulent flovwizen
blades. It is to be compared to the 140 x 80 mesk by tV_VO countgr-rotatmg flat §mooth disks. Thus’ weLes a
Elena and Schiestel [9,10] and Poncet et al. [30/21 viscous stirring and we investigate the influenéethe
rotor-stator systems. The calculation is initiadizesing Reynolds nt_meer Re, the aspect rath of the syskem
realistic data fields, which satisfy the boundagndi- and the ratiol’ betw_een the two rotation rates on the
tions. About 20000 iterations (several hours on theMean and turbulent fields.

bi-Opteron 18 nodes cluster of IRPHE) are necessary Flow structure in the exact counter-rotating regime
obtain the numerical convergence of the calculafidre

stress component equations are solved using nidtrck i (@) 1 (b) ; () : () : (e)
tridiagonal solution to enhance stability using rstag-
gered grids. 0.5 0.5 0.5 0.5 0.5
r

Boundary conditions . ; ° : °

At the wall, all the variables are set to zero exder B2 o B3 e o3
the tangential velocityy, which is set toQqr on disk e N TR N
1, -Q,ron disk 2 and zero on the cylinder. At the pe- HRR  WER WER WER YRR

riphery of the disksR<r<R.) Vjis supposed to vary Fig. 2 Axial profiles of the tangential velocity fof=-1,
_ 5 — *e *—
linearly from zero on the cylinder up t@;Ron disk 1 ~ Re=6.28x10"and G=1.8 at (a) r*=0.35, (b) r*=0.48, (c)

. ) . r*=0.61, (d) r*=0.74, (e) r*=0.87. Comparisons betm the
and -Q,R on disk 2 and the radisl and axiaV,ve- |, merical results (lines) and the experimental ¢ggenbols) in

locity components are fixed to zero. the smooth disk case.

We can not implement real straight blades in our
two-dimensional code. So we limit to modeling their ~The structure of the mean flow in the exact
most important effect, which is to increase thécafficy ~ counter-rotating regime is henceforth globally well
of the disks in forcing the flow. Thus, we add duvoic known: it can be decomposed into two toroidal calls
drag force f in the equation of the tangential cijo the tangential direction (not modelled here becadidhe
componen¥, . If we consider n straight blades, the axisymmetry hypothesis) and into two poloidal regia-

; ; ) tions in the (r,z) plane. We focus here on the idallo
volumic drag force f can be written as:
g cells (Fig.6a): the fluid at the top and the bottofrthe

f=——=—=Cp|VieVrel (3)  cavity is forced into two opposite rotation speeaisq is
then entrained by the disks. Consequently, a slgar
where F is the drag force of one blagéhe fluid density, develops in the equatorial plane. This is percégptib
Cp the dimensionless drag coefficient and Fig.2, which presents axial variations of the tariige

Viel =Qir —Vy the relative tangential velocity on disk yelocity component foF =-1, Re= 6.28x10°, G=1.8 at
i=1,2. The force is designed to make the fluid eglo five radial locations in the range r*=0.35-0.87 eTitadial
closer to the local disk velocity near the diskkisTform  and axial velocity components are not presente@ her
is close to the one proposed by Boronski [3] foecsal ~ because they are almost zero in the whole cavitly to
code. For curved blades, the same approach casdoe u the experiments and in the calculations. The tatigen
a volumic lift force can be added in the equatiérihe  component is quite weak too except in the two \thity
radial velocityV, . It will be the subject of a next study. ~ boundary layers, which develop on each disk andseho

Some calculations have been performedIfer-1, size is shown in Fig.3 and close to the periphethegre
the shear layer is observed.
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Fig. 3 Radial distribution of the boundary layer thickné#d
(symbols: RSM, lines: polynomial interpolation). eSkegend
Fig.2.
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For r* < 0.48 (Fig.2a), the profile exhibits a Stetson
flow structure: a quasi zero tangential velocithea@n-
closed by two boundary layers on each disk. The flo
the boundary layers is characterized by a strongeta-
tial velocity component (positive on disk 1 and akdee
on disk 2) and by a radial outward component notsh
here. Towards the periphery (Fig.2b-e), the flows g&f
Batchelor type with five distinct zones: two bounda
layers on the disks, a shear layer at mid-plane tevad
zones enclosed between the two. These last tweszree
characterized by a weak but non zero tangentialcitgl
component. The shear layer thickens when the lazal
dius r* increases. Contrary to the laminar casenteg
by Kilic et al. [14], there is practically no radiaflow

