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A FETI method with a mesh independent condition number for the iteration matrix Abstract. We introduce a framework for FETI methods using ideas from the decomposition via Lagrange multipliers of H 1 0 (Ω) derived by Raviart-Thomas [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF] and complemented with the detailed work on polygonal domains developed by Grisvard [START_REF] Grisvard | Singularities in Boundary value problems[END_REF]. We compute the action of the Lagrange multipliers using the natural H 1/2 00 scalar product, therefore no consistency error appears. As a byproduct, we obtain that the condition number for the iteration matrix is independent of the mesh size and there is no need for preconditioning. This result improves the standard asymptotic bound for this condition number shown by Mandel-Tezaur in [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF]. Numerical results that confirm our theoretical analysis are presented.

C. Bernardi
Résumé. Nous proposons une nouvelle approche des méthodes FETI: la décomposition de domaine fait appel aux multiplicateurs de Lagrange tels qu'introduits par Raviart-Thomas [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF] et au traitement des domaines polygonaux dû à Grisvard [START_REF] Grisvard | Singularities in Boundary value problems[END_REF]. Ces multiplicateurs utilisent le produit scalaire de H 1/2 00 , de sorte qu'aucune erreur de consistance n'apparaît. En outre, nous prouvons que le nombre de condition de la matrice liée à chaque itération est indépendant de la taille du maillage, ce qui améliore le résultat de Mandel-Tezaur [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF]; par suite, aucun préconditionnement n'est nécessaire. Nous présentons des expériences numériques qui confirment notre analyse.

Introduction

The Lagrange multiplier formulation for elliptic Dirichlet boundary value problems is a classical technique to handle many difficulties such as highorder equations, the divergence-free constraint or non standard boundary conditions. We are interested here in its applications to domain decomposition methods, more precisely to the Finite Element Tearing and Interconnecting (FETI) method hinted by Dihn, Glowinsky and Periaux [START_REF] Glowinski | Domain decomposition methods for nonlinear problems in fluid dynamics[END_REF] in 1983, Dorr [START_REF] Dorr | Domain decomposition via Lagrange multipliers[END_REF] in 1988, Roux [START_REF] Roux | Méthode de décomposition de domaine à l'aide de multiplicateurs de Lagrange et application à la résolution en parallèle des équations de l'élasticité linéaire[END_REF]- [START_REF] Roux | Acceleration of the outer conjugate gradient by reorthogonalization for a domain decomposition method for structural analysis problems[END_REF] in 1989 and further developed by Farhat-Roux and collaborators [START_REF] Farhat | A Lagrange multiplier based divide and conquer finite element algorithm[END_REF]- [START_REF] Farhat | A method of finite element tearing and interconnecting and its parallel solution algorithm[END_REF]- [START_REF] Farhat | An unconventional domain decomposition method for an efficient parallel solution of large-scale finite element systems[END_REF]- [START_REF] Farhat | FETI-DP: a dualprimal unified FETI method, Part I: A faster alternative to the two-level FETI method[END_REF]- [START_REF] Mandel | On the convergence of a dual-primal substructuring method[END_REF]- [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF]- [START_REF] Mandel | A scalable substructuring method by Lagrange multipliers for plate bending problems[END_REF]. This method has been implemented for large scale engineering problems with excellent results, see for instance [START_REF] Bhardwaj | Application of the FETI method to ASCI problems, scalability results on 1000 processors and discussion of highly heterogeneous problems[END_REF]- [START_REF] Farhat | Optimal convergence properties of the FETI domain decomposition method[END_REF]- [START_REF] Rixen | Theoretical comparison of the FETI and algebraically partitioned FETI methods, and performance comparisons with a direct sparse solver[END_REF].

The idea of the FETI method is to decompose the computational domain into non-overlapping subdomains and to enforce continuity on subdomain interfaces by Lagrange multipliers. Eliminating the subdomain variables yields a dual problem for the Lagrange multipliers, which can be solved by any iteration method. When the preconditioned conjugate gradient method is used we encounter the standard FETI method.

Efficient computations of the Lagrange multipliers is of great interest and has been considered from several points of view. For instance, Barbosa-Hughes [START_REF] Barbosa | Boundary Lagrange multipliers in finite element methods: error analysis in natural norms[END_REF] used mesh dependent scalar products, Ben Belgacem [START_REF] Belgacem | The Mortar finite element method with Lagrange multipliers[END_REF] used some projection operator onto the L 2 space on the interfaces and Bertoluzza [START_REF] Bertoluzza | Wavelet stabilization: the Lagrange multiplier method[END_REF] used wavelet bases.

In this work we introduce a framework for FETI methods using ideas from the decomposition via Lagrange multipliers of H 1 0 (Ω) derived by Raviart-Thomas [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF] and complemented with the detailed work on polygonal domains developed by Grisvard [START_REF] Grisvard | Singularities in Boundary value problems[END_REF]. As a consequence, we obtain a characterization of H 1 0 (Ω) more precise than the one in [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF]. Our main ingredient next is the direct computation of the duality H -1/2 00 -H 1/2 00 using the natural H 1/2 00 scalar product; therefore no consistency error appears. Our analysis allows to deal with cross points and floating subdomains in a natural manner: cross points are dealt with implicitly and the ellipticity on floating subdomains holds naturally because we restrict our work to a subspace that contains the solution and where this ellipticity is satisfied. As a byproduct, we obtain that the condition number for the iteration matrix is independent of the mesh size and does not need any preconditioning. This result improves the standard asymptotic bound for this condition number given by (1 + log(H/h)) 2 , where H and h are the characteristic subdomain size and element size respectively, shown by Mandel-Tezaur in [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF].

The way to approximate the nullity of the jump is of course the main feature of domain decomposition methods. In most cases, the jump is enforced either to cancel in a finite number of nodes (pointwise matching) or to be orthogonal to a finite-dimensional space for the scalar product of L 2 (Γ) (integral matching), see for instance Bernardi-Maday-Patera [START_REF] Bernardi | A new nonconforming approach to domain decomposition : the mortar element method[END_REF] and the references therein for a large number of applications. The approach that we follow here is rather different and relies on the fact that the jump through Γ belongs to the space H 1/2 00 (Γ). So, this jump is enforced to be orthogonal to an appropriate subspace of H 1/2 00 (Γ) for the scalar product of H 1/2 00 (Γ). The main advantages are that:

1. This condition can be written in the continuous case in a natural way:

If (•, •) 1/2,00,Γ denotes the scalar product of H 1/2 00 (Γ) it reads as ∀µ ∈ H 1/2 00 (Γ), ([v] Γ , µ) 1/2,00,Γ = 0 where [v] Γ is the jump of v across Γ.
2. Introducing a Lagrange multiplier to handle this condition is natural. Moreover, due to the intrinsic ellipticity of the scalar products (•, •) 1/2,00,Γ on H 1/2 00 (Γ), the corresponding mixed problem is well-posed. 3. Then, a discrete problem can easily be constructed by the Galerkin method, so that no consistency error appears from the discretization.

