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Détection et isolation de défauts par analyse en composantes principales robuste
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L'Analyse en Composantes Principales (ACP) est un outil statistique largement utilisé pour l'analyse de données collectées sur des systèmes en cours de fonctionnement afin de surveiller leur comportement. Cependant, d'un point de vue statistique, l'un des inconvénients majeurs de l'approche ACP résulte de l'utilisation de techniques d'estimation par moindres carrés, techniques qui échouent souvent à s'affranchir des biais de mesure accidentels ce qui est malheureusement assez fréquent sur le plan pratique. Cette communication présente une procédure de détection et de localisation de défauts de mesure. La méthode proposée ne nécessite pas d'étude préliminaire relative à la détection et au rejet de valeurs aberrantes ou de grosses erreurs dans les données utilisées pour la conception du modèle ACP. Elle présente l'intérêt d'utiliser directement les données brutes, éventuellement entachées de grosses erreurs, et le modèle ACP est construit à partir de ces données sans filtre préalable, cette construction étant robuste vis-àvis de la présence de grosses erreurs. Le modèle ACP obtenu étant sain, c'est-à-dire non contaminé par les valeurs aberrantes, son utilisation pour le diagnostic (détection et localisation de défauts de mesure) est alors efficace.

I. Introduction

L'analyse en composantes principales est une technique numérique bien éprouvée dans le domaine du traitement de données pour réduire la dimension de l'espace de représentation d'un système [START_REF] Jolliffe | Princpal Component Analysis[END_REF].

L'ACP est essentiellement basée sur la mise en évidence de relations linéaires entre les variables et présente un caractère d'optimalité au sens d'un critère portant sur l'erreur quadratique d'estimation en valeur moyenne (MSE). Il est bien connu que l'estimation basée sur l'utilisation de critères de type MSE est moins robuste aux valeurs aberrantes que celle issue d'autres critères comme celui de l'erreur en valeur absolue [START_REF] Hubert | Robpca : a new approach to robust principal component analysis[END_REF]. Rappelons que l'approche classique de l'ACP utilise un calcul préliminaire de la moyenne des données et de leur matrice de covariance ; la moyenne et la variance sont sensibles à la présence de valeurs aberrantes, et les résultats obtenus s'avèrent souvent inexploitables car trop biaisés par l'influence de ces valeurs aberrantes.

Pour tolérer la présence de valeurs aberrantes, une analyse en composantes principales robuste peut être conduite en calculant une matrice de covariance des données robuste, cette matrice étant un point clef pour la recherche du modèle ACP. Pour cela, dans [START_REF] Croux | Principal component analysis based on robust estimators of the covariance or correlation matrix : Influence functions and efficiencies[END_REF], les auteurs construisent des fonctions d'influence particulières et les variances asymptotiques qui en découlent ; le comportement du modèle ACP obtenu à partir de cette matrice de variance a ensuite été largement testé par des simulations. Dans [START_REF] Engelen | A comparison of three procedures for robust pca in high dimensions[END_REF], les auteurs proposent l'approche robuste ROBPCA, qui combine les projections révélatrices à une estimation robuste de la matrice de variance. Cette technique produit des estimations qui se révèlent robustes en présence de valeurs aberrantes. Dans [START_REF] Brown | Adaptive mestimators for robust covariance estimation[END_REF], les auteurs se sont focalisés sur l'estimation robuste de la matrice de covariance pour des systèmes multi-dimensionnels. D'autres approches permettant d'appréhender le problème de robustesse ont été proposées dans [START_REF] Böhning | A note on the maximum deviation of the scale-contaminated normal to the best distribution[END_REF] en utilisant une loi de distribution dite contaminée des erreurs de mesure et dans [START_REF] Salibian-Barrera | Pca based on multivariate mm-estimators with fast and robust bootstrap[END_REF] où les auteurs développent une approche basée sur un calcul de moments.

