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THE HYDRODYNAMICAL RELEVANCE OF THE CAMASSA-HOLM AND DEGASPERIS-PROCESI EQUATIONS

In recent years two nonlinear dispersive partial differential equations have attracted a lot of attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin-Bona-Mahoney and Korteweg-de Vries equations. In particular, they accomodate wave breaking phenomena.

Introduction

The study of water waves is a fascinating subject because the phenomena are familiar and the mathematical problems are various cf. [START_REF] Whitham | Linear and nonlinear waves[END_REF]. Due to the relative intractability of the governing equations for water waves in regard to inferring from their direct study qualitative or quantitative conclusions about the propagation of waves at the water's surface, from the earliest days in the development of hydrodynamics many competing models were suggested. Until the second half of the 20'th century, the study of water waves was confined almost exclusively to linear theory [START_REF] Craik | The origins of water wave theory[END_REF]. While linearisation gives insight for small perturbations on water initially at rest, its applicability fails for waves that are not small perturbations of a flat water surface. For example, linear water wave theory gives no insight into the study of phenomena which are manifestations of genuine nonlinear behaviour, like breaking waves breaking and solitary waves [START_REF] Stoker | Water waves[END_REF]. Many nonlinear models for water waves have been suggested to capture the existence of solitary water waves and the associated phenomenon of soliton manifestation [START_REF] Johnson | A modern introduction to the mathematical theory of water waves[END_REF]. The most prominent example is the Korteweg-de Vries (KdV) equation [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF], the only member of the wider family of BBM-type equations [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] that is integrable and relevant for the phenomenon of soliton manifestation [START_REF] Drazin | Solitons: an introduction[END_REF]. Another development of models for water waves was initiated in order to gain insight into wave breaking, one of the most fundamental aspects of water waves for which there appears to be no satisfactory mathematical theory [START_REF] Whitham | Linear and nonlinear waves[END_REF]. Starting from the observation that the strong dispersive effect incorporated into the KdV model prevents wave breaking, Whitham (see the discussion in [START_REF] Whitham | Linear and nonlinear waves[END_REF]) initiated the quest for equations that are simpler than the governing equations for water waves and which could model breaking waves. The physical validity of the first proposed models is questionable but two recently derived nonlinear integrable equations, the Camassa-Holm equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] and the Degasperis-Procesi equation [START_REF] Degasperis | Asymptotic integrability[END_REF], possess smooth solutions that develop singularities in finite time via a process that captures the essential features of breaking waves cf. [START_REF] Whitham | Linear and nonlinear waves[END_REF]: the solution remains bounded but its slope becomes unbounded. Our aim is to prove the relevance of these two equations as models for the propagation of shallow water waves, proving that both are valid approximations to the governing equations for water waves. In our investigation we put earlier (formal) asymptotic procedures due to Johnson [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF] on a firm and mathematically rigorous basis. We also investigate in what sense these two models give us insight into the wave breaking phenomenon by some simple numerical computations.

1.1. Unidirectional asymptotics for water waves. For one dimensional surfaces, the water waves equations read, in nondimensionalized form, (1) 2 = 0 at z = εζ, where x → εζ(t, x) parameterizes the elevation of the free surface at time t, Ω t = {(x, z), -1 < z < εζ(t, x)} is the fluid domain delimited by the free surface and the flat bottom {z = -1}, and where Φ(t, •) (defined on Ω t ) is the velocity potential associated to the flow (that is, the two-dimensional velocity field v is given by v = (∂ x Φ, ∂ z Φ) T ). Finally, ε and µ are two dimensionless parameters defined as

       µ∂ 2 x Φ + ∂ z Φ 2 = 0 in Ω t , ∂ z Φ = 0, at z = 0, ∂ t ζ -1 µ (-µ∂ x ζ∂ x Φ + ∂ z Φ) = 0 at z = εζ, ∂ t Φ + ε 2 (∂ x Φ) 2 + ε 2µ (∂ z Φ)
ε = a h , µ = h 2 λ 2
, where h is the mean depth, a is the typical amplitude and λ the typical wavelength of the waves under consideration. Making assumptions on the respective size of ε and µ, one is led to derive (simpler) asymptotic models from (1). In the shallow-water scaling (µ ≪ 1), one can derive the so-called Green-Naghdi equations (see [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] for the derivation, and [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF] for a rigorous justification), without any assumption on ε (that is, ε = O(1)). For one dimensional surfaces and flat bottoms, these equations couple the free surface elevation ζ to the vertically averaged horizontal component of the velocity,

(2) u(t, x) = 1 1 + εζ εζ -1 ∂ x φ(t, x, z)dz;
and can be written as

(3) ζ t + (1 + εζ)u x = 0 u t + ζ x + εuu x = µ 3 1 1+εζ (1 + εζ) 3 (u xt + εuu xx -εu 2 x )
x , where O(µ 2 ) terms have been discarded. If we make the additionnal assumption that ε ≪ 1, then the above system reduces at first order to a wave equation of speed ±1 and any perturbation of the surface splits up into two components moving in opposite directions. A natural issue is therefore to describe more accurately the motion of these two "unidirectional" waves. In the so-called long-wave regime

(4) µ ≪ 1, ε = O(µ),
Korteweg and de Vries [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves[END_REF] found that, say, the right-going wave should satisfy the KdV equation

u t + u x + ε 3 2 uu x + µ 1 6 u xxx = 0 (and ζ = u + O(ε, µ)
), which at leading order reduces to the expected transport equation at speed 1. More recently, it has been noticed by Benjamin, Bona, Mahoney [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] that the KdV equation belongs to a wider class of equations (the BBM equations, first used by Peregrine [START_REF] Peregrine | Calculations of the development of an undular bore[END_REF] and sometimes also called the regularized long-wave equations) which provide an approximation of the exact water waves equations of the same accuracy as the KdV equation:

(5)

u t + u x + 3 2 εuu x + µ(αu xxx + βu xxt ) = 0, with α -β = 1 6 .
The equations ( 5) contain both nonlinear effects (the uu x term) and dispersive effects (the u xxx and u xxt terms) due to the scaling (4). However, these equations do not account correctly for large amplitude waves, whose behavior is more nonlinear than dispersive. For such waves, characterized by larger values of ε, it is natural to investigate the following scaling (which we call Camassa-Holm scaling):

(6) µ ≪ 1, ε = O( √ µ).
With this scaling, one still has ε ≪ 1 and thus the same reduction to a simple wave equation at leading order; the dimensionless parameter is however larger here than in the long wave scaling, and the nonlinear effects are therefore stronger. In particular, a stronger nonlinearity could allow the appearance of breaking waves -a fundamental phenomenon in the theory of water waves that is not captured by the BBM equations. We show in this paper that the correct generalization of the BBM equations ( 5) under the scaling ( 6) is provided by the following class of equations:

(7) u t + u x + 3 2 εuu x + µ(αu xxx + βu xxt ) = εµ(γuu xxx + δu x u xx )
(with some conditions on α, β, γ and δ).