On the other hand, the application of the classical Uzawa's Method or the Conjugate Gradient Method to the dual problem that computes the correct Lagrangian multipliers yield non overlapping domain decomposition methods. The convergence properties of these methods are the same as the ones of the iterative method considered: geometrically convergent in both cases and with a better ratio in the case of Conjugate Gradient Method. Moreover, when performing a finite element approximation of each subproblem, these convergence properties are preserved with a mesh independent ratio thanks to the finite element extension theorems, see for instance Bernardi-Maday-Rapetti [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]. To avoid more technical details, for the moment we fix our attention on dimension two but we believe the extension to three dimensional problems is just a technical matter. This work is structured as follows: In Section 2 we present a characterization of H -H

1/2 00 on each interface; in Section 3 we reformulate the method via Riesz representation so that this duality is replaced by the scalar product in H 1/2 00 . Here, is where the finite element extension theorems play a key role in the discrete case. In Section 4 we present our domain decomposition method which is just the application of iterative methods to the dual problem associated to the Lagrange multipliers. Finally, in Section 5 we show some numerical tests: we consider partitions on two and three subdomains, a four subdomains case with an internal cross point and the case of a floating subdomain, diamond-like shaped with four corners; the results confirm our theoretical analysis. Standard notation, see Girault and Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF] or Adams [START_REF] Adams | Sobolev Spaces[END_REF], is used.

Motivation of the method

Our model problem is: Given f ∈ L 2 (Ω) we look for u such that

-∆u + u = f in Ω (1) u = 0 on ∂Ω (2)
that has a variational formulation as follows:

Given f ∈ L 2 (Ω) we look for u ∈ H 1 0 (Ω) such that (∇u, ∇v) Ω + (u, v) Ω = (f, v) Ω ∀v ∈ H 1 0 (Ω) (3) 
where (ϕ, ψ) Ω = Ω ϕ(x) ψ(x) dx is the scalar product in L 2 (Ω). Assume now that Ω is a polygonal bounded domain in R 2 that admits a decomposition without overlapping in polygonal subdomains

Ω = ∪ R r=1 Ω r and Ω r ∩ Ω r ′ = ∅, 1 ≤ r < r ′ ≤ R. (4) 
Then, the solution u of (3) also satisfies that

R r=1 {(∇u r , ∇v r ) Ωr + (u r , v r ) Ωr } = R r=1 (f r , v r ) Ωr ∀v ∈ H 1 0 (Ω) (5) 
where the subindex r denotes restriction to Ω r , i.e., for instance u r = u | Ωr .

Next we assume that the partition (4) of Ω is geometrically conforming in the sense that all interiors interfaces Γ r,s = Ω r ∩ Ω s ⊂ Ω are either a common vertex, a common edge or empty. For simplicity, when Γ r,s is an internal common edge we will assume that is a straight open segment without corners.

A general case on this situation, i.e., Γ r,s with corners, could also be handled in the same way but the description would become more cumbersome. We set Γ r,0 = ∂Ω r ∩ ∂Ω and we may allow Γ r,0 polygonal because we impose zero boundary data on ∂Ω. Now we describe ∂Ω r in terms of its edges via

∂Ω r = Γ r,0 ∪ Γ r,1 ∪ ... ∪ Γ r,Jr (6) 
where J r is a positive integer and Γ r,0 , which might be empty, satisfies

∂Ω = ∪ R r=1 Γ r,0 .
We call skeleton of Ω, and denote it by E, the set of all interfaces in Ω, and by E 0 the skeleton of Ω, i.e., the set of all internal interfaces:

E = ∪ I i=1 Γ i , E 0 = E ∩ Ω = ∪ I i=I 0 +1 Γ i .
Here Γ i = Γ i,0 for i = 1, .., I 0 ≤ R describe the boundary ∂Ω, and for i ≥ I 0 +1 Γ i = Γ r,j , for some r, j ≥ 1, are all the internal interfaces. Then, on each Ω r we consider the restriction of H 1 0 (Ω) to Ω r , i.e., the Hilbert space

H 1 b (Ω r ) = {v r ∈ H 1 (Ω r ); v r = 0 on ∂Ω r ∩ ∂Ω},
with the classical scalar product (u r , v r ) 1,Ωr = (u r , v r ) Ωr + (∇u r , ∇v r ) Ωr and on Ω the Hilbert space X given by

X = {v ∈ L 2 (Ω); v r = v | Ωr ∈ H 1 b (Ω r ), r ≤ R, [v] Γ i ∈ H 1/2 00 (Γ i ), ∀Γ i ∈ E 0 } where [v] Γ i is the jump across Γ i ∈ E 0 given by [v] Γ i = v r -v s , when Γ i = ∂Ω r ∩ ∂Ω s ⊂ Ω.
The scalar product on X is given by

(u, v) X = R r=1 (u r , v r ) 1,Ωr + I i=I 0 +1 ([u] Γ i , [v] Γ i ) 1/2,00,Γ i , ∀ u, v ∈ X
and the norm on X is given by

v 2 X = R r=1 v r 2 1,Ωr + I i=I 0 +1 [v] Γ i (w, v) 1/2,Γ = Γ w(x) v(x) dx + Γ Γ (w(x) -w(y)) (v(x) -v(y)) |x -y| d dx dy.
and when v, w ∈ H 1/2 00 (Γ) an extra term is added to define the scalar product in H

1/2 00 (Γ) (w, v) 1/2,00,Γ = (w, v) 1/2,Γ + Γ w(x) v(x) d(x, ∂Γ) dx,
where d(x, ∂Γ) is the distance from x to ∂Γ; then the norm in H 1/2 00 (Γ) is given by v 2 1/2,00,Γ = (v, v) 1/2,00,Γ . The norm on X also measures the jumps across the internal interfaces an thanks to the trace theorems we have the inequality

v 2 X ≤ C R r=1 v r 2 1,Ωr , ∀ v ∈ X (7) 
that will guarantee the ellipticity of the problems that will be posed later on. We can identify the space H 1 0 (Ω) with the subspace V of elements of X such that their jumps are zero on the interfaces. Then, the unique solution u of our variational problem (3) also solves the problem:

Find u ∈ V such that for all v ∈ V R r=1 {(∇u r , ∇v r ) Ωr + (u r , v r ) Ωr } = R r=1 (f | Ωr , v r ) Ω . (8) 
Our purpose now is to get rid of the constrains on the jumps and set (8) on X. This will be achieved by adding the restriction on the jumps via Lagrangian multipliers to [START_REF] Bhardwaj | Application of the FETI method to ASCI problems, scalability results on 1000 processors and discussion of highly heterogeneous problems[END_REF]. Therefore we must characterize H 1 0 (Ω) in X.

Description of H 1 0 (Ω) within X

To achieve this description we follow the idea introduced by Raviart-Thomas [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF] and study the linear forms on X that vanish on H 1 0 (Ω). We must guarantee that all the jumps across internal interfaces vanish and we do this via Lagrangian multipliers.

A key ingredient is the Green formula on polygonal domains and the localization of the boundary integrals on each element Γ i ∈ E 0 so as to act on the jumps. It is in this point where we improve the arguments in [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF]. As a reward, our analysis will say that cross points do not matter in the computation of the solution and the characterization in [START_REF] Raviart | Primal Hybrid Finite Element Methods for second order eliptic equations[END_REF] will be improved.

Let O be a polygonal domain in R 2 with edges Γ j , 1 ≤ j ≤ J. The domain of the divergence operator on O is

H(div; O) = q ∈ L 2 (O) 2 ; div( q) ∈ L 2 (O) .
For each j, we also introduce the space

H 1 (j) (O) = v ∈ H 1 (O); v = 0 on ∂O \ Γ j
, and we recall that the trace operator: v → v |Γ j is continuous from H 1 (j) (O) onto H 1/2 00 (Γ j ). The next result is then easily derived from the density of D(O) 2 into H(div; O), see [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF], Chap. I, Thm 2.4 for instance. We refer to Grisvard [START_REF] Grisvard | Singularities in Boundary value problems[END_REF] for a more detailed proof in the case of a polygon.