Turbulent Von Karman ftetween two counter-rotating disks

5

merical predictions of the RSM model are compared t
present LDV measurements and to the velocity meas-
urements of Ravelet [22] féte =10°. These data are
also compared to the local disk 1 and disk 2 viakxi

0.2

0.1

v»,
% -0.1

-0. -02
0 0 02 04 06 08

r

02 04,06 08

¢ | — Re=2x10° (RSM)
%] | - - Re=6.28 x 10° (RSM)

0 Re=6.28 x 10° (LDV)
-~ Re=1.3 x 10° (RSM)

- Re=4x 10°% (RSM)

* Re > 10° (Ravelet, 2005)

0.1
V/(Q,R)of

-0.1

-0.2
0 02 04 06 08

r

-0.2
0 02 04 06 08
r

Fig. 4 Radial profiles of the tangential velocity fdx=-1 and
G=1.8 at (a) z*=0.91, (b) z*=0.59, (c) z*=0.02, {#)=-0.59, (e)
z*=-0.92.

The numerical data forRe = 6.28x10° merge al-
most into a single fitting curve. It means thatréhés
practically no effect of the Reynolds number onrtiean
field ever since the flow is turbulent. FdRe= 2x10°, a
significant increase of the magnitude ¥ is observed

whatever the axial position, which is characteristi the
laminar regime. The critical Reynolds number foe th

around z*=0. A good agreement between the numericalransition from the laminar to the turbulent stetehus

results and the experimental data is obtained ekien

overestimated compared to the one obtained by Bavel

values are quite weak-. Thg RSM model catches the an22: Re=10°. Nevertheless, the present velocity meas-
pearance and the thickening of the shear layer. Therements performed on the same experimental sesup

agreement between the numerical predictions and th
measurements is less satisfactory in the boundemers

as it can be seen Fig.2. These zones are in fadtyha
attainable by LDV measurements.

The transition between the Stewartson and Batchelo
flow structures can also be seen in Fig.3 fromrauéal
evolution of the boundary layer thicknes$or the same
set of parameters. Very close to the rotation dhis,ax-
ial flow impinges the disks and creates very lavgand-
ary layers on both disks, whose size decreasesthdth
local radius. The flow is then of Stewartson typering
the transitiong increases as already observed by Ponce
[20] for rotor-stator flows [ =0). Forr* =0.47, the
flow is clearly of Batchelor type and the#,decreases
towards the periphery of the cavity.

We investigate the influence of the Reynolds number

on the mean flow. Fig.4 presents radial profilesttod
tangential velocity component fbr=-1, G=1.8 and four
Reynolds numbers at different axial locations. The

£22] confirm the numerical results. Compared to phe-
vious measurements, an effect of Re is observeth®n

radial profiles of Vg at the periphery of the cavity. In

fact, the critical Reynolds number for the lamitartur-
ulent state transition depends strongly on thenary
conditions and especially on the conditions imposed
the radial gap. We recall that a linear profilangosed
in the numerical code fafy , that does not take into ac-

count any recirculation zone and that could expthis
difference. This tendency for relaminarization dfe t
RSM model has already been noticed by Poncet et al.
[20,21] in the rotor-stator configuration. As a clusion,
there is no significant effect of the Reynolds nembn

the mean flow foRe =10°, which confirms the results
of Cadot et al. [5] and Ravelet [22].
Fig.6a presents the corresponding streamline patter

