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EIGENVALUE PINCHING AND APPLICATION TO THE STABILITY AND

THE ALMOST UMBILICITY OF HYPERSURFACES

J.-F. GROSJEAN, J.ROTH

Abstract. In this paper we give pinching theorems for the first nonzero eigenvalue of the
Laplacian on compact hypersurfaces of ambient spaces with bounded sectional curvature. As
an application we deduce a rigidity result for stable constant mean curvature hypersurfaces M
of these spaces N . Indeed, we prove that if M is included in a ball of radius small enough
then the Hausdorff-distance between M and a geodesic sphere S of N is small. Moreover M
is diffeomorphic and quasi-isometric to S. As other application, we obtain rigidity results for
almost umbilic hypersurfaces.
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1. Introduction

One way to show that the geodesic spheres are the only stable constant mean
curvature hypersurfaces of classical space forms (i.e. Euclidean space, spherical
space and hyperbolic space) is to prove that there is equality in the well-known
Reilly’s inequality. One of the main points of the present paper is to obtain new
stability results for hypersufaces immersed in more general ambient spaces by using
a Reilly’s inequality proved by Heintze ([9]). Note that the isoperimetric problem
is a particular case of these stability results proved here. Indeed compact stable
constant mean curvature hypersurfaces bounding a domain appear as solution of
the isoperimetric problem. We know that solutions of this problem exist on any
compact Riemannian manifold and are smooth possibly up to a singular set of
codimension at least 8 (see theorem 1 of [18], see also [13] and [15]). Moreover, in
any dimension, smooth solutions exist in a neighborhood of non-degenerate critical
point of the scalar curvature ([24]).

First, let us recall Reilly’s inequality. Let (Mm, g) be a compact, connected
and oriented m-dimensional Riemannian manifold without boundary isometrically
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immersed by φ in the simply connected space form Nn+1(c) (c = 0, 1 ,−1 respect-
ively for Euclidean space, sphere or hyperbolic space). Reilly’s inequality gives an
extrinsic upper bound for the first nonzero eigenvalue λ1(M) of the Laplacian of
(Mm, g) in term of the square of the length of the mean curvature H . Indeed we
have

λ1(M) 6
m

V (M)

∫

M

(|H|2 + c)dv(1)

where dv and V (M) denote respectively the Riemannian volume element and the
volume of (Mm, g). Moreover in the case of hypersurfaces (i.e. m = n), equality
holds if and only if (Mn, g) is immersed as a geodesic sphere of Nn+1(c). For
c = 0 this inequality was proved by Reilly ([16]) and can easily be extended to the
spherical case c = 1 by considering the canonical embedding of Sn in R

n+1. For
c = −1 it has been proved by El Soufi and Ilias in [8].

In the sequel we will consider a weaker inequality due to Heintze ([9]) which
generalizes the previous one for the case where (Mm, g) is isometrically immersed by
φ in a (n+1)-dimensional Riemannian manifold (Nn+1, h) whose sectional curvature
KN is bounded above by δ. Indeed if φ(M) lies in a convex ball and if the radius
of this ball is π

4
√
δ
in the case δ > 0, we have

λ1(M) 6 m(‖H‖2∞ + δ)(2)

where ‖H‖∞ denotes the L∞-norm of the mean curvature. Now for m = n if we
assume that KN is bounded below by µ and M has a constant mean curvature H
and is stable (see section 5) we have

n(H2 + µ) 6 λ1(M) 6 n(H2 + δ)

Consequently we see that if N is not of constant sectional curvature we can’t con-
clude as in the case of space forms. However, the above inequality is a kind of
pinching on Reilly’s inequality, that is a condition of almost equality. Such con-
ditions have been studied for Reilly’s inequality in Euclidean space in [7]. In the
present paper we will generalize the results of [7] to the inequality (2) for hypersur-
faces (i.e. m = n) of ambient spaces with non constant sectional curvature. That
amounts to finding conditions on geometric invariants so that if we have

(Λε) n(‖H‖2∞ + δ) < λ1(M)(1 + ε)

then M is close to a sphere in a certain sense.
This problem is a particular case of a pinching concerning the moment of inertia

Jp(M) of M with respect to a point p. It is defined by

Jp(M) := ‖X‖2

where Xx := sδ(r(x))∇Nr |x, r(x) is the geodesic distance between x and p, ‖ · ‖q
is the Lq-norm on C∞(M) defined by ‖f‖qq = 1