Let < •, • > -1/2,00,Γ j denote the duality

H -1/2 00 (Γ j ) -H 1/2
00 (Γ j ), then Lemma 1 The normal trace operator defined by

∀v ∈ H 1 (j) (O), < n j • q, v > -1/2,00,Γ j = ( q, ∇v) O + (div( q), v) O ,
admits a continuous extension from H(div; O) into the dual space

H -1/2 00 (Γ j ) of H 1/2 00 (Γ j ).
Let also E be the space

E = v ∈ H 1 (O); ∆v ∈ L 2 (O) .
The next corollary is derived by applying Lemma 1 to the functions ∇v when v ∈ E.

Corollary 1

The normal derivative defined by

∀v ∈ H 1 (j) (O), < ∂ n j u, v > -1/2,00,Γ j = (∇u, ∇v) O + (∆u, v) O ,
admits a continuous extension from E into the space H -1/2 00 (Γ j ).

As a consequence, we have the following integrations by parts Corollary 2 When O ⊂ R 2 is a polygonal domain and ∂O = ∪ J j=1 Γ j , then for each u ∈ E and any q ∈ H(div; O) we have

(∆u, v) O + (∇u, ∇v) O = J j=1 < ∂ n j u, v > -1/2,00,Γ j (9) ( q, ∇v) O + (div( q), v) O = J j=1 < n j • q, v > -1/2,00,Γ j ( 10 
)
for any v ∈ H 1 (O) with v | Γ j ∈ H 1/2 00 (Γ j ) for j = 1, 2, ..., J.
As each Ω r is a polygonal domain, and as a consequence of the above results, we need to consider the dense subspace W r of H 1 b (Ω r ) given by, observe that we consider only internal interfaces,

W r = {u ∈ H 1 b (Ω r ); u | Γ r,j ∈ H 1/2 00 (Γ r,j ), j = 1, ..., J r },
and the dense subspace in X given by

X 0 = {v ∈ L 2 (Ω); v r = v | Ωr ∈ W r , r = 1, ..., R}.
The use of X 0 is a key tool in our analysis because the Green's formula on polygonal subdomains can be applied on each Ω r . Now, as we are only interested in what happens on the internal interfaces, we consider

M = { µ ∈ R r=1 Jr j=1 H -1/2 00
(Γ r,j ); µ r,j = n r,j • q, for some q ∈ H(div; Ω).}

The elements of M will be denoted the Lagrange multipliers on the internal interfaces Γ i ∈ E 0 . The following result gives a description of the linear forms in X that vanish on H 1 0 (Ω):

Lemma 2 L ∈ X ⋆ (dual space of X) vanishes on H 1 0 (Ω) if and only if there exists a unique µ ∈ M such that L(u) = R r=1 Jr j=1 < µ r,j , u r > -1/2,00,Γ r,j , ∀u ∈ X 0 . ( 11 
)
Observation 1 Using q ∈ H(div; Ω) such that (n t,s • q) = µ t,s , the fact that n s,t = -n t,s on any internal interface Γ i = Ω s ∩ Ω t and a density argument, (11) can be replaced by ( 12)

L(u) = I i=I 0 +1 < µ i , [u] Γ i > -1/2,00,Γ i , ∀u ∈ X ( 12 
)
where we recall that Γ i for i ≥ I 0 + 1 are the internal interfaces, i.e., we only act on the jumps across internal interfaces.

Dem: We give the main idea and the rest is left to reader. For any L ∈ X ⋆ via Riesz representation there exists a unique v ∈ X such that L(u) = (v, u) X for all u, v ∈ X. Then, for each u r ∈ H 1 0 (Ω r ) let ũr be its extension by zero to H 1 0 (Ω), then ũr ∈ X and each

v r ∈ H 1 b (Ω r ) satisfies (ũ, v) X = (u r , v r ) 1,Ωr = (u r , v r ) Ωr + (∇u r , ∇v r ) Ωr = 0 ∀u r ∈ H 1 0 (Ω r ) which implies that v r ∈ H 1 b (Ω r ) and ∆v r = v r ∈ L 2 (Ω r ). Now recall that ∂Ω r = ∪ Jr j=0 Γ r,j , then ∂ n r,j v r ∈ H -1/2 00
(Γ r,j ) where n r,j is the outward vector normal on Γ r,j . As we can not deduce more regularity on v r we must apply Green formula on polygonal domains with functions in W r and then (observe that Γ r,0 = ∂Ω r ∩ ∂Ω does not appear because u r = 0 on Γ r,0 )

(u r , v r ) 1,Ωr = Jr j=1 < ∂ n r,j v r , u r > -1/2,00,Γ r,j ∀u r ∈ W r , which implies that for all u ∈ X 0 L(u) = (v, u) X = R r=1 Jr j=1 < ∂ n r,j v r , u r > -1/2,00,Γ r,j
where again observe that only the internal interfaces (Γ r,j with j ≥ 1) are considered. A key observation is that all these normal derivatives are related because the fact that

L(u) = 0 for all u ∈ H 1 0 (Ω) implies (u, s) Ω + (∇u, q) Ω = 0 ∀u ∈ H 1 0 (Ω) (13) 
where q ∈ L 2 (Ω) d and s ∈ L 2 (Ω) are given locally by

q | Ωr = ∇v r (⇒ n r,j • q = ∂ n r,j v r ), s | Ωr = v r = ∆v r .
Then, (13) tells that q ∈ H(div; Ω) and div( q

) = s ∈ L 2 (Ω) (no information is obtained for n r,0 • q r ∈ H -1/2 00 (Γ r,j
), but it is not needed). Finally, thanks to this q that relates the normal derivatives across common interfaces we can write, using

µ i = n r,j • q = -n j,r • q on Γ i = Γ r,j , that L(u) = I i=I 0 +1 < µ i , [u] Γ i > -1/2,00,Γ i , ∀u ∈ X 0 ,
i.e., we only act on the jumps across internal interfaces. The extension of this last expresion for L when acting on X 0 to X by a density argument is simple.

As a consequence, we have the characterization of H 1 0 (Ω) as a subspace of X given by

Lemma 3 Let b : M × X → R be defined for v ∈ X and λ ∈ M by b( λ, v) = I i=I 0 +1 < λ i , [v] Γ i > -1/2,00,Γ i . ( 14 
)
Then

H 1 0 (Ω) = {v ∈ X; b( λ, v) = 0, ∀ λ ∈ M} Dem: We just prove that B = {v ∈ X; b( λ, v) = 0, ∀ λ ∈ M} ⊂ H 1 0 (Ω) because it is clear the inclusion H 1 0 (Ω) ⊂ B. As X = H 1 0 (Ω) ⊕ H 1 0 (Ω) ⊥,X , where ⊕ stands for orthogonal sum, for any v ∈ B we have v = v 0 + v 1 with v 0 ∈ H 1 0 (Ω) and v 1 ∈ H 1 0 (Ω) ⊥,X
. Take then the linear form T v 1 on X associated with v 1 via Riesz representation

T v 1 (u) = (v 1 , u) X , ∀u ∈ X As T v 1 vanishes on H 1 0 (Ω) there exists a unique µ ∈ M such that for all u ∈ X (v 1 , u) X = b( µ, u) = I i=I 0 +1 < µ i , [u i ] Γ i > -1/2,00,Γ i . (15) 
Then, using [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF] and

that v ∈ B v 1 2 X = (v 1 , v 1 ) X = (v 1 , v) X = b( µ, v) = 0 then v 1 = 0 and v = v 0 ∈ H 1 0 (Ω).