Notre présentation est consacrée au problème de détection et de localisation de défauts dans des données qui résultent, en général, de dysfonctionnements du procédé ou du système d'acquisition de mesure. La contribution porte essentiellement sur la détection de valeurs aberrantes et leur localisation en utilisant des outils complémentaires : l'analyse en composante principale robuste, la reconstruction de données et l'analyse de résidus. L'analyse des résidus est utilisée pour localiser un défaut en limitant le nombre de reconstruction à effectuer. La section 2 est un bref rappel, d'une part, de l'analyse en composantes principales dans le cas classique et, d'autre part, de l'analyse en composantes principales robuste aux valeurs aberrantes. Une procédure de détection et de localisation des valeurs aberrantes est ensuite proposée en section 3, puis, en section 4, est appliquée à un exemple de synthèse en insistant sur la génération de signatures de défaut. Une extension au cas de défauts affectant plusieurs variables simultanément est proposée en section 5.

II. Principe de l'analyse en composantes principales

Soit une matrice de données X ∈ ℜ N ×n , de vecteurs lignes x T i , qui rassemble les N mesures effectuées sur les n variables du système.

A. Approche classique

Dans le cas de l'ACP classique, les données sont supposées être recueillies sur un système ayant un fonctionnement normal (absence de défauts).

L'ACP détermine une transformation optimale (vis-à-vis d'un critère de variance) de la matrice de données X :

T = XP et X = T P T (1) 
T ∈ ℜ N ×n est la matrice des composantes principales et P = [p 1 p 2 . . . p n ] ∈ ℜ n×n , où les vecteurs orthogonaux p i sont les vecteurs propres correspondant aux valeurs propres λ i de la décomposition en valeurs et vecteurs propres de la matrice de covariance (ou de corrélation) Σ de X :

Σ = P ΛP T avec P P T = P T P = I n (2) 
avec Λ une matrice diagonale où les termes diagonaux sont ordonnés dans l'ordre décroissant. Les relations (1) trouvent leur intérêt lorsqu'on diminue la dimension de l'espace de représentation des observations. Il est bien connu que l'analyse des valeurs propres de la matrice Σ de covariance renseigne sur le nombre de composantes principales à retenir [START_REF] Jolliffe | Princpal Component Analysis[END_REF]. Une fois déterminé le nombre ℓ de composantes à retenir, la matrice X des données peut être approximée. Pour cela la matrice des vecteurs propres est partitionnée sous la forme :

P = P P P ∈ R n×ℓ (3) 
A partir de la décomposition (1), on peut alors expliciter la partie principale X des données expliquées par les ℓ premiers vecteurs propres et la partie résiduelle X expliquée par les composantes restantes :

X = X P P T = XC ℓ (4) E = X -X = X(I -C ℓ ) (5) 
où l'on notera que la matrice C ℓ = P P T n'est pas égale à la matrice identité. Si le j ème terme de la diagonale de la matrice C ℓ est proche de 1 et que le reste des termes de la ligne correspondante de la matrice C ℓ sont nulles, cela signifie que la j ème variable n'est pas corrélée avec les autres, et donc qu'elle est estimée à partir de sa mesure (cette grandeur est projetée complètement dans l'espace principal).

B. Approche robuste

Une difficulté majeure de l'ACP provient de sa sensibilité aux valeurs aberrantes. Afin de réduire cette sensibilité, différentes techniques sont utilisables et notamment celle qui consiste à réaliser l'ACP directement sur les données éventuellement contaminées par les valeurs aberrantes en recherchant des directions principales insensibles à ces valeurs aberrantes. Dans [START_REF] Fekri | Robust weighted orthogonal regression in the errors-in-variables model[END_REF] les auteurs définissent une matrice de variances et covariances "locale" en ce sens que la forme proposée tend à privilégier la contribution d'observations proches au détriment d'observations éloignées dues à la présence de valeurs aberrantes. Cette matrice est définie de la façon suivante en fonction des observations x i :