Notice that for an equation of the family ( 7) to be well-posed it is necessary that β ≤ 0, as one can see by analyzing the linear part via Fourier transforms. We want to insist on the fact that ( 7) provides an approximation of the same order O(µ 2 ) as the BBM equations ( 5) to the Green-Naghdi equations. The only difference in the derivation of these equations lies in the different scalings (4) and [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF]. Since of course O(µ) = O( √ µ) when µ is small, the long-wave scaling [START_REF] Alvarez-Samaniego | A Nash-Moser theorem for singular evolution equations[END_REF] is contained in the CH scaling [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF], and consequently, the BBM equations can be recovered as a specialization of (7) when ε = O(µ) and not only O( √ µ).

1.2. The Camassa-Holm and Degasperis-Procesi equations. Among the various type of equations [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] with β ≤ 0 there are only two with a bi-Hamiltonian structure: the Camassa-Holm and the Degasperis-Procesi equations [START_REF] Ivanov | On the integrability of a class of nonlinear dispersive wave equations[END_REF]. Notice that while the KdV equation has a bi-Hamiltonian structure (see [START_REF] Drazin | Solitons: an introduction[END_REF]), this is not the case for the other members of the BBM family of equations [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF]. The importance of a bi-Hamiltonian structure lies in the fact that in general it represents the hallmark of a completely integrable Hamiltonian system whose solitary wave solutions are solitons, that is, localized waves that recover their shape and speed after interacting nonlinearly with another wave of the same type (see [START_REF] Drazin | Solitons: an introduction[END_REF][START_REF] Johnson | A modern introduction to the mathematical theory of water waves[END_REF]).

1.2.1. Camassa-Holm equations. The Camassa-Holm (CH) equations are usually written under the form (8)

U t + κU x + 3U U x -U txx = 2U x U xx + U U xxx ,
with κ ∈ R. A straightforward scaling argument shows that if κ = 0, (8) can be written under the form (7) by setting u(t, x) = aU (b(x -vt), ct) and a

= 2 ε κ , b 2 = -1 βµ , v = α β , c = b κ (1 -v)
(which requires β < 0 and leads to γ = -β 2 and δ = 2γ). This motivates the following definition: Definition 1. We say that ( 7) is a Camassa-Holm equation if the following conditions hold:

β < 0, α = β, β = -2γ, δ = 2γ. For all κ = 0, the solution u to ( 7) is transformed into a solution U to (8) by the transformation

U (t, x) = 1 a u( x b + v c t, t c
),

with a = 2 ε κ (1 -v), b 2 = -1 βµ , v = α β , and c = b κ (1 -v).
First derived as a bi-Hamiltonian system by Fokas & Fuchssteiner [START_REF] Fokas | Symplectic structures, their Bäcklund transformation and hereditary symmetries[END_REF], the equation (8) gained prominence after Camassa-Holm [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] independently re-derived it as an approximation to the Euler equations of hydrodynamics and discovered a number of the intriguing properties of this equation. In [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] a Lax pair formulation of (8) was found, a fact which lies at the core of showing via direct and inverse scattering [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF][START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF] that ( 8) is a completely integrable Hamiltonian system: for a large class of initial data, solving [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF] amounts to integrating an infinite number of linear first-order ordinary differential equations which describe the evolution in time of the action-angle variables. The Camassa-Holm equations shares with KdV this integrability property as well as the fact that its solitary waves are solitons [START_REF] Constantin | Stability of the Camassa-Holm solitons[END_REF][START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF]. We refer to [START_REF] Drazin | Solitons: an introduction[END_REF] for a discussion of these properties in the context of the KdV model. 1.2.2. Degasperis-Procesi equations. The Degasperis-Procesi (DP) equations are usually written under the form (9)

U t + κU x + 4U U x -U txx = 3U x U xx + U U xxx ,
with κ ∈ R. The same scaling arguments as for the CH equation motivate the following definition:

Definition 2. We say that ( 7) is a Degasperis-Procesi equation if the following conditions hold:

β < 0, α = β, β = - 8 3 γ δ = 3γ.
For all κ = 0, the solution u to ( 7) is transformed into a solution U to (9) by the transformation

U (t, x) = 1 a u( x b + v c t, t c
), 9), first derived in [START_REF] Degasperis | Asymptotic integrability[END_REF], is also known to have a Lax pair formulation [START_REF] Degasperis | A new integrable equation with peakon solutions[END_REF] and its solitary waves interact like solitons [START_REF] Matsuno | The N -soliton solution of the Degasperis-Procesi equation[END_REF]. Just like the KdV equation (see [START_REF] Drazin | Solitons: an introduction[END_REF]) and the Camassa-Holm equation (see [START_REF] Lenells | Conservation laws of the Camassa-Holm equation[END_REF]), the Degasperis-Procesi equation has infinitely many integrals of motion.

with a = 8 3ε κ (1 -v), b 2 = -1 βµ , v = α β and c = b κ (1 -v). Equation (
1.3. Wave breaking. In addition to the properties of ( 8) and ( 9) mentioned before, the importance of these two equations is enhanced by their relevance to the modeling of wave breaking, one of the most important but mathematically still quite elusive phenomena encountered in the study of water waves. Definition 3. We say that there is wave breaking for an equation of the form (7), if there exists a time 0 < t ε,µ < ∞ and solutions u to [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] 

such that u ∈ L ∞ ([0, t ε,µ ] × R) and lim t→t ε,µ |∂ x u(t, •)| ∞ = ∞.
The rationale of this definition is that if the flow velocity u is to first order a good approximation to the surface profile ζ, it is then reasonable to expect that the above blow-up pattern has a similar counterpart in terms of ζ. If this were the case, the boundedness of the wave height in combination with an unbounded slope captures the main features of a breaking wave [START_REF] Whitham | Linear and nonlinear waves[END_REF].