Lagrange formulation or primal hybrid formulation of the model problem

Define the bilinear form a : X × X → R given by

a(u, v) = (u, v) X = R r=1 (u r , v r ) 1,Ωr = R r=1 Ωr {∇u r • ∇v r + u r v r } dx. ( 16 
)
Thanks to the trace inequalities [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF] the ellipticity of a(•, •) on X is clear. We also use the bilinear form b( λ, v) given in [START_REF] Farhat | FETI-DP: a dualprimal unified FETI method, Part I: A faster alternative to the two-level FETI method[END_REF]. Then, our Dirichlet problem

(1) consists in looking for a pair (u, λ) ∈ X × M such that

a(u, v) + b( λ, v) = R r=1 (f, v r ) Ωr , ∀v ∈ X (17) b( µ, u) = 0, ∀ µ ∈ M. ( 18 
)
This formulation is also known as a primal hybrid formulation because it mixes the primal variable u with the Lagrangian multipliers that constraint the jumps. We have the equivalence result Theorem 3 u ∈ H 1 0 (Ω) solves the Dirichlet problem (3) if and only if there exists a unique λ ∈ M such that (u, λ) ∈ X × M solves problem ( 17)- [START_REF] Mandel | On the convergence of a dual-primal substructuring method[END_REF]. Moreover, in this case and for i = I 0 + 1, ..., I,

λ i = -∂ n i u ∈ H -1/2 00 (Γ i ). ( 19 
)
Dem: Let (u, λ) ∈ X × M solve ( 17)- [START_REF] Mandel | On the convergence of a dual-primal substructuring method[END_REF]. Then, u ∈ H 1 0 (Ω) due to (18) and for any

v ∈ H 1 0 (Ω) ⊂ X (∇u, ∇v) Ω + (u, v) Ω = (f, v) Ω , ∀v ∈ H 1 0 (Ω)
which is (3). On the other hand, if u ∈ H 1 0 (Ω) solves (3) then [START_REF] Mandel | On the convergence of a dual-primal substructuring method[END_REF] holds and the mapping T u ∈ X ⋆ given by

T u (v) = (f, v) Ω -a(u, v) ∀v ∈ X
vanishes on H 1 0 (Ω). Therefore, there exists a unique λ ∈ M such that (17

) (f, v) Ω -a(u, v) = I i=I 0 +1 < λ i , [v] Γ i > -1/2,00,Γ i ∀v ∈ X (20) 
holds. Moreover, [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF] holds by using that f = -∆u + u and integrating by parts with elements on X 0 .

Formulation using Riesz representation

The cornerstone now is how to compute the dualities that act on the jumps. This question has been considered from several points of view like mesh dependent scalar products (Barbosa-Hughes [START_REF] Barbosa | Boundary Lagrange multipliers in finite element methods: error analysis in natural norms[END_REF]), wavelet bases (Bertoluzza [START_REF] Bertoluzza | Wavelet stabilization: the Lagrange multiplier method[END_REF]) or projection operators onto the L 2 space on the interfaces (Ben Belgacem [START_REF] Belgacem | The Mortar finite element method with Lagrange multipliers[END_REF]). In our approach we use Riesz representation and work with the H 1/2 00 scalar product that is explicitly computed.

Via Riesz representation we identify H -1/2 00

(Γ i ) (dual space of H 1/2 00 (Γ i )) with H 1/2
00 (Γ i ) and therefore identify M with its dual space M ⋆ . Then we write all the dualities in terms of the scalar product in H 1/2 00 (Γ i ). To simplify notation, we denote the elements of H

1/2 00 (Γ i ) likewise those of H -1/2 00 (Γ i ), define the continuous bilinear form b : M × X → R given by b( λ, v) = I i=I 0 +1 (λ i , [v] Γ i ) -1/2,00,Γ i . (21) 
Then, the formulation of Poisson problem (3) that we shall use is:

Find a pair (u, λ) ∈ X × M such that a(u, v) + b(v, λ) = R r=1 (f, v r ) Ωr , ∀ v ∈ X, (22) b 
(u, µ) = 0, ∀ µ ∈ M. ( 23 
)
where we recall that the bilinear form a : X × X → R is given by ( 16). Thanks to Theorem 3 formulation ( 22)-( 23) is equivalent to (3) but with the difference that now each λ i is the Riesz representation of the normal derivative -∂ n i u ∈ H -1/2 00 (Γ i ). Moreover, problem ( 22)-( 23) is whithin the saddle point problems framework, see Girault-Raviart [START_REF] Girault | Finite Element Methods for Navier-Stokes Equations[END_REF] Chap. I, Section 4.2. In fact, thanks to the finite element extension theorems, see for instance Bernardi-Maday-Rapetti [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF], Section IX.4, we can handle at the same time the infinite dimensional and the finite dimensional versions of ( 22)-( 23) as follows: for a conforming triangulation T h of Ω that contains the skeleton E as union of edges of triangles, we consider a family of Lagrange finite element subspaces {X h } h ⊂ X, where h is the discretization parameter, and the family {M h } h ⊂ M of their restrictions, or traces, to the interfaces, M h = (X h ) | E . Then, we pose equations ( 22)-( 23) on X and M but also on X h ⊂ X and M h ⊂ M. For these pairs of families of finite element spaces {X h } h and {M h } h the finite element extension theorems apply. This fact will allow the uniform, with respect to h, version of the discrete inf-sup condition. As a consequence, we can use any iterative method, like the method of Uzawa or Conjugate Gradient method, which is at the basis of FETI methods, to compute the solution, with condition numbers of the iterative matrices independent of the mesh size h.

First, we see that the ellipticity of a on X or X h is straightforward because of the [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF]. Second, the bilinear form b(•, •) satisfies inf-sup conditions with constants that are independent of h on the pairs X × M and X h × M h thanks to the finite element extension theorems: Theorem 4 Assume that the family of triangulations {T h } h is regular, then there exist positive constants α, β > 0 such that the bilinear form b(•, •) : M × X → R given by ( 21) is continuous and satisfies an inf-sup condition, i.e.,

sup µ∈M sup v∈X b( µ, v) µ M v X = α, inf µ∈M sup v∈X b( µ, v) µ M v X ≥ β. (24) 
These expression also hold in the discrete case independently of h: the restriction of the bilinear form b(•, •) given by [START_REF] Quarteroni | Numerical Mathematics[END_REF] to the subspace M h × X h is also continuous and satisfies an inf-sup condition uniform in h, i.e., sup

µ∈M h sup v∈X h b( µ, v) µ M v X = α, inf µ∈M h sup v∈X h b( µ, v) µ M v X = β > 0. ( 25 
)
Proof: First bound in [START_REF] Roux | Méthode de décomposition de domaine à l'aide de multiplicateurs de Lagrange et application à la résolution en parallèle des équations de l'élasticité linéaire[END_REF] or ( 25) is due to the continuity of the trace operator. Now we prove the second bound in [START_REF] Roux | Acceleration of the outer conjugate gradient by reorthogonalization for a domain decomposition method for structural analysis problems[END_REF], i.e., the inf-sup condition in the discrete case. Take µ h ∈ M and set µ i,h ∈ H 1/2 00 (Γ i ) for any Γ i ∈ E 0 . Let us suppose that Γ i ∈ ∂Ω r for some r; then as µ i,h ∈ H 1/2 00 (Γ i ) is a continuous piecewise polynomial function there exists a discrete extension E r,h µ i,h ∈ (X h ) | Ωr to the subdomain Ω r such that E r,h µ i,h = 0 on ∂Ω r \ Γ i and there exists a positive constant γ > 0 independent of h such that

E r,h µ i,h 1,Ωr ≤ γ -1 µ i,h 1/2,00,∂Ωr = γ -1 µ i,h 1/2,00,Γ i
these results are a simple consequence of the finite element extension theorems, see [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF] Th. IX.4.1. Take now E r,h µ i,h ∈ X h the extension by zero of E r,h µ i,h from Ω r to the whole of Ω, then

[ E r,h µ i,h ] Γ i = µ i,h , and [ E r,h µ i,h ] Γ j = 0, j = i, that implies (µ j , [ E r,h µ i,h ]) -1/2,00,Γ j = 0, j = i,
and also

E r,h µ i,h 1,Ω = E r,h µ i,h 1,Ωr ≤ γ -1 µ i,h 1/2,00,Γ i .