V = N -1 i=1 N j=i+1 w i,j (x i -x j )(x i -x j ) T N -1 i=1 N j=i+1 w i,j (6) 
où les poids w i,j sont eux-mêmes définis par :

w i,j = exp - β 2 (x i -x j ) T Σ -1 (x i -x j ) (7) 
β étant un paramètre à régler pour obtenir effectivement une réduction de l'influence des observations éloignées, les auteurs préconisant une valeur voisine de 2. L'ACP peut alors être conduite sur cette "nouvelle" matrice de covariance réputée robuste vis-à-vis des valeurs aberrantes grâce à la présence de poids adaptés w i,j .

III. Détection de défauts

L'ACP peut être utilisée pour la détection de défauts, les défauts se traduisant par des données aberrantes que l'on peut mettre en évidence par projection sur certains axes principaux. Tout d'abord, on rappelle comment reconstruire r variables parmi n à partir des nr variables restantes [START_REF] Dunia | A subspace approach to multidimensional fault identification and reconstruction[END_REF]. Puis, on montre l'utilisation de cette reconstruction pour la détection de données aberrantes.

A. Reconstruction de données

Connaissant un modèle ACP, la cohérence d'un nouveau vecteur de mesure x peut être maintenant éprouvée. En considérant les résultats rappelés à la section II, on peut écrire la décomposition suivante :

x = x + x (8a) x = C ℓ x (8b) x = (I -C ℓ ) x (8c) 
dans laquelle x et x sont respectivement la projection de x sur les espaces engendrés par les ℓ composantes principales et les nℓ composantes restantes (espace résiduel). Soit R l'ensemble des indices des variables reconstruites, le vecteur xR correspondant à la reconstruction de ces r variables est donné par [START_REF] Dunia | A subspace approach to multidimensional fault identification and reconstruction[END_REF] :

xR = G R x (9a) G R = [I -Ξ R ( ΞT R ΞR ) -1 ΞT R )] (9b) ΞR = (I -C ℓ ) Ξ R (9c) 
où la matrice Ξ R ∈ ℜ n×r est la matrice des directions de reconstruction constituée de 0 pour indiquer une variable non reconstruite (respectivement, de 1 pour une variable reconstruite). Par exemple, prenons le cas où on souhaite reconstruire les variables R = {2, 4} parmi 5 variables, la matrice Ξ R est de la forme :

Ξ R = 0 1 0 0 0 0 0 0 1 0 T On remarque que dans le cas où ( ΞT R ΞR ) -1 existe, les r variables sont reconstructibles sinon elles ne sont que partiellement reconstructibles. Une variable n'est pas reconstructible si elle n'est pas corrélée avec les autres grandeurs, c'est-à-dire qu'elle est entièrement projetée dans l'espace principal.

La structure particulière de la matrice G R montre bien que seules les composantes du vecteur x associées à l'ensemble R sont reconstruites à partir du modèle ACP réduit à ℓ composantes principales robustes et des nr autres composantes de x.

B. Génération de résidus

Dans l'objectif du diagnostic, l'estimé (9a) peut être comparé aux mesures, ce qui permet de construire un résidu [START_REF] Dunia | A subspace approach to multidimensional fault identification and reconstruction[END_REF]. Il est défini par la projection du vecteur des variables reconstruites dans l'espace résiduel :

xR = P (ℓ) R x (10) 
P (ℓ) R = (I -C ℓ ) G R (11) 
Propriété. La matrice de projection

P (ℓ)
R vérifie les deux propriétés suivantes :

P (ℓ) R Ξ R = 0, Ξ T R P (ℓ) R = 0 (12)
Par conséquent, les composantes de xR ne sont donc pas sensibles aux composantes de x correspondant aux indices contenus dans l'ensemble R. Cette propriété est utilisée pour localiser les composantes de x affectées par un défaut.