For KdV in particular, as well as for any other member of the BBM family ( 5), all smooth initial data u(0, •) decaying at infinity develop into solutions defined for all times (see e.g. [START_REF] Tao | Low-regularity global solutions to nonlinear dispersive equations[END_REF]) so that the BBM family [START_REF] Benjamin | Model equations for long waves in nonlinear dispersive systems[END_REF] does not model wave breaking [START_REF] Angulo | Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case[END_REF][START_REF] Souganidis | Instability of a class of dispersive solitary waves[END_REF]. To remedy this shortcoming of the KdV equation Whitham proposed to formally replace the dispersive term u xxx by a convolution with a singular function chosen so that the newly obtained equation presents wave breaking (see [START_REF] Fornberg | A numerical and theoretical study of certain nonlinear wave phenomena[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF]). However, this formal process destroys the integrability and soliton features of the KdV equation. In contrast to this, both ( 8) and ( 9) admit breaking waves in the sense of Definition 3 cf. [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF][START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF][START_REF] Mckean | Breakdown of the Camassa-Holm equation[END_REF][START_REF] Molinet | On well-posedness results for the Camassa-Holm equation on the line: a survey[END_REF] for [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF] and [START_REF] Escher | Global weak solutions and blow-up structure for the Degasperis-Procesi equation[END_REF] for [START_REF] Constantin | Wave breaking for nonlinear nonlocal shallow water equations[END_REF]. In this paper we explore the wave breaking phenomenon for both equations not in the restricted sense provided by Definition 3 but by studying the nonlinear equation describing the evolution in time of the free surface. While our results vindicate the fact that it is appropriate to use in this context Definition 3 to describe breaking waves, there is a slight twist. To be more precise, let us distinguish between two types of breaking waves that can be observed. In a plunging breaker the slope of the wave approaches -∞ at the breaking location as we reach breaking time, while in a surging breaker the slope becomes +∞. Considering the case of the Camassa-Holm equation ( 8), due to the fact that singularities in a smooth solution can appear only if inf x∈R {u x (t, x)} → -∞ as we approach breaking time while sup x∈R {|u(t, x)|} remains uniformly bounded (see [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF]), we would expect to observe a plunging breaker at the free surface. However, as we recall here, the Camassa-Holm equation describes the behavior of the vertically averaged horizontal component of the velocity u; the free surface elevation ζ can be given in terms of u (ζ = u + ε 4 u 2 + µ 1 6 u xt + O(εµ), see Proposition 1 below) but such an asymptotic expression of course breaks down when u x becomes singular, and cannot be used to describe the behavior of the free surface when there is "wave breaking" for the velocity. Since "wave breaking" is a very intuitive notion when it refers to the free surface elevation, we show in this article that it is possible to revert the usual approach; that is, we derive an evolution equation for the surface elevation ζ and give an asymptotic expression for the velocity u in terms of ζ (cf. §2.2). This allows us to prove that wave breaking indeed occurs for the surface elevation but that, as opposed to what happens for the velocity, this is a surging breaker! The difference between plunging and surging breakers is graphically illustrated by numerical computations in §3.4.

Derivation of asymptotical equations for the unidirectional limit of the Green-Naghdi equations

We derive here asymptotical equations to the Green-Naghdi equations in the Camassa-Holm scaling [START_REF] Bressan | Global conservative solutions of the Camassa-Holm equation[END_REF]. We recall that the Green-Naghdi equations are given by

ζ t + (1 + εζ)u x = 0 u t + ζ x + εuu x = µ 3 1 1+εζ (1 + εζ) 3 (u xt + εuu xx -εu 2 x ) x .
Since we work under the Camassa-Holm scaling, we restrict our attention to values of ε and µ satisfying

(10) (ε, µ) ∈ P := {µ ∈ (0, µ 0 ), ε ≤ M √ µ},
for some µ 0 > 0 and M > 0. Equations for the velocity u (including the CH and DP equations) are first derived in §2.1, and equations for the surface elevation ζ are obtained in §2.2. The considerations we make on the derivation of these equations are related to the approach initiated by Johnson [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF], approach that is substantiated and extended by our analysis. In addition, we explore the wave breaking phenomenon. If we want to find an asymptotic at order O(µ 2 ) (recall that ε = O(µ 1/2 )), it is therefore natural to look for u as a solution of a perturbation of ( 11) including terms of order O(µ) and O(εµ) similar to those present in (3). Thus we want u to solve an equation of the form [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] where α, β, γ and δ are coefficients to be determined. We prove in this section that under certain conditions on the coefficients, one can associate to the solutions of ( 7) a family of approximate solutions consistent with the Green-Naghdi equations (3) in the following sense: Definition 4. Let µ 0 > 0, M > 0, T > 0 and P be as defined in [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF].

A family (ζ ε,µ , u ε,µ ) (ε,µ)∈P is consistent (of order s ≥ 0 and on [0, T ε ]) with the Green-Naghdi equations (3) if for all (ε, µ) ∈ P,

ζ t + (1 + εζ)u x = µ 2 r ε,µ 1 u t + ζ x + εuu x = µ 3 1 1+εζ (1 + εζ) 3 (u xt + εuu xx -εu 2 x ) x + µ 2 r ε,µ 2 ; with (r ε,µ 1 , r ε,µ 2 ) (ε,µ)∈P bounded in L ∞ ([0, T ε ], H s (R) 2
). The following proposition shows that there is a one parameter family of equations of the form (7) consistent with the Green-Naghdi equations.

Proposition 1. Let p ∈ R and asssume that α = p, β = p - 1 6 , γ = - 3 2 p - 1 6 , δ = - 9 2 p - 23 24 . 
Then there exists D > 0 such that:

• For all s ≥ 0 and T > 0,

• For all bounded family

(u ε,µ ) (ε,µ)∈P ∈ C([0, T ε ]; H s+D (R)) solving (7), the family (ζ ε,µ , u ε,µ ) (ε,µ)∈P , with (omitting the indexes ε, µ) ζ := u + ε 4 u 2 + µ 1 6 u xt -εµ 1 6 uu xx + 5 48 u 2 x ,
is consistent (of order s and on [0, T ε ]) with the Green-Naghdi equations (3).

Remark 1. i. One can recover the equations (26a) and (26b) of [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF] with p = -1

12

(and thus α = -1 12 , β = -1 4 , γ = -1 24 and δ = - 7 12 ) and p = 1 6 (and thus α = 1 6 , β = 0, γ = - 5 12 and δ = -41 24 ) respectively. ii. The one parameter family of equations [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] considered in the proposition admits only one representant for which δ = 2γ (obtained for p = - 5 12 , and thus γ = 11 24 , δ = 11 12 ). However, since β = -7 12 = -2γ, the corresponding equation is not a Camassa-Holm equation in the sense of Definition 1. iii. There is no possible choice of p such that δ = 3γ in Proposition 1. Consequently, none of this one parameter family of equations is a Degasperis-Procesi equation. Notice that among all equations (7) with β ≤ 0 there are only two with a bi-Hamiltonian structure: the Camassa-Holm and the Degasperis-Procesi equations [START_REF] Ivanov | On the integrability of a class of nonlinear dispersive wave equations[END_REF].