As a consequence, for any given

µ h ∈ M h , we consider v µ h ∈ X h given by v µ h = I i=I 0 +1 E r,h µ i,h . Then v µ h X ≤ I 1 γ -1 µ h M ,
where I 1 is the number of internal interfaces, and finally

b(µ h , v µ h ) = I i=I 0 +1 (µ i,h , [ E r,h µ i,h ]) -1/2,00,Γ i = I i=I 0 +1 µ i,h 2 1/2,00,Γ i ≥ β v µ h X µ h 1/2,00,Γ for β = γ I -1/2 1
. Therefore, the discrete inf-sup condition holds uniformly in h.

Next, we prove the second bound in [START_REF] Roux | Méthode de décomposition de domaine à l'aide de multiplicateurs de Lagrange et application à la résolution en parallèle des équations de l'élasticité linéaire[END_REF], i.e., the inf-sup condition in the continuous case. An elegant proof is obtained when we consider the multipliers λ i as elements in H -1/2 00 (Γ i ). We know that λ = (λ i ) I i=I 0 +1 where Γ i are the internal interfaces and

λ 2 M = R r=1 Jr j=1 λ r,j 2 
-1/2,00,Γ r,j = 2

I i=I 0 +1 λ i 2 -1/2,00,Γ i .
For any Ω r we denote by I r the set of indices i such that ∂Ω r ∩ Ω = ∪ i∈Ir Γ i . Then, for any i ∈ I r there exists w i ∈ W r such that

-∆w i + w i = 0 en Ω r w i = 0 en ∂Ω r \ Γ i ∂ n i w i = λ i ∈ H -1/2 00 (Γ i )
and as a consequence for all v ∈ W r with v = 0 on Γ j for i, j ∈ I r with j = i we have

(w i , v) 1,Ωr =< λ i , v > -1/2,00,Γ i ⇒ w i 2 1,Ωr = λ i 2 -1/2,00,Γ i . Then, w r = i∈Ir w i ∈ W r ⊂ H 1 b (Ω r ) satisfies w r 2 1,Ωr = i∈Ir w i 2 1,Ωr = i∈Ir λ i 2 -1/2,00,Γ i
because (w i , w j ) 1,Ωr = 0 when i, j ∈ I r with j = i. Set now w ⋆ ∈ X 0 given by w ⋆ = w r on Ω r , it holds that

R r=1 w r 2 1,Ωr = R r=1 i∈Ir w i 2 1,Ωr = R r=1 i∈Ir λ i 2 -1/2,00,Γ i = λ 2 M
and therefore, using [START_REF] Bernardi | Discrétisations variationnelles de problèmes aux limites elliptiques[END_REF],

b( λ, w ⋆ ) = R r=1 Ir i=1 < λ i , w i > -1/2,00,Γ i = R r=1 (w r , w r ) 1,Ωr = R r=1 w r 2 1,Ωr ≥ C -1 w ⋆ X λ M .

Domain decomposition method

Our saddle point problem can be written as equations in

X ⋆ × M: find (u, λ) ∈ X × M such that R -1 u + B ⋆ λ = F on X ⋆ (26) B u = 0 on M, (27) 
where R : X ⋆ → X is the Riesz isomorphism associated with the bilinear form a(•, •) and defined by

< R -1 u, v >= a(u, v), ∀u, v ∈ X,
B is the continuous mapping B : X → M defined by

Bv = ([v] Γ i ) I i=I 0 +1 ,
i.e., Bv gives the jumps across the internal interfaces Γ i ∈ E 0 of v and B ⋆ is the transpose operator to B. Then

b(µ, v) = I i=I 0 +1 (µ i , [v] Γ i ) 1/2,00,Γ i = (µ, Bv) M ∀v ∈ X.
Finally, we take F : X → R given by

< F, v >= 2 r=1 (f, v r ) Ωr = (f, v) Ω .
As a consequence,

u = R(F -B ⋆ λ) ⇒ Bu = BRF -BRB ⋆ λ (28) 
and using Bu = 0 from here we have the dual problem associated to the saddle point problem

(BRB ⋆ )λ = BRF on M. ( 29 
)
Thanks to the inf-sup condition, on the infinite dimensional or finite dimensional setting, the operator BRB ⋆ is symmetric positive definite with eigenvalues in the interval [β 2 , α 2 ] where β 2 , α 2 > 0 are independent of the discretization parameter h; it also holds that β 2 , α 2 are eigenvalues of BRB ⋆ . Moreover, the energy norm on M associated to the operator BRB ⋆ is a equivalent norm on M that satisfies

β 2 λ 2 1/2,00,Γ ≤ (BRB ⋆ λ, λ) 1/2,00,Γ ≤ α 2 λ 2 1/2,00,Γ , ∀λ ∈ M, (30) 
see for instance Bacuta [START_REF] Bacuta | A unified approach for Uzawa algorithm[END_REF]. As a consequence, the condition number of the operator BRB ⋆ is bounded independently of the discretization parameter,

κ = κ(BRB ⋆ ) ≤ α 2 β 2 . ( 31 
)
This result improves the estimate given by Mandel-Tezaur [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF] where the estimate on the condition number is expressed asymptotically by

C (1 + log(H/h)) 2
where H and h are the characteristic subdomain size and element size respectively. Now the resolution of (29) via an iterative method is possible. We propose the use of the iterative method of Richardson, which amounts to the classical method of Uzawa and also the Conjugate Gradient Method. Both yield non overlapping domain decomposition iteration techniques and the second one is the basics of the standard FETI method. We also observe that Conjugate Gradient method does not need any preconditioning.

Uzawa and Conjugate Gradient methods

The classical iteration method of Uzawa is: Given ρ > 0 and λ 0 ∈ M, for m = 0, 1, 2, 3, ... set

r m = BRF -(BRB ⋆ )λ m = B u m , using (28) λ m+1 = λ m + ρ r m .
To fix ideas we consider the case where we split Ω slicewise into two subdomains Ω 1 , Ω 2 and we assume that Γ = ∂Ω 1 ∩ ∂Ω 2 is a straight segment. Then we have M = H 1/2 00 (Γ), X 0 = X and our formulation is: Find a pair (u, λ) ∈ X × M such that for all v ∈ X and µ ∈ M

2 r=1 {(∇u r , ∇v r ) Ωr + (u r , v r ) Ωr } + (λ, v 1 -v 2 ) 1/2,00,Γ = 2 r=1 (f, v r ) Ωr (32) (µ, u 1 -u 2 ) 1/2,00,Γ = 0. ( 33 
)
Then, Uzawas' method unfolds from (32)-(33) as: Given ρ > 0 and

λ 0 ∈ M, for m ≥ 0 find u m ∈ X such that for all v ∈ X 2 r=1 (u m,r , v r ) 1,Ωr = 2 r=1 (f, v r ) Ωr -(λ m , v 1 -v 2 , ) 1/2,00,Γ , (34) 
and update