The mean flow is divided into two symmetric poldida
cells, whose size is equal here to 0.5 H alongattial
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direction and independent of the Reynolds numipethé  mean flow is strongly dominated by the faster disk
radial direction, the diameter of the largest eddib-  (Fig.6b-e). Varying the ratid displaces the shear layer
served is of the order of the disk radius R, shgwilis  towards the slower disk. The cell close to the lodisk

scale is the order of the energy scale injection. invades almost the whole interdisk spacing fer-0.7
1 1 =7 1 = (Fig.6d). ForI'=-0.2 (Fig.6e), the flow structure resem-
,-’\ bles the one observed in the rotor-stator configpmg20]
05 05 h 05 . with streamline patterns parallel to the rotatirgga
= L/
B - - G=04 o
Z 0 0 = G=1.8 0 1
A
-0.5 -05 -0.5 \/
v A
i A
-1 4 U Lo
-1 1 -01 0.1 02 -002 0 0.02
A, n)

Fig. 5 Axial profiles of the mean velocity components for Fig. 6 Computed streamlines patterns between smooth ftisks

r*=0.81,I'=-1,Re=1.3x10° and viscous stirring (RSM). G=1.8, Re=1.3x10° and (a)'=-1, (K)I'=-0.9, (c)I'=-0.8, (d)
=07, (€)l=-0.2.

The influence of the aspect ratio of the cavity riGtioe

mean field has also been investigated ®#[001:18] This transition between the two cell and the orié ce
regimes can be seen also from Fig.7. It presestgvb-

i i _ 6
(Fig.5) and a given Reynolds numiser=1.3<10". FOr |ution with T of the dimensionless siz&,/H of the
G=1.8, the boundary layers are separated as alraady . smallest cell (along the upper disk) in the axiaéction

tioned and the mean tangential velocity component i defined in Fig.6b. In the smooth disk case, weasothat

constant in the core of the flow. When one decredise decreases rapidlv for decreasing valuesTofirl the
aspect ratio, the flow gets of torsional Couetigetyvith Se pialy 9 biir

merged boundary layers. For G=0.0¢, (Fig.5a) var- range [-1; -0.8] followings./H >-2.2T". For smallest

ies indeed linearly in the median region of thevildhe values of T[], the cell is reduced to a very thin region at-
transition between the merged and the separateddoou tached to the upper disk (Fig.6d-e), which disappea
ary layer regime occurs for G=0.4. This is to benco Progressively along the external cylinder and So
pared to the value G=0.012 obtained in the rotest tends to zero.

configuration [21]. The transition is continuousdanot

clear from the Vg -profile. Nevertheless, if we consider 05
the Vv, -profile (Fig.5c), we can clearly see that the bxia 0-45'\ o
velocity component is almost zero whatever the ealfi o4 \ 5
G, expect for G=0.4, where the fluid moves towattts 0% .
upper and lower disks. The transition can alsohzeac- SMH™T b
. . . . . . 0.25- \\
terized by considering thev/, -profiles (Fig.5b), which ol \y ”
exhibit the thinning of the boundary layers forrig&sing aisl \ - ¢
values of the aspect ratio. o \
0.05- \\\\‘ \‘\‘
Flow structure for-1< T <0 o 5
1‘ 0.8 0‘6 04 0‘2 0

Another interesting feature in counter-rotating kdis
flows is the influence of the ratib between the two ro- Fig. 7 S./H againstI’ for G=1.8 (RSM). Comparisons be-
tating disk speeds (Fig.6). The Reynolds numberthad

aspect ratio of the cavity are respectively fixed Ween the () smooth disk casB¢=1.3x10°), the (-) bladed

disk case and previous results of (0) Kilic et[a4] and @)
to Re=1.3x10° and G=1.8. We focus on the Gan et al. [11].

counter-rotating disk case for whidte [-1; 0]. In the
exact counter-rotating regime (Fig.6a), the flowsjen- In Fig.7, our results are compared to the onesirduda

metric and two cells with the same size 0.5 H cstexi by Kilic et al. [14] and Gan et al. [11], who pemfoed
For small rotating speed differences, the structirthe calculations fo'= [-1; 0] and G=0.12 using a classical
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k- turbulence model. F&te=10, Kilic et al. [14] found produce an intense tgrbulence in a compact region o
that the evolution ofS, againstl” is non monotonous. It space [17]. The magnitudes of the three normal cemp