V (M)

∫

M

|f |qdv and sδ is the function
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defined by

sδ(r) =











1√
δ
sin

√
δr if δ > 0

r if δ = 0
1√
|δ|
sinh

√

|δ|r if δ < 0,

The invariant Jp(M) satisfies the inequality

1 6 (‖H‖2∞ + δ)Jp(M)2(3)

where φ(M) is contained in the ball of center p and of radius π
4
√
δ
if δ > 0. We

associate to this inequality the pinching

(Ip,ε) (‖H‖2∞ + δ)Jp(M)2 6 1 + ε

If (Λε) holds and ε is small enough (ε < 1/4) then for the center of mass p0 of M ,
(Ip0,6ε) is satisfied (see proposition 2.1).

In fact, the pinching (Ip,ε) is more general than this one concerning the extrinsic
radius R(M) defined as the radius of the smallest ball containing φ(M). We recall
that we have the following lower bound of the radius (see [3] for instance)

sδ(R(M))

cδ(R(M))
>

1

‖H‖∞
(4)

where cδ = s′δ or equivalently

1 6 (‖H‖2∞ + δ)sδ(R(M))2(5)

In the case of hypersurfaces of the space form of curvature δ, equality in (5) cha-
racterizes geodesic spheres. The associated pinching

(Rε) (‖H‖2∞ + δ)sδ(R(M))2 6 (1 + ε).

has been treated for hypersurfaces of ambient spaces with constant sectional curvature
in [19]. It is easy to see that if (Rε) holds, then (Ip0,ε) is satisfied for the center p0
of the ball of radius R(M) containing φ(M).

Before giving the main theorems, we set some notations which will be more
convenient. Throughout the paper, we will let h = (‖H‖2∞ + δ)1/2 and use B to
denote the second fundamental form. Moreover we will let B(p, R) the geodesic ball
in N of center p and radius R.

We will need two hypotheses on the volume of M and on the injectivity radius
i(N) coming from hypotheses assumed in a result on a Sobolev inequality due to
Hoffman and Spruck ([10] and [11]). Indeed we will assume that i(N) > π√

δ
if δ > 0

and we will consider HV (n,N) the space of all Riemannian compact, connected
and oriented n-dimensional Riemannian manifolds without boundary isometrically
immersed by φ in (Nn+1, h) which satisfy the following hypothesis on the
volume : V (M) 6 cωn

δn/2 if δ > 0 and V (M) 6 cωni(N)n if δ 6 0 for some constant c.

For convenience we take 1/
√
δ = +∞ if δ 6 0.

Let us state the first main theorem.

Theorem 1.1. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KN satisfies µ 6 KN 6 δ and i(N) > π√

δ
if δ > 0. Let M ∈

HV (n,N) and p be a point of N such that φ(M) ⊂ B
(

p,min
(

π
4
√
δ
, i(N)

))

. Let
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ε < 1, q > n and A > 0. Let us assume that max(V (M)1/n‖H‖∞, V (M)1/n‖B‖q) 6
A for δ > 0 (resp. max(V (M)1/n‖H‖∞, ‖H‖∞

h
, V (M)1/n‖B‖q) 6 A for δ < 0).

Then there exist positive constants C := C(n, q, A), α := α(q, n) such that if (Ip,ε)

holds, εα < 1/C and φ(M) is contained in the ball B

(

p, s−1
δ

(

√

ε
δ−µ

))

then

dH

(

φ(M), S

(

p, s−1
δ

(

1

h

)))

6
C

h
εα

where dH denotes the Hausdorff distance. Moreover M is diffeomorphic and εα-
quasi-isometric to S(p, s−1

δ

(

1
h

)

). Namely there exists a diffeomorphism from M

into S(p, s−1
δ

(

1
h

)

) so that
∣

∣|dFx(u)|2 − 1
∣

∣ 6 Cεα

for any x ∈M , u ∈ TxM and |u| = 1.

We recall that the Hausdorff distance between two compact subsets A and B of
a metric space is given by

dH(A,B) = inf{A ⊂ Vη(B) and B ⊂ Vη(A)}
where for any subset A, Vη(A) is the tubular neighborhood of A defined by Vη(A) =
{x|d(x,A) < η}.

As in the euclidean case (see [7]) for the pinching of λ1(M) or as in the hyperbolic
case or spherical case ([19]) for the pinching of extrinsic radius we can obtain the
Hausdorff proximity strictly with a dependence on ‖H‖∞.