Pour préciser ce point fondamental, considérons le cas d'une donnée saine x * corrompue par un bruit de valeur moyenne nulle ǫ et d le vecteur des amplitudes des défauts agissant dans les directions Ξ F :

x = x * + ǫ + Ξ F d (13) 
Dans cette expression x * est la vraie valeur (et donc satisfait au modèle ACP ) et x est une observation disponible de x * . En vertu de (10), le résidu calculé en reconstruisant les r composantes de x s'explicite :

xR = P (ℓ) R (x * + ǫ + Ξ F d) = P (ℓ) R (ǫ + Ξ F d) (14) 
dont l'espérance mathématique vaut :

E(x R ) = P (ℓ) R Ξ F d (15) 
-si la direction de reconstruction Ξ R est celle des défauts, alors toutes les composantes du vecteur P (ℓ) R Ξ F sont nulles et E(x R ) = 0, -si la direction de reconstruction Ξ R est différente de celle des défauts, alors les composantes du vecteur

P (ℓ)
R Ξ F ne sont pas a priori nulles. Ainsi, en considérant toutes les reconstructions possibles, l'analyse des amplitudes des résidus xR obtenus est révélatrice de la présence de défauts et permet de déterminer les composantes de la mesure affectées par des défauts.

IV. Résultats numériques. cas simple défaut

A. Génération des données

Un exemple simple construit à partir de quatre variables (x 1 , x 2 , x 3 et x 4 ) et de deux modèles est utilisé. La matrice X des données comporte N = 240 mesures définies de la façon suivante :

x i,1 = v 2 i + 1 + sin(0.1i), v i ∼ N (0, 1) (16) x i,2 = x i,1 , x i,3 = -2x i,1 , x i,4 ∼ N (0, 1)
A ces quatre variables sont ajoutées des réalisations de variables distribuées selon des lois normales centrées de même écart-type égal à 0.02. La variable x 4 , indépendante des autres variables, joue uniquement un rôle "perturbateur" pour l'ACP. De façon simpliste, on peut considérer que le processus en question comporte une entrée (x 1 ) et deux sorties (x 2 , x 3 ). Un biais d'amplitude constante égale à 3 simule la présence de valeurs aberrantes δx 1 , δx 2 , δx 3 affectant les variables x 1 , x 2 et x 3 : des observations 24 à 44 pour x 1 , de 80 à 100 pour x 2 , de 140 à 160 pour x 3 . La figure 1 

r = 1 r = 2 r = 3 r = 4 x11 x12 x13 x14 x21 x22 x23 x24 x31 x32 x33 x34 x41 x42 x43 x44 δx 1 0 0 0 0 × 0 × × × × 0 × × × × 0 δx 2 0 × × × 0 0 0 0 × × 0 × × × × 0 δx 3 0 × × × × 0 × × 0 0 0 0 × × × 0 TABLE I

Signature des défauts

C. Détection de défauts

En utilisant les données brutes (figure 1), nous avons déterminé le modèle ACP robuste en appliquant les propositions de la section 3. L'analyse de la décroissance des valeurs propres normalisées de la matrice de covariance (85.94, 13.99, 0.04, 0.03), permet de limiter à deux, sans ambiguité, le nombre de composantes principales à retenir. Les graphiques 1 à 4 de la figure 2 visualisent les quatre résidus x11 , x12 , x13 , x14 relatifs à (x 1 , x 2 , x 3 , x 4 ), définis en (10), et obtenus par projection des reconstructions de toutes les variables sans utiliser la variable x 1 . Pour cela, (10) a été utilisé avec la matrice de projection P I). Il est à noter qu'une ACP "classique" non robuste ne conduit à aucun résultat significatif de détection de défauts.