λ m+1 = λ m + ρ(u m,1 -u m,2 ). ( 35 
)
where recall that (u m,r , v r ) 1,Ωr = (∇u r , ∇v r ) Ωr + (u r , v r ) Ωr . We have geometric convergence for this iterative process, see Bacuta [START_REF] Bacuta | A unified approach for Uzawa algorithm[END_REF] and references therein:

Theorem 5 For ρ ∈]0, 2 α -2 ] and any λ 0 ∈ H 1/2 00 (Γ), the iteration process (34)-( 35) converges geometrically to the solution of Poisson problem. More precisely, as the the operator BRB ⋆ is symmetric positive definite with eigenvalues in the interval [β 2 , α 2 ] we have

u m -u X ≤ α λ m -λ 1/2,00,Γ λ m+1 -λ 1/2,00,Γ ≤ max{|1 -ρβ 2 | , |1 -ρα 2 |} λ m -λ 1/2,00,Γ .
The optimal convergence factor is achieved for ρ opt = 2/(α 2 + β 2 ) and in this case, for m ≥ 0, we have

λ m+1 -λ 1/2,00,Γ ≤ κ 2 -1 κ 2 + 1 λ m -λ 1/2,00,Γ . (36) 
where κ = α 2 /β 2 is the spectral condition number of BRB ⋆ that is independent of the discretization parameter.

As a consequence, working on each subdomain at one time we have Theorem 6 The iterative process: Given ρ > 0 and λ 0 ∈ M, find u m ∈ X for m ≥ 0 via

(∇u m,1 , ∇v 1 ) Ω 1 + (u m,1 , v 1 ) Ω 1 = (f, v 1 ) Ω 1 -(λ m , v 1 ) 1/2,00,Γ , ∀v 1 ∈ X 1 , (∇u m,2 , ∇v 2 ) Ω 2 + (u m,2 , v 2 ) Ω 2 = (f, v 2 ) Ω 2 + (λ m , v 2 ) 1/2,00,Γ , ∀v 2 ∈ X 2 ,
and update

λ m+1 = λ m + ρ (u m,1 -u m,2 ) on Γ
is a non overlapping domain decomposition method geometrically convergent with a ratio of convergence independent of the mesh size.

The drawback that this method presents is how to fix the optimal parameter ρ > 0 but an estimate for a coarse grid will be enough. In the numerical experiments that we present the value of ρ has been tuned easily by hand thanks to the great speed of convergence that the method exhibits. For a method that has no need of fixing any parameter we show next the application of the Conjugate Gradient Method which is at the core of FETI methods (recall that (•, •) 1/2,00,Γ is the scalar product on M):

Take

r 0 = d 0 = BRF -(BRB ⋆ )λ 0 , for m ≥ 0 set p m := (BRB ⋆ )d m and repeat α m = (d m , r m ) 1/2,00,Γ (d m , p m ) 1/2,00,Γ , (37) 
λ m+1 = λ m + α m d m , on Γ (38) r m+1 = r m -α m p m , on Γ (39) 
β m = (p m , r m+1 ) 1/2,00,Γ (p m , d m ) 1/2,00,Γ , (40) 
d m+1 = r m+1 -β m d m , on Γ. (41) 
As before, using (28) the computation of the residual r 0 is made via the computation of u 0

u 0 = RF -(RB ⋆ )λ 0 ⇒ r 0 = B u 0 (42)
and for the computation of p m := (BRB ⋆ )d m we set p m = B w m where w m solve the auxiliar problem:

R -1 w m = B ⋆ d m on X ⋆ . ( 43 
)
As before, the resolution of ( 43) is made on Ω 1 and Ω 2 independently. Therefore, this is also an iterative process that can be seen as a non overlapping domain decomposition method. Following standard convergence results, see for instance Quarteroni-Sacco-Saleri [START_REF] Quarteroni | Numerical Mathematics[END_REF], we have geometric convergence in a finite number of steps (under exact arithmetic) for this iterative process. Suppose that N is the size of the matrix BRB ⋆ , which amounts to say that N is the number of degrees of freedom on the interfaces, then Theorem 7 The method (37)-(41) converges geometrically in at most N steps (under exact arithmetic). For any m < N the error e m = λ mλ is orthogonal to the direction d j for j = 0, 1, 2, ..., m -1 and we have the estimate

λ m -λ 1/2,00,Γ ≤ 2 √ κ c m 1 + c 2 m λ 0 -λ 1/2,00,Γ
where c = ( √ κ -1)/( √ κ + 1) < 1 and κ = α 2 /β 2 is the spectral condition number of BRB ⋆ that is independent of the discretization parameter.

Case of floating subdomains

A subdomain Ω r ⊂ Ω is called a floating subdomain when it does not touch ∂Ω. As we have considered the bilinear form

a(u, v) = R r=1 (u r , v r ) 1,Ωr = R r=1 Ωr {∇u r • ∇v r + u r v r } dx
the ellipticity of the form a(•, •) on X is clear even when floating subdomains are present. When we consider the Laplace operator the bilinear form is

ã(u, v) = R r=1 Ωr
∇u r • ∇v r dx and the process above described could be called into question when solving the local, on each floating subdomain, problem because of the lack of ellipticity. But our process is still correct: Suppose that Ω r ⊂ Ω is a floating subdomain and take v ∈ X such that v j = v | Ω j = 0 for j = r, then, as it is well known,

Ωr ∇v r • ∇v r dx ⇒ v r = constant on Ω r but the condition on the jumps [v] Γ i ∈ H 1/2 00 (Γ i ) for all ∀Γ i ∈ E 0 holds.
Then, v r must equal the value zero on the cross points or corners on ∂Ω r and, therefore, we obtain v r = 0 on Ω r . As a consequence, the ellipticity on floating subdomains is also obtained in this case.

Numerical experiments

Several geometric configurations are considered: the unit box split into two subdomains, an inverted L-shape domain split in three subdomains, a square box split into four subdomains with an internal cross point and the same square box with a floating subdomain, diamond-like shaped with four corners. Our benchmark is

-∆u = f in Ω, ( 44 
) u = 0 on ∂Ω. ( 45 
)
We take as initial Lagrange multiplier for our iteration process λ i 0 = 0 on each interface Γ i between subdomains and stop iterating when the relative error between consecutive multipliers is small enough, for instance

E rel (λ h , m + 1) = i λ i m+1,h -λ i m,h 1/2,00,Γ i i λ i m+1,h 1/2,00,Γ i ≤ 10 -5 ; ( 46 
)
The ratio of geometric decay for the error i λ m+1,hλ h 1/2,00,Γ i can also be estimated for m large enough via

r(λ h ) ≈ E rel (λ h , m + 1) E rel (λ h , m) . (47) 
Then, several error estimates can be computed (R is the number of subdomains), for instance,

eu(h) = ( Ω |∇(u -u h )| 2 dx) 1/2 u 0,Ω , (48) 
eum(h, m) = ( R i=1 Ω i |∇(u -u m i,h )| 2 dx) 1/2 u 0,Ω , (49) 
euhm(h, m) = ( R i=1 Ω i |∇(u h -u m i,h )| 2 dx) 1/2 u h 0,Ω (50) 
where u is the true solution, when available, u h is the Galerkin approximation computed on the global domain and u m i,h is the approximation obtained on each step of the iteration process on each Ω i . The computations are performed with P 1 finite elements on a family of triangulations of the whole computational domain such that the interfaces are formed by edges of triangles and their restrictions to each of the subdomains. The triangulations are uniform in all tests except the last one.

Two subdomains

In Ω = (0, 1) × (0, 1) we consider the exact solution of ( 44)-(45) given by u(x, y) = sin(2π x) cos(2π y)sin(2π x).