Proof. For the sake of simplicity, we use the notation O(µ), O(µ 2 ), etc., without explicit mention to the functional normed space to which we refer. A precise statement has been given in Definition 4; it would be straightforward but quite heavy to maintain this formalism throughout the proof.

Step 1. If u solves [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] then one also has [START_REF] Craik | The origins of water wave theory[END_REF] 

u t + u x + ε 3 2 uu x + µau xxt = εµ buu xx + cu 2 x x + O(µ 2 ), with a = β -α, b = γ + 3 2 α and c = 1 2 (δ + 3α -γ)
. Differentiating [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] twice with respect to x, one gets indeed

u xxx = -u xxt - 3 2 ε∂ 2 x (uu x ) + O(µ),
and we can replace the u xxx term of [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] by this expression to get [START_REF] Craik | The origins of water wave theory[END_REF].

Step 2. We seek v such that if ζ = u + εv and u solves [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] then the second equation of ( 3) is satisfied ut to a O(µ 2 ) term. This is equivalent to checking that

u t + [u + εv] x + εuu x - µ 3 u xxt = εµ 3 -uu xxt + [3uu xt + uu xx -u 2 x ] x + O(µ 2 ), = - εµ 3 uu xx + 3 2 u 2 x x + O(µ 2 )
the last line being a consequence of the identity u t = -u x + O(ε) provided by [START_REF] Craik | The origins of water wave theory[END_REF]. The above equation can be recast under the form:

εv x + u t + u x + ε 3 2 uu x + µau xxt -εµ buu xx + cu 2 x x = ε 2 uu x + µ(a + 1 3 )u xxt -εµ (b + 1 3 )uu xx + (c + 1 2 )u 2 x x + O(µ 2 ).
From

Step 1, we know that the term between brackets in the lhs of this equation is of order O(µ 2 ), so that that the second equation of ( 3) is satisfied up to O(µ 2 ) terms if

εv x = ε 2 uu x + µ(a + 1 3 )u xxt -εµ (b + 1 3 )uu xx + (c + 1 2 )u 2 x x + O(µ 2 ),
so that we can take

(13) εv = ε 4 u 2 + µ(a + 1 3 )u xt -εµ (b + 1 3 )uu xx + (c + 1 2 )u 2 x .
Step 3. We choose the coefficients β, γ and µ such that the first equation of ( 3) is also satisfied up to O(µ 2 ) terms. This is equivalent to checking that

(14) [u + εv] t + [(1 + εu)u] x + ε 2 [vu] x = O(µ 2 ).
First remark that one infers from (13) that

ε∂ t v = ε 2 uu t + µ(a + 1 3 )u xtt -εµ (b + 1 3 )uu xx + (c + 1 2 )u 2 x t . = - ε 2 u(u x + ε 3 2 uu x + µau xxt ) -µ(a + 1 3 )∂ 2 xt (u x + ε 3 2 (uu x )) +εµ (b + 1 3 )uu xx + (c + 1 2 )u 2 x x + O(µ 2 ) = -ε 1 2 uu x -ε 2 3 4 u 2 u x -µ(a + 1 3 )u xxt +εµ (2a + b + 5 6 )uu xx + ( 5 4 a + c + 1)u 2 x x + O(µ 2 );
similarly, one gets

ε 2 [vu] x = ε 2 3 4 u 2 u x -εµ(a + 1 3 ) uu xx x + O(µ 2 ),
so that ( 14) is equivalent to

u t + u x + ε 3 2 uu x -µε(a + 1 3 )u xxt = εµ -(a + b + 1 2 )uu xx -( 5 4 a + c + 1)u 2 x + O(µ 2 ).
Equating the coefficients of this equation with those of [START_REF] Craik | The origins of water wave theory[END_REF] shows that the first equation of ( 3) is also satisfied at order O(µ 2 ) if the following relations hold:

a = - 1 6 , b = - 1 6 , c = - 19 48 ,
and the conditions given in the statement of the proposition on α, β, γ and δ follows from the expressions of a, b and c given after equation [START_REF] Craik | The origins of water wave theory[END_REF].

As said in Remark 1, none of the equations of the one parameter family considered in Proposition 1 is completely integrable. This is the reason why we now want to derive a wider class of equations of the form (7) -and whose solution can still be used as the basis of an approximate solution of the Green-Naghdi equations (3) (and thus of the water waves problem). We can generalize Proposition 1 by replacing the vertically averaged velocity u given by (2) by the horizontal velocity u θ (θ ∈ [0, 1]) evaluated at the level line θ of the fluid domain:

u θ (x) = ∂ x Φ | z=(1+εζ)θ-1 ,
so that θ = 0 and θ = 1 correspond to the bottom and surface respectively. The introduction of θ allows us to derive an approximation consistent with (3) built on a two-parameter family of equations of the form [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF].

Proposition 2. Let p ∈ R, θ ∈ [0, 1], and write λ = 1 2 (θ 2 -1 3 ). Asssuming that α = p + λ, β = p - 1 6 + λ, γ = - 3 2 p - 1 6 - 3 2 λ, δ = - 9 2 p - 23 24 - 3 2 λ,
there exists D > 0 such that: • For all s ≥ 0 and T > 0,

• For all bounded family (u ε,µ,θ ) (ε,µ)∈P ∈ C([0, T ε ]; H s+D (R)) solving (7), the family (u ε,µ , ζ ε,µ ) (ε,µ)∈P , with (ommiting the indexes ε, µ),

u = u θ + µλu θ xx + 2µελu θ u θ xx , (15) 
ζ := u + ε 4 u 2 + µ 1 6 u xt -εµ 1 6 uu xx + 5 48 u 2 x , (16) 
is consistent (of order s and on [0, T ε ]) with the Green-Naghdi equations (3). Remark 2. i. The one parameter family of equations ( 7) of Proposition 1 corresponds to the particular case θ 2 = 1/3 (or λ = 0). ii. There exists only one set of coefficients such that δ = 2γ and β = -2γ (corresponding to p = - 1 3 and θ 2 = 1 2 , and thus α = -1 4 , β = -5 12 < 0, γ = 5 24 , δ = 5 12 ). The corresponding equation is therefore a Camassa-Holm equation in the sense of Definition 1:

(17) u t + u x + 3 2 εuu x -µ( 1 4 u xxx + 5 12 u xxt ) = 5 24 εµ(uu xxx + 2u x u xx ).
iii. There exists only one set of coefficients such that δ = 3γ and β = - Proof. From the proof of Prop. 3.8 of [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF], one has the following expression (neglecting terms of order O(µ 2 )):

u = ∂ x ψ + µ (1 + εζ)∂ x ζ∂ x ψ + (1 + εζ) 2 3 ∂ 3 x ψ , u θ = ∂ x ψ + µ (1 + εζ)∂ x ζ∂ x ψ + (1 + εζ) 2 2 (1 -θ 2 )∂ 3
x ψ , where ψ denotes the trace of the velocity potential at the surface. It follows from these formulas that

u = u θ + µ (1 + εζ) 2 2 (θ 2 - 1 3 )u θ xx + O(µ 2 ) = u θ + µ 1 2 (θ 2 - 1 3 )u θ xx + µε(θ 2 - 1 3 )u θ u θ xx + O(µ 2 ),
where we used ζ = u θ + O(ε) for the last equality. This formula, together with Proposition 1, easily yields the result.