Obviously we have the following corollary

Corollary 1.1. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold
whose sectional curvature KN satisfies µ 6 KN 6 δ and i(N) > π√

δ
if

δ > 0. Let M ∈ HV (n,N). Let us assume that φ(M) lies in a convex ball of

radius min
(

π
8
√
δ
, i(N)

2

)

. Let p0 be the center of mass of M . Let ε < 1/6 ,

q > n and A > 0. Let us assume that max(V (M)1/n‖H‖∞, V (M)1/n‖B‖q) 6 A

for δ > 0 (resp. max(V (M)1/n‖H‖∞, ‖H‖∞
h

, V (M)1/n‖B‖q) 6 A for δ < 0).
Then there exist positive constants C := C(n, q, A), α := α(q, n) such that if (Λε)

holds, εα < 1/C and φ(M) is contained in the ball B

(

p0, s
−1
δ

(

√

ε
δ−µ

))

then

dH

(

φ(M), S

(

p0, s
−1
δ

(

1

h

)))

6
C

h
εα

and M is diffeomorphic and εα-quasi-isometric to S(p0, s
−1
δ

(

1
h

)

).

Theorem 1.1 allows to obtain an application for the stable constant mean curvature
hypersurfaces. Indeed we have the following stability theorem

Theorem 1.2. Let (Nn+1, h) be a n + 1-dimensional Riemannian manifold whose
sectional curvature KN satisfies µ 6 KN 6 δ and i(N) > π√

δ
if δ > 0 and let M ∈

HV (n,N). Let us assume that φ(M) lies in a convex ball of radius min
(

π
8
√
δ
, i(N)

2

)

.

Let p0 be the center of mass of M . Let ε < 1/6, q > n and A > 0. Then there
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exist positive constants C := C(n, q, A), α := α(q, n) and R(δ, µ, ε) such that if φ
is of constant mean curvature H and stable, V (M)1/n‖B‖q 6 A for δ > 0 (resp.
max(H

h
, V (M)1/n‖B‖q) 6 A for δ < 0), εα < 1/C and φ(M) is contained in a

convex ball of radius 1
2
s−1
δ

(

√

ε
2(δ−µ)

)

then

dH

(

φ(M), S

(

p0, s
−1
δ

(

1

h

)))

6
C

h
εα

and M is diffeomorphic and εα-quasi-isometric to S(p0, s
−1
δ

(

1
h

)

).

Remark 1.1. Note that from ([14]) we know that stable constant mean curvature
embedded hypersurfaces bounding a small volume are nearly round spheres. In our
corollary we consider the more general case of immersed hypersurfaces. Moreover
we give a proximity with a geodesic sphere of the ambient space with explicite center
and radius.

On the other hand let us recall a result concerning the topology of isoperimetric
hypersurfaces (the embedded case). For instance if n = 2 and the Ricci curvature
RicN of N is bounded below by 2, Ros proved that if the volume of M is large enough
then M is homeomorphic either to a sphere or a torus ([17]).

As another application of theorems 1.1 we have results for the almost umbilic
hypersurfaces of space forms. These theorems are to be compared with results of
Shiohama and Xu ([21] and [22]) who obtain conditions on the Betti numbers.

Theorem 1.3. Let (Nn+1, h) be a (n + 1)-dimensional Riemannian manifold with
constant sectional curvature δ 6= 0 and letM ∈ HV (n,N). Let us assume that φ(M)
lies in a convex ball of radius π

8
√
δ
. Let p be the center of mass ofM . Let ε < 1, r, q >

n and A > 0. Moreover let us assume that max(V (M)1/n‖H‖∞, V (M)1/n‖B‖q) 6 A

for δ > 0 (resp. max(V (M)1/n‖H‖∞, ‖H‖∞
h

, V (M)1/n‖B‖q) 6 A for δ < 0).
Then there exist positive constants C := C(n, q, A) , α := α(q, n) such that if
εα 6 1/C and

(1) ‖τ‖r 6 ‖H‖rε.
(2) ‖H2 − ‖H‖2∞‖r/2 6 ‖H‖2rε.

Then M is ε-Hausdorff close, diffeomorphic and ε-quasi-isometric to S(p, s−1
δ

(

1
h

)

).

Remark 1.2. The dependence on ‖B‖q is not necessary for the Hausdorff proximity.