) nents (in principal axes) are almost the sameeéretjua-
decreases more slowly froftx-1 to I'=-0.2 than in our

; X torial plane. It means that turbulence is quadidguc in
case. ltis a combln.ed effect of b_oth the Reynaldsber . region. The cross components are quite weapex
and the aspect ratio of the cavity. Ho¢-0.4, they ob-

served a double transition: from laminar to turbtligow
and from Batchelor to Stewartson type of flow. Tdee =~ components with a bump at mid-plane.
crease ofS.is much faster witl" in the laminar case

for the R:e component, which behaves like the normal

[14]. ForRe=1.25x10°, Gan et al. [11] obtained stream- Bladed disk case: inertial stirnng

line patterns different from the ones shown in &ifpr I To increase the efficiency of the disks in forciig
=[-0.8;-0.2] essentially because of the small vaifis. A~ flow, we used n blades of height h* mounted on both
large cell along the slower disk is still observit disks. The stirring is called inertial because tiéd is

I'=-0.4. This cell is trapped by the main flow duethe  Set into motion thanks to areas of forcing perpeuler
faster disk in the zone r*=0.3-0.45. to the motion itself. In that case, Ravelet [22pwhd

that all mean and turbulent quantities are independf
Turbulence field in the exact counter-rotating regime the Reynolds number in the rar@e:[105,2><106].

Thus, we have chosen to fix the values Ré= 2x10°

1 1
0.8( | s | and G=1.8. In that case, the boundary layers gpa-se
\ rated and the flow is found to be highly turbulevibre-
06 i) 1 06 ] . ; . .
| over, direct comparisons with the experiments ofdRat
04 \ R 94 [22] can be performed. The purpose of this sedsoto
02f /= 02 RN ] propose an efficient way to model the effect oéigfint
z oR:@?j,Q I Ak\ Re | blades on both the mean and turbulent fields.
02 / i??o’z -0.2 Rz /
oal i | o4 | Flow structure in the exact counter-rotating regime
06l %;”/ L e ] In the bladed disk case, the flow structure is com-
- /L . pletely different from the smooth disk case, where
. ) velocity gradient are located in the boundary laysong

0 0.05 04 5 0 S the disks and decrease when the Reynolds number in-
x10 creases. For an inertially driven flow, the meawfdoes
Fig. 8 Axial profiles of the Reynolds stress tensor at0r84 for not present any appreciable velocity gradient i it
r=-1, G=1.8 andRe=6.28x10° in the smooth disk case Cinity of the blades (Fig.9) and the gradients dierib-
(RSM). uted in the median region of the flow. The meamvfie
divided into three main regions: a shear layer at
mid-plane and two fluid regions close to each hibdisk.
The intensity of the shear at mid-plane is incrdasem-
pared to the viscous stirring case. This sheauéstd the
two recirculation cells. It induces a strong radrglow
(V,<0) around z*=0 and two opposite axial flows to-

wards the disks. The magnitude of the mean axidl an
radial velocity components increase from the peiph

. (Fig.9c) to the rotation axis (Fig.9a). From thekdio the
by the local disk 1 velocity. For exampl®,, is de-  top of the blades, the tangential fluid velocityfasrly
close to the local disk velocity. Moreover, a stgaadial
outflow is created along the bladed disks and guiés
lems [21], turbulence is mainly concentrated in thethe impellers. At the top of the blades, there &trang

boundary layers with the same turbulence levelshén  decrease of\f, | interpreted as the wake of the blades.
upper and lower disk boundary layers. The mairediff ) .
ence with the rotor-stator configuration is thabtuence There is a very good agreement between the nurherica

is also generated in the median region of the diit&r predictions and the velocity measurements concgrnin
Spacing and is due to the Shear’ stretched byetﬁmu_ the Ve —profiles. A small difference is observed in the
lations. The Von K&rméan arrangement is indeed kntovn shear layer, where the RSM model predicts a thinner