2.2.

Equations on the surface elevation. Proceeding exactly as in the proof of Proposition 1, one can prove that the family of equations [START_REF] Fornberg | A numerical and theoretical study of certain nonlinear wave phenomena[END_REF] 

ζ t +ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x + 3 16 ε 3 ζ 3 ζ x +µ(αζ xxx +βζ xxt ) = εµ(γζζ xxx +δζ x ζ xx )
for the evolution of the surface elevation can be used to construct an approximate solution consistent with the Green-Naghdi equations:

Proposition 3. Let q ∈ R and asssume that α = q, β = q - 1 6 , γ = - 3 2 q - 1 6 , δ = - 9 2 q - 5 24 .
Then there exists D > 0 such that:

• For all s ≥ 0 and T > 0,

• For all bounded family (ζ ε,µ ) (ε,µ)∈P ∈ C([0, T ε ]; H s+D (R)) solving ( 18), the family (ζ ε,µ , u ε,µ ) (ε,µ)∈P , with (omitting the indexes ε, µ)

u := ζ + 1 h - ε 4 ζ 2 - ε 2 8 ζ 3 + ε 3 64 ζ 4 -µ 1 6 ζ xt + εµ 1 6 ζζ xx + 1 48 ζ 2 x ,
is consistent (of order s and on [0, T ε ]) with the Green-Naghdi equations (3). Remark 3. Choosing q = 1/12, the equation ( 18) reads

ζ t + ζ x + 3 2 εζζ x - 3 8 ε 2 ζ 2 ζ x + 3 16 ε 3 ζ 3 ζ x + µ 12 (ζ xxx -ζ xxt ) (19) = - 7 24 εµ(ζζ xxx + 2ζ x ζ xx ).
While for any q ∈ R, ( 18) is an equation for the evolution of the free surface ζ, and all these equations have the same order of accuracy O(ε 4 , µ 2 ), it is more advantageous to use [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] since it presents better structural properties that we take advantage of in §3.3. The ratio 2 : 1 between the coefficients of ζ x ζ xx and ζζ xxx is crucial in our considerations.

3. Mathematical analysis of the models and rigorous justification 3.1. Large time well-posedness of the unidirectional equations ( 7) and [START_REF] Fornberg | A numerical and theoretical study of certain nonlinear wave phenomena[END_REF]. We prove here the well posedness of the general class of equations

u t + u x + 3 2 εuu x + ε 2 ιu 2 u x + ε 3 κu 3 u x + µ(αu xxx + βu xxt ) (20) = εµ(γuu xxx + δu x u xx ),
with ι, κ ∈ R; in particular, [START_REF] Ivanov | On the integrability of a class of nonlinear dispersive wave equations[END_REF] coincides with ( 7) and ( 18) if one takes ι = κ = 0 and ι = - 3 8 , κ = 3 16 respectively. That is, we solve the initial value problem (21)

u t + u x + 3 2 εuu x + ε 2 ιu 2 u x + ε 3 κu 3 u x + µ(αu xxx + βu xxt ) = εµ(γuu xxx + δu x u xx ), u |t=0 = u 0
on a time scale O(1/ε), and under the condition β < 0. In order to state the result, we need to define the spaces X s as ∀s ≥ 0,

X s+1 = H s+1 (R) endowed with the norm |f | 2 X s+1 = |f | 2 H s + µ|∂ x f | 2
H s , and we also recall that the set P is defined in [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF]. Proposition 4. Assume that β < 0 and let µ 0 > 0, M > 0, s > 3 2 and u 0 ∈ H s+1 (R). Then, there exists T > 0 and a unique family of solutions

(u ε,µ ) (ε,µ)∈P to (21) bounded in C([0, T ε ]; X s+1 (R)) ∩ C 1 ([0, T ε ]; X s (R)).
Proof. For all v smooth enough, let us define the "linearized" operator L(v, ∂) as

L(v, ∂) = (1 + µβ∂ 2 x )∂ t + ∂ x + µα∂ 3 x + 3 2 εv∂ x + ε 2 ιv 2 ∂ x + ε 3 κv 3 ∂ x -εµγv∂ 3 x -εµδ 1 2 v x ∂ 2 x + 1 2 v xx ∂ x ,
In order to construct a solution to (20) by an iterative scheme, we are led to study the initial value problem

(22) L(v, ∂)u = εf, u |t=0 = u 0 .
If v is smooth enough, it is completely standard to check that for all s ≥ 0, f ∈ L 1 loc (R + t ; H s (R x )) and u 0 ∈ H s (R), there exists a unique solution u ∈ C(R + ; H s+1 (R)) to [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF] (recall that β < 0). We take for granted the existence of a solution to [START_REF] Johnson | Camassa-Holm, Korteweg-de Vries and related models for water waves[END_REF] and establish some precise energy estimates on the solution. In order to do so, let us define the "energy" norm

∀s ≥ 0, E s (u) 2 = |u| 2 H s -µβ|∂ x u| 2 H s . Differentiating 1
2 e -ελt E s (u) with respect to time, one gets, using the equation ( 22) and integrating by parts,

1 2 e ελt ∂ t (e -ελt E s (u) 2 ) = - ελ 2 E s (u) 2 + ε(Λ s f, Λ s u) -ε(Λ s (V ∂ x u), Λ s u) +εµγ(Λ s (v∂ 3 x u), Λ s u) -εµ δ 2 (Λ s (v x ∂ x u), Λ s ∂ x u), with V = 3 2 v + ειv 2 + ε 2 κv 3 .
Since for all constant coefficient skewsymmetric differential polynomial P (that is, P * = -P ), and all h smooth enough, one has

(Λ s (hP u), Λ s u) = ([Λ s , h]P u, Λ s u) - 1 2 ([P, h]Λ s u, Λ s u),
we deduce (applying this identity with P = ∂ x and