V. Résultats numériques. cas multi-défauts

A. Génération des données

Pour mettre en évidence l'aptitude de la méthode proposée à détecter des défauts de mesure, un exemple de synthèse dont les valeurs aberrantes sont parfaitement connues est utilisé. La matrice X est constituée de N = 108 observations d'un vecteur x à 8 composantes générées de 

x i,1 = v 2 i + sin(0.1i), v i ∼ N (0, 1) (18) x i,2 = 2 sin(i/6) cos(i/4) exp(-i/N ) x i,3 = log(x 2 i,2 ), x i,4 = x i,1 + x i,2 x i,5 = x i,1 -x i,2 , x i,6 = 2x i,1 + x i,2 x i,7 = x i,1 + x i,3 , x i,8 ∼ N (0, 1)
Aux données ainsi générées ont été superposées des réalisations de variables aléatoires à distribution normale centrée et d'écart-type 0.02 ainsi que des défauts δx 1 , δx 2 , δx 3 , δx 4 représentés par des biais d'amplitude égale à 3 et définis de la façon suivante : des instants 10 à 24 pour la variable x 1 , des instants 35 à 49 pour les variables x 2 et x 3 , des instants 60 à 74 pour les variables x 3 et x 4 , des instants 85 à 99 pour la variable x 4 . Dans la suite, ces quatre intervalles sont désignés par I 1 , I 2 , I 3 , I 4 .

B. Analyse de sensibilité

Concernant l'analyse a priori de la localisation des défauts, nous nous limitons à donner une table réduite de signatures (table II) établies à partir des propriétés (12). Elle ne fait apparaître que quelques défauts possibles, notés δ dans la première ligne, ceux affectant les variables 1, 2, 3, 4 et ceux affectant les couples de variables {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}. La première colonne est relative aux indicateurs ∆ R (17) obtenus par reconstruction-projection des variables en utilisant toutes les composantes de x sauf celle de rang R, les résidus étant définis en (10). 

δ 1 δ 2 δ 3 δ 4 δ 12 δ 13 δ 14 δ 23 δ 24 δ 34 ∆ 1 0 × × × × × × × × × ∆ 2 × 0 × × × × × × × × ∆ 3 × × 0 × × × × × × × ∆ 4 × × × 0 × × × × × × ∆ 5 × × × × × × × × × × ∆ 6 × × × × × × × × × × ∆ 12 0 0 × × 0 × × × × × ∆ 13 0 × 0 × × 0 × × × × ∆ 14 0 × × 0 × × 0 × × × ∆ 15 0 × × × × × × × × × ∆ 16 0 × × × × × × × × × ∆ 23 × 0 0 × × × × 0 × × ∆ 24 × 0 × 0 × × × × 0 × ∆ 25 × 0 × × × × × × × × ∆ 26 × 0 × × × × × × × × ∆ 34 × × 0 0 × × × × × 0 ∆ 35 × × 0 × × × × × × × ∆ 36 × × 0 × × × × × × ×

C. Détection de défauts

A partir des données contaminées, le modèle ACP robuste, limité à quatre axes principaux déterminés à partir de l'examen des valeurs propres de Σ, a été déterminé. Sans effectuer de reconstruction, les observations ont été projetées sur l'espace résiduel. L'analyse de la norme pondérée des résidus ainsi générés en utilisant toutes les variables révèle la présence de défaut dans les quatre intervalles I 1 , I 2 , I 3 , I 4 , sans pour autant pouvoir incriminer une variable particulière. Cette phase de détection est maintenant complétée par une phase de localisation des défauts.

La reconstruction est ensuite effectuée à partir de toutes les variables sauf la variable 1, puis à partir de toutes les variables sauf les variables 1 et 2, puis à partir de toutes les variables sauf les variables 1 et 3 ... la dernière reconstruction étant faite à partir de toutes les variables sauf les variables 7 et 8.