As already mentioned below, there is practically no
effect of both the Reynolds number and the aspmixi r
on the mean flow. In the following, we focus on thect
counter-rotating regimé=-1 and Re and G are fixed

respectively toRe= 6.28x10° and G=1.8. Fig.8 pre-
sents the axial profiles of the six components laf t
Reynolds stress tensor. These components are rnipechal

fined asR}, =v2/(Q,r)?. As in all rotating disk prob-
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layer than the one measured by Ravelet [22]. Tdss |
author observed, for the same set of parametegh hi
energy levels for frequencies inferior to the itiac fre-
quency. This contribution is attributed to the squpace
of strong coherent structures in the shear layérohe
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one obtained by Dijkstra and Van Heijst [8] for
Re— 0in the smooth disk case =-2/3. The measure-
ments of Ravelet [22] reveal a transition for-0.78. It
confirms the similitude observed by [6] between the
smooth disk flow with a large viscosity and the mea

served in the smooth disk case and which may explaiflow in the inertial stirring case.

the weak discrepancies obtained.
@) (b)

1 1
Zy 0
= 0 = 0
v ) v
Zo < 0
-1 -1
-1 0 1 0 1
VAQ VAR ViR
r 1 r 1 r 1
1 1 1
Zy 0 0
=] =] -1 &
-1 0 [ 0 1 0 1
viQ.n Vi@ v Q)

z'" z'v

Fig. 9 Axial profiles of the mean velocity components for-1,

G=1.8 and Re=2x10° and bladed disks (n=8, h*=0.2) at (a)
r*=0.4, (b) r*=0.5, (c) r*=0.6. Comparisons betwetre nu-
merical predictions (lines) and the LDV data of Blat [22]
(symbols).

Flow structure for -1 < T <0
(b)
==\ 1

The transition from the two cell to the one cetust
tures can be seen also from Fig.7 Compared to the
smooth disk case, the cell along the slowest didarger
for '=-0.8 (Fig.10c). For'=-0.7, only a small recircula-
tion subsists along the upper disk and completedgd
pears forl'=-0.6. Fol" = -0.6, the same pattern is ob-

served with streamlines parallel to the rotatiois.ax

Turbulence field in the exact counter-rotating regme

L . -1 L .
0.4 0.6 -0.05 0 005 01

o] 0.2

08 0.15

Fig. 11 Axial profiles of the Reynolds stress tensor atOr81

for =-1, G=1.8 andRe=2x10° and bladed disks (n=8,
h*=0.2). (lines) RSM and (o) LDV data [22].

To enable direct comparisons with the viscousisgrr
case, Fig.11 presents the axial profiles of thecempo-
nents of the Reynolds stress tensor at the saniasrad
r*=0.81 and for the same values of G dndThe main

Fig. 10 Computed streamlines patterns between bladed diSk%iﬁerence between the smooth and the bladed disk c

(n=8, h*=0.2) for G=1.8,Re=2x10° and (a)I'=-1, (b)
=-0.9, (c)I'=-0.8, (d)'=-0.7, (e)['=-0.6.

figurations is that, in the latter case, the tuelge inten-
sities vanish towards the disks. Apart from thatpu-
lence is also mostly generated at mid-plane becafise

We perform the same analysis as in the smooth diskhe shear stretched by the recirculations. Theeslad-

case by varying the ratio between the two rotating disk

duce a much stronger shear zone in the equatdaaép

speeds. Fig.1Presents comparisons between the smoottcompared to the smooth disk case as already seen fr

and bladed disk cases concerning the sigef the cell

along the slowest disk fdr = [-1; 0]. The same behavior
is obtained but the transition between the two @edl the

one cell structures§. — 0) is slightly delayed. It occurs
in the inertial stirring case fdr =-0.65, which is close to
the experimental value obtained by Cadot and Lenglal
[6] in the same configuratioh=-0.69 and the analytical

the mean velocity profiles (Fig.9). Thus, the tuemee
levels, regarding the normal Reynolds stress coemtsn
(Fig.11), are almost 20 times larger than for viscstir-
ring and quite comparable to the mean fluid velodit
confirms the previous measurements of Cadot ¢bhin
steady regimes of turbulence in the Von Karman geom
try. They found that the fluid velocity fluctuatisrare
close to the fluid mean velocity and 6 times largethe
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bladed disk case than in the smooth disk casédempte- due to the boundary layers and hides the dependance
Re. All these results can thus be extended to higeg-

sent study, theRi;r component is much weaker than the
nolds numbers.