P = ∂ 3 x ), 1 2 e ελt ∂ t (e -ελt E s (u) 2 ) = - ελ 2 E s (u) 2 -ε [Λ s , V ]∂ x u, Λ s u) + ε 2 ((∂ x V )Λ s u, Λ s u -εµγ [Λ s , v]∂ 2 x u - 3 2 v x Λ s ∂ x u -v xx Λ s u, Λ s ∂ x u -εµγ [Λ s , v x ]∂ 2 x u, Λ s u -εµ δ 2 (Λ s (v x ∂ x u), Λ s ∂ x u) + ε(Λ s f, Λ s u),
Here we also used the identities

[Λ s , v]∂ 3 x u = ∂ x [Λ s , v]∂ 2 x u -[Λ s , v x ]∂ 2 x u and 1 2 (v xxx Λ s u, Λ s u) = -(v xx Λ s u, Λ s u x ). Since |u| H s ≤ E s (u) and √ µ|∂ x u| H s ≤ 1 √ -β E s (u)
, one gets directly by the Cauchy-Schwartz inequality,

e ελt ∂ t (e -ελt E s (u) 2 ) ≤ εC(µ 0 , 1 β , γ, δ)(A(u, v)E s (u) + B(v)E s (u) 2 ) -ελE s (u) 2 + 2|f | H s E s (u), with A(u, v) = |[Λ s , V ]∂ x u| 2 + |[Λ s , v]∂ x ( √ µ∂ x u)| 2 + |[Λ s , √ µv x ]∂ x ( √ µ∂ x u)| 2 + √ µ|v x ∂ x u| H s , B(v) = |∂ x V | ∞ + |v x | ∞ + |∂ x ( √ µ∂ x v)| ∞ .
Recalling that for all s > 3/2, and all F, U smooth enough, one has

|[Λ s , F ]U | 2 ≤ Cst |F | H s |U | H s-1 ,
it is easy to check that one gets

A(u, v) ≤ C(µ 0 , M, 1 β , ι, κ, E s (v))E s (u) and B(v) ≤ C(µ 0 , M, 1 β , ι, κ, E s (v))
. Therefore, we obtain

e ελt ∂ t (e -ελt E s (u) 2 ) ≤ C(µ 0 , M, 1 β , γ, δ, ι, κ, E s (v)) -λ E s (u) 2 + 2εE s (f )E s (u).
Taking λ = λ T large enough (how large depending on C(µ 0 , M, 1 β , γ, δ, ι, κ, E s (v))) to have the first term of the right hand side negative for all t ∈ [0, T ε ], one deduces

∀t ∈ [0, T ε ], ∂ t (e -ελT t E s (u) 2 ) ≤ 2εe -ελT t E s (f )E s (u).
Integrating this differential inequality yields therefore

∀t ∈ [0, T ε ], E s (u)(t) ≤ e ελT t E 0 (u 0 ) + 2ε t 0 e λT (t-t ′ ) E s (f (t ′ ))dt ′ .
Thanks to this energy estimate, one can conclude classically (see e.g. [START_REF] Alinhac | Opérateurs pseudo-différentiels et thèoréme de Nash-Moser, Savoirs Actuels. InterEditions[END_REF]) to the existence of

T = T (µ 0 , M, |u 0 | X s+1 µ 0 , 1 β , γ, δ, ι, κ) > 0,
and of a unique solution u ∈ C([0, T ε ]; X s+1 (R d )) to ( 21) as a limit of the iterative scheme [START_REF] Ivanov | On the integrability of a class of nonlinear dispersive wave equations[END_REF], we have L(u, ∂u)u = 0 and therefore

u 0 = u 0 , and ∀n ∈ N, L(u n , ∂)u n+1 = 0, u n+1 |t=0 = u 0 . Since u solves
(Λ s-1 (1 + µβ∂ 2 x )∂ t u, Λ s-1 ∂ t u) = -ε(Λ s-1 M(u, ∂)u, Λ s-1 ∂ t u), with M(u, ∂) = L(u, ∂) -(1 + µβ∂ 2
x )∂ t . Proceeding as above, one gets

E s-1 (∂ t u) ≤ C(µ 0 , M, |u 0 | X s+1 µ 0 , 1 β , γ, δ, ι, κ, E s (u)),
and it follows that the family of solution is also bounded in C 1 ([0, T ε ]; X s ). 3.2. Rigorous justification of the unidirectional approximations [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF]. In Proposition 2, we constructed a family (u ε,µ , ζ ε,µ ) consistent with the Green-Naghdi equations in the sense of Definition 4. A consequence of the following theorem is a stronger result: this family provides a good approximation of the exact solutions (u ε,µ , ζ ε,µ ) of the Green-Naghdi equations with same initial data in the sense that

(u ε,µ , ζ ε,µ ) = (u ε,µ , ζ ε,µ ) + O(µ 2 t) for times O(1/ε).
Theorem 1. Let µ 0 > 0, M > 0, T > 0 and P be as defined in [START_REF] Constantin | Inverse scattering transform for the Camassa-Holm equation[END_REF]. Let also p ∈ R, θ ∈ [0, 1], and α, β, γ and δ be as in Proposition 2. If β < 0 then there exists D > 0 and T > 0 such that for all u 0 ∈ H s+D+1 (R):

• There is a unique family (u ε,µ , ζ ε,µ ) (ε,µ)∈P ∈ C([0, T ε ]; H s+D (R) 2 )
given by the resolution of [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] with initial condition u 0 and formulas ( 15)-( 16); • There is a unique family (u ε,µ , ζ ε,µ ) (ε,µ)∈P ∈ C([0, T ε ]; H s+D (R) 2 ) solving the Green-Naghdi equations (3) with initial condition (u ε,µ , ζ ε,µ ) |t=0 . Moreover, one has for all (ε, µ) ∈ P,

∀t ∈ [0, T ε ], |u ε,µ -u ε,µ | L ∞ ([0,t]×R) + |ζ ε,µ -ζ ε,µ | L ∞ ([0,t]×R) ≤ Cst µ 2 t.
Remark 4. It is known (see [START_REF] Alvarez-Samaniego | Large time existence for 3D water-waves and asymptotics[END_REF]) that the Green-Naghdi equations give, under the scaling (6), a correct approximation of the exact solutions of the full water waves equations (with a precision O(µ 2 t) and over a time scale O(1/ε)). It follows that that the unidirectional approximation discussed above approximates the solution of the water waves equations with the same accuracy.

Remark 5. We used the unidirectional equations derived on the velocity as the basis for the approximation justified in the theorem. One could of course use instead the unidirectional approximation [START_REF] Fornberg | A numerical and theoretical study of certain nonlinear wave phenomena[END_REF] derived on the surface elevation.