We take the interface Γ ≡ {y = 0.25}, then Ω 1 = (0, 1) × (0, 0.25) and Ω 2 = (0, 1) × (0.25, 1). For Uzawa's Method we found by performing few several tests that ρ ≈ 0.12 seems to be the closest value to the optimal one. Several results are shown in Table 1. On the other hand, Table 2 For both iterative methods Figure 1 shows the decay of the error as a function of the number of iterations, measured by (46) for the Lagrange multiplier and Figure 2 shows the error, given by (50) (base-10 logarithmic scale is used on the y-axis), also as a function of the number of iterations. Figure 3 shows the decay ratio given by (47) for the convergence on the Lagrange multiplier.

As we see, Conjugate Gradient method performs better and, therefore, our following numerical tests will be performed with this iterative method.

Non convex domain with three subdomains

We consider an inverted L-shaped domain Ω = {(-1, 1)×(-1, 1)}\{(-1, 0)× (-1, 0)} and decompose it into three squares given by Ω 1 = (-1, 0) × (0, 1), Ω 2 = (0, 1) × (0, 1) and Ω 3 = (0, 1) × (-1, 0) so that our interfaces are Γ 1 = {0} × (0, 1) and Γ 2 = (0, 1) × {0}. We solve (44)-( 45) with right hand side given by

f (x, y) =    10
when x 2 + y 2 ≤ 0.25 and y < 0, -10 when x 2 + y 2 ≤ 0.25 and y < 0, x > 0, 0 elsewhere.

The results are shown in Table 3. For this L-shape test, Figure 4 shows the decay of the error, given by (46), for the Lagrange multiplier and the decay of the error for the solution, given by (50) (base-10 logarithmic scale on the y-axis). Also the decay ratio given by (47) for the convergence on the Lagrange multiplier is shown; all of them as a function of the number of iterations. Figure 5 shows the P 1 Galerkin solution on the whole domain for h = 1/32. Figure 6 the computed solution with domain decomposition, Figure 7 shows the iterate obtained for λ i 0 = 0 and Figure 8 the second iterate on the process.

Four subdomains: case of an internal cross point

We take now Ω = (-1, 1) 2 = ∪ 4

i=1 Ω i where Ω 1 = (-1, 0) × (0, 1), Ω 2 = (0, 1) × (0, 1), Ω 3 = (0, 1) × (-1, 0) and Ω 4 = (-1, 0) × (-1, 0). Then the interfaces are Γ 1 = (-1, 0) × {0}, Γ 2 = {0} × (0, 1), Γ 3 = (0, 1) × {0} and Γ 4 = {0} × (-1, 0) and all meet on P = (0, 0). We solve (44)-(45) with right hand side given by f (x, y) = 10 3 sin(6 x -7 y) cos(10 x + 4 y).

Again we use a uniform triangular mesh of mesh size h of Ω, its restriction to each of the Ω i for i = 1, 2, 3, 4 and P 1 finite elements on each computational domain.

In this case the symmetric matrix RB ⋆ of the linear system to solve has a block independent structure, each block related to each one of the subdomains that meets on the cross point, and a single row that relates all of them. The resolution of the linear systems, with matrix RB ⋆ , that appear on each step of the conjugate gradient process is performed via a simple iteration process that can be performed on each subdomain separately. A detailed description will be revealing:

Denote by {φ 1 , φ 2 , ..., φ nnt } the P 1 basis hat functions on the triangulation of Ω, where nnt is the total number of nodes, and set φ p the hat function associated to the cross point P . Then, denote by {ϕ i j } for j = 1, ..., nti the restrictions of these φ s to each Ω i , where nti is the total number of nodes on each Ω i , and set j = ntci the index such that ϕ i ntci = φ p | Ω i . Denote by X h , the internal approximation of X with P 1 finite elements, then for u ∈ X h the fact that [u] Γ = 0 on all interfaces implies that u = 4 r=1 ntr j=1 j =ntcr α r j ϕ r j + α p φ p , u(P ) = α p .

Then, dimX h = 4 r=1 ntr -3 and the set of basis functions for X h is {{ϕ r j } {r=1,...,4, j=1,...,ntr, j =ntcr} , φ p } As a consequence, the search of u ∈ X h such that for all v ∈ X h satisfies

a(u, v) = l(v)
leads to a linear symmetric system with a block matrix structure like

      A 1 0 0 0 c 1 0 A 2 0 0 c 2 0 0 A 3 0 c 3 0 0 0 A 4 c 4 c 1,t c 2,t c 3,t c 3,t c p             α 1 α 2 α 3 α 4 α p       =       l 1 l 2 l 3 l 4 l p      
where for r = 1, 2, 3, 4 and i, j = 1, ..., ntr, i, j = ntcr we have A r = (a r i,j ) i,j , a r i,j = a(ϕ r i , ϕ r j ), c r = (c r j ) j , c r j = a(φ p , ϕ r j ), c p = a(φ p , φ p ) ∈ R l r = (l r j ) j , l r j = l(ϕ r j ), l p = l(φ p ) ∈ R α r = (α r j ) j , α p ∈ R (c r,t denotes transpose). Almost all entries on each c r are zero except for those nodes that are neighbours of the cross point P on Ω r . In our uniform triangulation, we have only two or three nonzero entries on each c r . Then, coupling is solved via a simple relaxation process that allows the computation separately on each subdomain as follows:

We set α r m = 0, α p,m = 0 for m = 0 and r = 1, 2, 3, 4 and solve for each r A r c r c r,t c p α r m+1 α p,m+1 = l r l p -0 s<r c s,t α s m+1 + s>r c s,t α s m , observe that s, r ∈ {1, 2, 3, 4} with the usual convention that the sums are zero whenever the sets {s < r} or {s > r} are empty and that, as we mentioned before, the connectivity vectors c s have almost all entries zero. As a consequence, for each m we update the value of α p,m+1 once for each subdomain. A fast convergence to the solution, fixed point, for this process has been obtained. The results are shown in Table 4.

Figure 9 shows the decay of the error, given by (50), between the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition, the decay of the error, given by (46), for the Lagrange multipliers (base-10 logarithmic scale on the y-axis) and the decay ratio given by (47), as a function of the number of iterations, for the convergence on the Lagrange multipliers for different values of h. Figure 10 shows the Galerkin solution computed for h = 1/32, Figure 11 shows the initial domain decomposition iterate we depart from and Figure 12 shows the final domain decomposition solution for h = 1/32. 

Case of a floating subdomain: four crosspoints

As before we take Ω = (-1, 1) 2 and consider now Ω i the convex hull generated by the points P 1 = (-0.5, 0), P 2 = (0, 0.5), P 3 = (0.5, 0) and P 4 = (0, -0.5)

and Ω e = Ω \ Ω i . Then the interfaces are the sides of this diamond shaped domain. We also solve ( 44)-( 45) with the same right hand side as in the previous test but now on triangulations are no longer uniform. We consider triangulations of Ω conforming with the interfaces and their restrictions to Ω i and Ω e . On each computational domain P 1 finite elements are used and the P 1 -Galerkin solution on Ω has already been shown on Figure 10. We proceed as in the previous example because the symmetric matrix RB ⋆ has a two-block independent structure coupled by four sparse rows, one for each point P i . The results are shown in Table 5 Figure 13 shows the decay of the error, given by (50), between the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition, the decay of the error, given by ( 46), for the Lagrange multipliers (base-10 logarithmic scale on the y-axis) and the decay ratio given by (47), as a function of the number of iterations, for the convergence on the Lagrange multipliers for different values of h. Conjugate Gradient Method is used. Figure 14 shows two meshes and Figure 15 the computed solution on Ω i and on Ω e for the finest mesh of 687 and 4621 nodes respectively.