Les -dans l'intervalle I 1 , x 1 est en défaut -dans l'intervalle I 2 , x 2 et x 3 sont en défaut -dans l'intervalle I 3 , x 3 et x 4 sont en défaut -dans l'intervalle I 4 , x 4 est en défaut

VI. Conclusion

Au vu des résultats de simulation, on peut énoncer que pour des données non contaminées par des erreurs, l'ACP dans sa version classique et l'ACP robuste donnent des Le résultat le plus important concerne le diagnostic de fonctionnement de système, appliqué ici à la détection et localisation de données aberrantes. Pour cela, on a montré comment construire des indicateurs de défaut. L'utilisation conjointe des principes de reconstruction et de projection des données a permis de détecter et d'isoler de façon efficace les données aberrantes.

I 1 I 2 I 3 I 4 ∆ 1 0 × × × ∆ 23 × 0 × × ∆ 24 × × × 0 ∆ 34 × × 0 0
La procédure proposée ici n'est pas, en principe limitée par le nombre de variables. Cependant, le volume de calcul risque de devenir incompatible avec un traitement en ligne des données et une réduction du nombre de reconstructions et projections est envisageable comme nous l'avons montré sur le premier exemple ; ce point méritera une attention particulière dans la suite de nos travaux.

  avec la direction Ξ 1 = 1 0 0 0 T . Comme indiqué dans la table I, seuls les défauts affectant les variables x 2 et x 3 sont détectables sur les résidus x12 , x13 et x14 . Le dernier graphique de la figure 2 est relatif à un indicateur global ∆ R (norme du vecteur des projections)calculé pour chaque observation : ∆ R = xR 2 (17) Pour la détection des valeurs aberrantes, un simple test de saut sur la quantité ∆ R (de Page-Hinkley par exemple) permet de déterminer les rangs des observations en défaut. Des conclusions similaires peuvent être déduites des figures 3 et 4. La détection et l'isolation sont réalisées sans ambiguïté et sont conformes aux résultats théoriques de la procédure de décision (table
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 234 Fig. 2. Projection des erreurs sans utiliser la variable x 1

  montre l'évolution des variables centrées par leurs moyennes respectives. Il est important de noter que 60 observations contiennent des valeurs anormales et qu'ainsi 25 pourcent des données sont contaminées par ces valeurs. L'objectif est de les détecter et surtout de les localiser. , δx 2 et δx 3 (le défaut δx 4 sur la variable perturbatrice x 4 n'est pas considéré). Cette table a été construite en prenant en compte les propriétés (12) des matrices P , x 2 , x 3 et x 4 ) ont été obtenus par projection, dans l'espace résiduel, des variables reconstruites sans utiliser la variable x 1 . Comme la première ligne et la première colonne de P est pas sensible aux variables x 1 , x 2 et x 3 et par conséquent aux défauts éventuels δx 1 , δx 2 ou δx 3 affectant ces variables. De plus, les résidus x12 , x13 et x14 ne sont pas sensibles à la variable x 1 et donc au défaut δx 1 pouvant l'affecter. Pour résumer ces différentes situations, les symboles × et 0 traduisent l'influence ou la non influence des défauts sur les résidus. Les autres parties de la table ont été construites sur ce même principe, en considérant les différentes matrices de projection P ), x21 (relatif à x 1 ) qui, eux-mêmes, permettent de détecter et localiser l'un des trois défauts. En effet, la table I indique qu'avec ces deux résidus, les signatures des défauts δx 1 , δx 2 et δx 3 sont respectivement 0 ×
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	B. Analyse de sensibilité et signature théorique des défauts
	Les données de la table I résument la sensibilité des
	résidus xR (10) par rapport aux valeurs aberrantes ou
	défauts δx 1 (ℓ) r .
	Par exemple, les quatre premiers résidus x11 à x14 (relatifs
	aux variables x 1 (ℓ) 1 sont nulles, d'après (12), le résidu x11 n'(ℓ) 2 , P (ℓ) 3 et P (ℓ) 4 . En analysant la dépendance des colonnes de la matrice
	des signatures, on peut établir les conditions nécessaires
	permettant la détection et la localisation des défauts.
	On observe aussi que seulement deux matrices de pro-
	jection et deux résidus sont nécessaires pour la détection
	et l'isolation des défauts. Par exemple, les matrices P P (ℓ) (11), permettent de construire les résidus x12 (rela-(ℓ) et 1 2 tif à x 2

T , × 0 T et × × T ; ces trois signatures sont indépendantes et donc les défauts sont isolables les uns des autres.