two other normal components, which indicates the tu
bulence anisotropy in the core of the flow. Thesero

components are also stronger than in the smooth disConclusion

case. The level of theR’;6 component (Fig.11) is of the

order oﬂ?:r. Note that the maximum of thage com-

We have performed some comparisons between nu-
merical predictions using a RSM model and velocity
measurements considering the turbulent flow between

ponent obtained at mid-plane (z*=0) using the RSMtwo flat or bladed counter-rotating disks. This figura-
model is in excellent agreement with the asymptotiction known as the Von Karman geometry is used t® pr

value measured by Ravelet [22] for Re larger tha®00D
(relative error inferior to 0.1%).

025

— n=4h'=02
- n=8,h'=0.2
02l T n=18h=02
— n=8,h=0.1
—o— smooth disks .
- STROESRS | P 7
0.15 //
s
01// ’ /
/ e
Pl
0.05 / /
S
A
% 0.2 0.4 0.6 0.8

*

r
Fig. 12 Radial profiles of the turbulence kinetic energy &*

7*=0 forI'=-1, G=1.8 andRe = 2x10° (RSM).

To study the influence of the number n of bladed an

their height h* on the turbulent field, Fig.12 shovadial
profiles of the turbulence kinetic energy k* norimat

by (QlRC)2 for various impeller configurations. These

profiles are plotted at mid-plane where the maximafm
k* prevails. As expected, k* increases towards [plee
riphery of the cavity, it means for increasing loB&y-
nolds number. Then, k* decreases for radial locatim
the gap between the disks and the external cylindfer
can first notice the very weak level of turbulerkieetic

energy in the smooth disk case compared to theetllad

disk cases. Secondly, the influence of the bladebau n
is quite weak for n=4, 8 or 16. Only very closethe
rotation axis, we can notice a different behaviorthe
configuration with 16 blades. Nevertheless, in wiwle
flow, four blades seem to be sufficient to force ftow.
On the other hand, the blade height h* plays a nmore
portant role. The k* level is twice higher when thlades
are twice higher too. Ravelet [22] showed thatnadlan
and turbulent quantities are independent of thenBlelg

number in the rang§e2[105,2><106]. The turbulent
dissipation is indeed much stronger than the digisip

duce an intense turbulence in a compact regiopades

For viscous stirring, the flow is of Stewartson eyp
close to the rotation axis and so exhibits threstirdit
regions: two boundary layers and one shear layer at
mid-plane. When one approaches the periphery of the
cavity, forr* ~0.48, the flow gets of Batchelor type.
Turbulence is mainly concentrated in the boundaygis
and in the transitional shear layer, where turbeders
almost isotropic. Turbulence intensities increaseards
the outer cylinder. While the aspect ratio of theity G
is lower than 0.4, the boundary layers are mixed the
flow is then of torsional Couette type. In the caéer-
tial stirring, the impellers are more efficient flarce the
flow. Thus, the transitional shear layer intensifidur-
bulence is so mainly concentrated around z*=0 aamd v
ish towards the disks. The turbulence intensities a-
most 20 times larger than in the flat disk casee fbight
of the blades is found to be the preponderant patiemto
increase the turbulence intensities more than thmaber
of blades. In the flat and bladed disk cases, we -
merically verified the statement of Cadot et al]: [5
“*smooth or rough, the efficiency of a given tydestir-
rer to set the bulk of the fluid in motion is indgpent of
the Reynolds number". Moreover, we have charae@ri
the transition between the two cell and the oné reel
gimes. For inertial stirring, it occurs for = -0.65close
to the values obtained by [6,8].

The agreement between the numerical predictions and
the LDV measurements is very satisfactory in batbes.
For the first time, an easy and efficient way todelcthe
main effect of straight blades has been proposedhér
experimental works are now required to provide more
comparisons for the turbulent fields but also saaleu-
lations for curved blades.
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