Conclusions

As far as we know, the approach to FETI methods has been made mostly from a linear algebra point of view. Some new aspects have been given in this paper: Cross points and floating subdomains are handled quite naturally, we only care about the interior of the interfaces and, thanks to the finite element extension results, the direct computation of the H 1/2 00 (Γ) scalar product yields an iteration matrix with a condition number independent of the mesh size. Therefore, we obtain a mesh independent ratio of convergence for the iterative methods. Moreover, no preconditioning is needed. This result improves the standard asymptotic bound for this condition number given by C (1 + log(H/h)) 2 , where H and h are the characteristic subdomain size and element size respectively, shown by Mandel-Tezaur in [START_REF] Mandel | Convergence of a substructuring method with Lagrange multipliers[END_REF].

In the two dimensional setting the computation of the H 1/2 scalar product for the P 1 discrete basis functions on the interfaces is not expensive and it is performed once as long as the mesh does not change on these interfaces. Numerical tests have been presented where the convergence ratio is mesh independent according with the theoretical results. Three dimensional configurations will be studied in future works. 50), for the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition; Decay of the error, given by (46), for the Lagrange multiplier (base-10 logarithmic scale on the y-axis); Decay ratio given by (47) for the convergence on the Lagrange multiplier. Conjugate Gradient Method is used. 50), between the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition; Decay of the error, given by (46), for the Lagrange multiplier, (base-10 logarithmic scale on the y-axis); Decay ratio given by (47) for the convergence on the Lagrange multiplier. Conjugate Gradient Method is used. 50), between the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition; Decay of the error, given by (46), for the Lagrange multiplier, (base-10 logarithmic scale on the y-axis); Decay ratio given by (47) for the convergence on the Lagrange multiplier. Conjugate Gradient Method is used. 
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Figure 4 :

 4 Figure4: L-shape with three subdomains: Decay of the error, as a function of the number of iterations, given by (50), for the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition; Decay of the error, given by (46), for the Lagrange multiplier (base-10 logarithmic scale on the y-axis); Decay ratio given by (47) for the convergence on the Lagrange multiplier. Conjugate Gradient Method is used.

Figure 5 :

 5 Figure 5: L-shape with three subdomains: P 1 Galerkin solution on the whole domain with h = 1/32.

Figure 6 :

 6 Figure 6: L-shape with three subdomains: Domain decomposition solution computed with h = 1/32.

Figure 7 :

 7 Figure 7: L-shape with three subdomains: Initial solution for the iteration process with h = 1/32.

Figure 8 :

 8 Figure 8: L-shape with three subdomains: Solution after two iterations for h = 1/32.

Figure 9 :

 9 Figure9: Square box with four subdomains: Decay of the error, as a function of the number of iterations, given by (50), between the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition; Decay of the error, given by (46), for the Lagrange multiplier, (base-10 logarithmic scale on the y-axis); Decay ratio given by (47) for the convergence on the Lagrange multiplier. Conjugate Gradient Method is used.

Figure 10 :

 10 Figure 10: Square box with four subdomains: Galerkin solution computed for h = 1/32.

Figure 11 :Figure 12 :

 1112 Figure 11: Square box with four subdomains: Initial iterate for h = 1/32.

Figure 13 :

 13 Figure13: Square box with floating subdomain: Decay of the error, as a function of the number of iterations, given by (50), between the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition; Decay of the error, given by (46), for the Lagrange multiplier, (base-10 logarithmic scale on the y-axis); Decay ratio given by (47) for the convergence on the Lagrange multiplier. Conjugate Gradient Method is used.
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Figure 14 :

 14 Figure 14: Square box with a floating subdomain: Triangulation on floating (214 triangles and 128 nodes) and external subdomain (1632 triangles and 894 nodes).

Figure 15 :

 15 Figure 15: Square box with a floating subdomain: computed solution on Ω i and on Ω e for the finest mesh of 687 and 4621 nodes respectively.
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Table 1 :

 1 Two subdomains with Uzawa's Method: Number of iterations, values of ρ opt , λ h 1/2,00,Γ , r(λ h ) and several other error estimates for different values of h.

	shows the

Table 2 :

 2 Two subdomains with Conjugate Gradient Method: Number of iterations, values of λ h 1/2,00,Γ , r(λ h ) and several other error estimates for different values of h.

Table 3 :

 3 Inverted L-shape domain split into three subdomains: Number of iterations, values of λ i h 1/2,00,Γ

i , r(λ h ) and euhm(h, m) for different h. Conjugate Gradient Method is used.

Table 4 :

 4 Four subdomains with a cross point: Number of iterations, values of λ i h 1/2,00,Γ i , r(λ h ) and euhm(h, m) for different values of h.

	1/h	4	8	16	32
	m = #iterations	4	7	8	8
	λ 1 h 1/2,00,Γ 1 λ 2 h 1/2,00,Γ 2 λ 3 h 1/2,00,Γ 3 λ 4 h 1/2,00,Γ 4	2.05... 1.66... 2.05... 1.66...	4.05... 3.12... 4.05... 3.12...	4.93... 3.65... 4.93... 3.65...	5.16... 3.80... 5.16... 3.80...
	r(λ h )	0.09...	0.12...	0.20..	0.21..
	euhm(h, m)	9.0...e-15 4.3...e-15 1.32...e-5 3.1...e-5

Table 5 :

 5 . Floating subdomain with four cross points: Number of iterations, values of λ i h 1/2,00,Γ i , r(λ h ) and euhm(h, m) for different triangulations.

	nodes on Ω i	128	393	687
	nodes on Ω e	894	2627	4621
	m = #iterations	9	10	10
	λ 1 h 1/2,00,Γ 1 λ 2 h 1/2,00,Γ 2 λ 3 h 1/2,00,Γ 3 λ 4 h 1/2,00,Γ 4	4.30... 6.62... 4.30... 6.44...	4.41... 6.66... 4.41... 6.63...	4.43... 6.69... 4.43... 6.70...
	r(λ h )	0.26...	0.16...	0.26..
	euhm(h)	5.17...e-07 8.5...e-07 4.39...e-07

  Unit box with two subdomains: Decay of the error, as a function of the number of iterations, given by (46), for the Lagrange multiplier using Uzawa's Method and Conjugate Gradient Method (CG) (base-10 logarithmic scale on the y-axis). Unit box with two subdomains: Decay of the error, as a function of the number of iterations, given by (50), for the P 1 -Galerkin solution on the whole domain and the solution computed via domain decomposition, using Uzawa's Method and Conjugate Gradient Method (CG) (base-10 logarithmic scale on the y-axis). Unit box with two subdomains: Decay ratio, as a function of the number of iterations, given by (47) for the convergence on the Lagrange multiplier using Uzawa's Method and Conjugate Gradient Method (CG).
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1/2,00,Γ i , ∀ v ∈ X where we recall (see Grisvard[START_REF] Grisvard | Singularities in Boundary value problems[END_REF] or Adams[START_REF] Adams | Sobolev Spaces[END_REF] for instance) that for any open piece of boundary Γ of an open and bounded set Ω ⊂ R d , the scalar product in H 1/2 (Γ) is given for any v, w ∈ H 1/2 (Γ) by

Error Decay Global P1-Galerkin vs. ddm solution via CG 128 & 894 nodes 393 & 2627 nodes

& 4621 nodes 128 & 894 nodes 393 & 2627 nodes 687 & 4621 nodes 128 & 894 nodes 393 & 2627 nodes 687 & 4621 nodes
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