TABLE II Table réduite

 IIréduite des signatures de défauts Cette table, que le lecteur pourra étendre à l'ensemble des défauts, fournit une correspondance entre les symptômes et les défauts. Par exemple, le défaut δ 2 affecte toutes les projections sauf celles établies sans les composantes 2, {1, 2}, {2, 3}, {2, 4}, {2, 6}.

  figures 5 et 6 visualisent deux de ces reconstructions, la première sans utiliser la variable 1, la seconde sans utiliser les variables 3 et 4. Chaque figure montre la reconstruction des sept premières variables qui sont à associer aux lignes ∆ 1 et ∆ 34 de la table II précisant les défauts localisables. Les N données reconstruites ont ensuite été projetées sur l'espace résiduel. Pour chaque observation, l'indicateur de défaut ∆ R (17) a été calculé. , la variable x 1 est en défaut -dans chaque intervalle I 2 , I 3 , I 4 , une variable autre que x 1 est en défaut Les autres projections (non présentées ici) se construisent et s'interprètent de façon analogue. La table III résume les conclusions issues de l'analyse des projections. La ligne ∆ 1 est relative à la projection des résidus avec reconstruction sans utiliser la première variable ... Le symbole 0 témoigne de l'absence de défaut dans l'intervalle considéré. Le diagnostic est donc :

	Fig. 6. Reconstruction des variables sans utiliser les variables 3 et 4
	et indicateur de défaut
	jection (17). Pour les observations de l'intervalle I 1 cette
	norme est proche de la valeur 0 témoignant ainsi de l'ab-
	sence de valeurs aberrantes dans les variables utilisées pour
	la reconstruction et la projection, c'est-à-dire toutes les va-
	riables sauf x 1 . On note aussi que les trois autres groupes
	d'observations (I 2 , I 3 , I 4 ) sont affectés de défauts, sans sa-
	voir exactement quelle (s) composante (s) du vecteur de
	mesure en sont la cause. Finalement, compte tenu de la
	présence de défauts dans les quatre intervalles, l'examen
	de la figure 5 conclut à :
	-dans l'intervalle I 1

TABLE III

 III Signatures des défauts étudiés résultats similaires. Dans les autres situations où des valeurs aberrantes corrompent les données, l'ACP classique s'avère inefficace, alors que sa version robuste donne des résultats tout à fait satisfaisants. Sur les exemples traités, la présence d'environ 25 pour-cent de données aberrantes autorise une estimation correcte des directions principales c'est-à-dire peu sensibles à ces valeurs. On peut donc construire un modèle ACP directement à partir des données disponibles contenant d'éventuels défauts.

Analysons la figure 5. La variable 1, biaisée pour les observations de l'intervalle I 1 , n'est pas utilisée pour la reconstruction et les autres variables qui servent à la reconstruction ne présentent pas de biais. Pour ces observations, les reconstructions sont donc correctes, ce que met en évidence le premier graphique (à partir du haut de la figure) où l'on observe la superposition des variables reconstruites avec les variables vraies c'est-à-dire non biaisées (en pratique ces dernières sont inconnues, mais dans cette phase où les données sont générées, la comparaison est possible). On a également indiqué la mesure de la variable afin de la comparer à la reconstruction.

Ce résultat est confirmé par le dernier graphique de la figure 5 où l'on a tracé la norme pondérée du vecteur pro-