Proof. The first point of the theorem is a direct consequence of Proposition 4. Thanks to Proposition 2, we now that (u ε,µ , ζ ε,µ ) ε,µ is consistent with the Green-Naghdi equations (3), so that the second point of the theorem and the error estimate follow at once from the well-posedness and stability of the Green-Naghdi equations (see Th. 3 of [START_REF] Alvarez-Samaniego | A Nash-Moser theorem for singular evolution equations[END_REF]-note that instead of using this general result which holds for two dimensional surfaces and nonflat bottoms, one could easily adapt the simpler and more precise results of [START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF] to the present scaling).

3.3. Wave breaking. For the Camassa-Holm family of equations ( 7) for the velocity it is known (see [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF]) that singularities can develop in finite time for a smooth initial data only in the form of wave breaking. We will show now that this form of blow-up is also a feature of the equation ( 19) for the free surface. More precisely, if a smooth initial profile fails to produce a wave that exists for all subsequent times, then we encounter wave breaking in the form of surging (and not plunging, as would be the case if [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF] were the equation for the evolution of the free surface).

Our first result describes the precise blow-up pattern for the equation ( 19) for the free surface. 

∂ t R [ζ 2 + 1 12 µ R ζ 2 
x ] dx = 0.

To prove item (ii), notice that multiplication of ( 19) by ζ xxxx yields

∂ t R [ζ 2 xx + 1 12 µ R ζ 2 xxx ] dx = 15 ε R ζζ xx ζ xxx d - 15 4 ε 2 R ζ 2 ζ xx ζ xxx dx (27) + 9 16 ε 3 R ζ 5 x dx + 15 8 ε 3 R ζ 3 ζ xx ζ xxx dx + 7 4 µε R ζ x ζ 2 xxx dx.
after performing several integrations by parts. If [START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF] holds, let in accordance with [START_REF] Matsuno | The N -soliton solution of the Degasperis-Procesi equation[END_REF] the constant M 0 > 0 be such that

|ζ(t, x)| ≤ M 0 , x ∈ R,
for as long as the solution exists. Using the Cauchy-Schwartz inequality as well as the fact that µ ≤ 1, we infer from ( 26) and ( 27) that

∂ t E(t) ≤ 90ε µ M 0 + 45ε 2 2µ M 2 0 + 27ε 3 4µ M 3 + 45ε 3 4µ M 3 0 + 21 εM E(t),
where

E(t) = R [ζ 2 + 1 12 µζ 2 x + ζ 2 xx + 1 12 µζ 2 xxx ] dx.
An application of Gronwall's inequality enables us to conclude.

Our next aim is to show that there are solutions to (19) that blow-up in finite time as surging breakers, that is, following the pattern given in Proposition 5. We will prove this by analyzing the equation that describes the evolution of ( 28)

M (t) = sup x∈R {ζ x (t, x)}.
For the degree of smoothness of the solution ζ(t) given by Proposition 

(1 - 1 12 µ ∂ 2 x ) -1 f = P * f, f ∈ L 2 (R), (30) 
where 4 , and

P (x) = 3 µ e -2 3 µ |x| , x ∈ R, with (31) 
P L ∞ = 3 µ , P L 1 = 1, P L 2 = 3 4µ 1 
P x L ∞ = 6 µ , P x L 1 = 2 3 µ , P x L 2 = √ 2 3 µ 3 4 ≤ 4 µ -3 4 . (32) 
Applying (1 -1 12 µ ∂ Differentiating this equation with respect to the spatial variable, we obtain

ζ tx + ∂ 2 x P * ζ + 3 4 ε ∂ 2 x P * ζ 2 - 1 8 ε 2 ∂ 2 x P * ζ 3 + 3 64 ε 3 ∂ 2 x P * ζ 4 + 1 12 µ ∂ 4 x P * ζ = - 7 24 µε ∂ 2 x P * ζ 2 x - 7 24 µε P x * (ζζ xxx ). Since ζζ xxx = ∂ 2 x (ζζ x ) -3ζ x ζ xx and (33) ∂ 2 x P * f = P x * ζ x = 12 µ P * f - 12 µ f, f ∈ L 2 (R),
we deduce that

ζ tx + 2 P x * ζ x - 3 8 ε 2 P x * (ζ 2 ζ x ) + 3ε 3 16 P x * (ζ 3 ζ x ) (34) = ζ xx + 7ε 4 P * ζ 2 x + 7ε 4 ζ 2 x + 7ε 2 ζζ xx - 7 2 ε P x * (ζζ x ).
We can now prove the following blow-up result.

Proposition 6. If the initial wave profile ζ 0 ∈ H 3 (R) satisfies sup x∈R {ζ 0 (x)} 2 ≥ 28 3 C 0 µ -3/4 + 1 2 ε C 3/2 0 µ -3/4 + 1 4 ε 2 C 2 0 µ -3/4 + 7 3 C 0 µ -1/2 + 16 3 C 1/2 0 µ -3/4 ε -1 ,
where

C 0 = R [ζ 2 0 + (ζ ′ 0 ) 2 ] dx > 0,
then wave breaking occurs for the solution of [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] in finite time

T = O( 1 ε ). Proof. Notice that sup x∈R {|ζ 2 (x)|} ≤ 1 2 R (ζ 2 + ζ 2 x ) dx = C 0 2 .
Therefore, using Young's inequality and the estimates ( 31)- [START_REF] Tao | Low-regularity global solutions to nonlinear dispersive equations[END_REF], we obtain that

P x * ζ x L ∞ ≤ P x L 2 ζ x L 2 ≤ 4 µ -3/4 C 1/2 0 , P * ζ 2 x L ∞ ≤ P L ∞ ζ 2 x L 1 ≤ P L ∞ ζ x 2 L 2 ≤ 2 µ -1/2 C 0 , P x * (ζζ x ) L ∞ ≤ P x L 2 ζζ x L 2 ≤ P x L 2 ζ L ∞ ζ x L 2 ≤ 4 µ -3/4 C 0 , P x * (ζ 2 ζ x ) L ∞ ≤ P x L 2 ζ 2 ζ x L 2 ≤ P x L 2 ζ 2 L ∞ ζ x L 2 ≤ 2 µ -3/4 C 3/2 0 , P x * (ζ 3 ζ x ) L ∞ ≤ P x L 2 ζ 3 ζ x L 2 ≤ P x L 2 ζ 3 L ∞ ζ x L 2 ≤ 2 µ -3/4 C 2 0 .
Since (34) is at any fixed time an equality in the space of continuous functions, we can evaluate both sides at some fixed time t at a point ξ(t) ∈ R where M (t) = ζ x (t, ξ(t)), with M (t) defined in [START_REF] Molinet | On well-posedness results for the Camassa-Holm equation on the line: a survey[END_REF]. Since ζ xx (t, ξ(t)) = 0, from (29), (34) and the with F [u] = -3 2 εuu ξ -ε 2 ιu 2 u ξ -ε 3 κu 3 u ξ -µ(α -β)u ξξξ + εµ(γuu ξξξ + δu ξ u ξξ ), and where δ t is the time step and u n ∼ u | t=nδ t (to start the induction, that is, for n = 0, the centered discrete time derivative must be replaced by an upwind one). Numerical computations are performed for [START_REF] Fokas | Symplectic structures, their Bäcklund transformation and hereditary symmetries[END_REF] and [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] with the same initial value

u |t=0 = exp(-100x 2 ),
and with µ = 0.2, ε = √ µ. Figure 1 shows the formation of a plunging breaker for the solution of ( 17); the little mark on the curves materializes the point of minimal slope. For the same initial data, Figure 2 shows the formation of a surging breaker for the solution of [START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF]; the little mark on the curves materializes here the point of maximal slope.
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Proposition 5 .

 5 Let ζ 0 ∈ H 3 (R). If the maximal existence time T > 0 of the solution of (19) with initial profile ζ(0, •) = ζ 0 is finite, T < ∞, then the solution ζ ∈ C 1 ([0, T ); H 2 (R)) ∩ C([0, T ); H ( R)) is such that (23) sup t∈[0,T ), x∈R

  2.1. Equations on the velocity. At leading order, the Green-Naghdi equations degenerate into a simple wave equation of speeds ±1; including the O(ε) terms, one can easily check that the (say) right-going component of the wave must satisfy

	(11)	u t + u x +	3 2	εuu x = 0,

and ζ = u + O(ε).

  Proof. In view of Proposition 4, given ζ 0 ∈ H 3 (R), the maximal existence time of the solution ζ(t) to[START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] with initial data ζ(0) = ζ 0 is finite if and only if |ζ(t)| H 3 (R)blows-up in finite time. Thus if[START_REF] Lenells | Conservation laws of the Camassa-Holm equation[END_REF] holds for some finite T > 0, then the maximal existence time is finite. To complete the proof it suffices to show that

	Item (i) follows at once from the imbedding L ∞ (R) ⊂ H 1 (R) since multiplying (19) by ζ and integrating on R yields
	(26)		
		{|ζ(t, x)|} < ∞
	and		
	(24)	sup	
	(i) the solution ζ(t) given by Proposition 4 remains uniformly bounded as long
	as it is defined;		
	and		
	(ii) if we can find some M = M (ζ 0 ) > 0 such that
	(25)	ζ x (t, x) ≤ M,	x ∈ R,
	as long as the solution is defined, then |ζ(t)| H 3 (R) stays bounded on bounded time-intervals.

x∈R {ζ x (t, x)} ↑ ∞ as t ↑ T.

  Figure1. A plunging breaker for the Camassa-Holm equation[START_REF] Fokas | Symplectic structures, their Bäcklund transformation and hereditary symmetries[END_REF] 

	1.000											1.000											1.000										
	0.786											0.786											0.786										
	0.571											0.571											0.571										
	0.357											0.357											0.357										
	0.143											0.143											0.143										
	-0.071											-0.071											-0.071										
	-0.286											-0.286											-0.286										
	-0.500											-0.500											-0.500										
	-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8		-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8		-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	
	1.000											1.000											1.000										
	0.786											0.786											0.786										
	0.571											0.571											0.571										
	0.357											0.357											0.357										
	0.143											0.143											0.143										
	-0.071											-0.071											-0.071										
	-0.286											-0.286											-0.286										
	-0.500											-0.500											-0.500										
	-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8		-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8		-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	
	1.000											1.000											1.000										
	1.000 0.786											1.000 0.786											1.000 0.786										
	0.786 0.571											0.786 0.571											0.786 0.571										
	0.571 0.357											0.571 0.357											0.571 0.357										
	0.357 0.143											0.357 0.143											0.357 0.143										
	0.143 -0.071											0.143 -0.071											0.143 -0.071										
	-0.071 -0.286											-0.071 -0.286											-0.071 -0.286										
	-0.286 -0.500											-0.286 -0.500											-0.286 -0.500										
	-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8		-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8		-0.8	-0.6		-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	
	-0.500											-0.500											-0.500										
		8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
	1.000											1.000											1.000										
	0.786											0.786											0.786										
	0.571											0.571											0.571										
	0.357											0.357											0.357										
	0.143											0.143											0.143										
	-0.071											-0.071											-0.071										
	-0.286											-0.286											-0.286										
	-0.500											-0.500											-0.500										
	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0
	1.000											1.000											1.000										
	0.786											0.786											0.786										
	0.571											0.571											0.571										
	0.357											0.357											0.357										
	0.143											0.143											0.143										
	-0.071											-0.071											-0.071										
	-0.286											-0.286											-0.286										
	-0.500											-0.500											-0.500										
	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0	-1.0	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	1.0

Figure

2

. A surging breaker for the surface equation

[START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF] 

previous estimates we derive the following differential inequalities for the locally Lipschitz function M (t):

Notice that 0 ≡ ζ 0 ∈ H 3 (R) ensures M (0) > 0. At t = 0 the right-hand side of (36) is by our assumption on the initial wave profile larger than 1 4 ε M 2 (0). We infer that up to the maximal existence time T > 0 of the solution ζ(t) of ( 19) the function M (t) must be increasing and, moreover,

Dividing by M 2 (t) ≥ M 2 (0) > 0 and integrating, we get 1

.

On the other hand, a similar argumentation applied to (35) yields

as long as the solution of ( 19) is defined. Since lim t↑T M (t) = ∞ we deduce from the previous inequality that T ≥ 1 4ε M (0)

. Thus the finite maximal existence time T > 0 is of order O( 1 ε ). 3.4. Numerical computations. In this section, we use numerical computations to check that the surface equation ( 19) and the Camassa-Holm equation ( 17) lead respectively to surging and plunging breakers as predicted theoretically by Proposition 6 (and [START_REF] Constantin | On the scattering problem for the Camassa-Holm equation[END_REF] for [START_REF] Fokas | Symplectic structures, their Bäcklund transformation and hereditary symmetries[END_REF]). We use the same kind of numerical scheme for both equations; in fact, our scheme works for any equation of the class [START_REF] Ivanov | On the integrability of a class of nonlinear dispersive wave equations[END_REF] with β < 0. In order to reduce the size of the computational domain, we solve [START_REF] Ivanov | On the integrability of a class of nonlinear dispersive wave equations[END_REF] in a frame moving at speed 1, in which ( 20) is replaced by

where ξ stands for x -t. The numerical scheme used here is a simple finite difference leapfrog/Crank-Nicolson scheme whose semi-discretized version reads