In the Euclidean case, using the pinching theorem proved in [7] we can improve
the condition 2)

Theorem 1.4. Let (Mn, g) be a compact, connected and oriented n-dimensional
Riemannian manifold without boundary isometrically immersed by φ in R

n+1. Let
p be the center of mass of M . Let ε < 1, r, q > n, s > r and A > 0. Let us assume
that V (M)1/n‖H‖q 6 A. Then there exist positive constants C := C(n, q, A), α :=
α(q, n) such that if εα 6 1/C and

(1) ‖τ‖r 6 ‖H‖rε.
(2) ‖H2 − ‖H‖2s‖r/2 6 ‖H‖2rε.
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Then M is ε-Hausdorff close to S
(

p, 1
‖H‖2

)

. Moreover if V (M)1/n‖B‖q 6 A then

M is diffeomorphic and ε-quasi-isometric to S
(

p, 1
‖H‖2

)

.

2. Preliminaries

Let (Mn, g) be a compact, connected n-dimensional Riemannian manifold iso-
metrically immersed by φ in an (n+1)-dimensional Riemannian manifold (Nn+1, h)
whose sectional curvature is bounded by δ. For any point p ∈ N let us consider
exp be the exponential map at this point. Locally we consider (xi)16i6n the normal
coordinates of N centered at p and for all x ∈ N , we denote by r(x) = d(p, x), the
geodesic distance between p and x on (Nn+1, h).

We recall that the function cδ is defined by cδ = s′δ. Obviously, we have c2δ+δs
2
δ = 1

and c′δ = −δsδ.
The gradient of a function u defined on N with respect to h will be denoted by

∇Nu and the gradient with respect to g of the restriction of u onM will be denoted
by ∇Mu.

Now considering the vector field onM , X = sδ∇Nr we recall that Heintze proved
that

div (XT ) > ncδ − nH〈X, ν〉(6)

Then using this identity
∫

M

(n− δ|XT |2)dv =
∫

M

(n− div (XT )cδ)dv

6

∫

M

(n− nc2δ + nH〈X, ν〉cδ)dv

=

∫

M

(nδs2δ + nH〈X, ν〉cδ)dv

6

∫

M

nδs2δdv + ‖H‖∞
∫

M

nsδcδdv

and using again (6) we get
∫

M

(n− δ|XT |2)dv 6 nδ

∫

M

|X|2dv + ‖H‖∞
∫

M

(nH〈X, ν〉sδ + div (XT )sδ)dv

= nδ

∫

M

|X|2dv + ‖H‖∞
∫

M

(nH〈X, ν〉sδ − cδsδ|∇Mr|2)dv

6 nδ

∫

M

|X|2dv + n‖H‖2∞
∫

M

|〈X, ν〉||X|dv − ‖H‖∞
∫

M

cδsδ|∇Mr|2dv

6 nδ

∫

M

|X|2dv + n‖H‖2∞
∫

M

|X|2dv − ‖H‖∞
∫

M

cδsδ|∇Mr|2dv

6 n(‖H‖2∞ + δ)

∫

M

|X|2dv − ‖H‖∞
∫

M

cδsδ|∇Mr|2dv

Finally

1 6 (‖H‖2∞ + δ)‖X‖22 +
1

nV (M)

∫

M

(δs2δ − cδsδ‖H‖∞)|∇Mr|2dv
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Now if δ 6 0 the last term is nonpositif. If δ > 0, since we have assumed that φ(M)

is in the ball B
(

p, π
4
√
δ

)

, it follows that
sδ

(

π

4
√

δ

)

cδ

(

π
4
√

δ

) > 1
‖H‖∞ and then

δ

‖H‖2∞
6 1.(7)

It follows that δs2δ − cδsδ‖H‖∞ 6 0. This completes the proof of (3).

Now let us recall briefly the proof of Heintze. We will use sδ(r)
r
xi as test functions

in the variational characterization of λ1(M). But these functions must be L2-
orthogonal to the constant functions. For this purpose, we use a standard argument
used by Chavel and Heintze ([6] and [9]). Indeed, if φ(M) lies in a convex ball B
the vector field Y defined in a neighborhood of B by

Yq =

∫

M

sδ(d(q, x))

d(q, x)
exp−1

q (x)dv(x) ∈ TqN, q ∈M ,

has necessarily a zero in B at a point p called the center of mass ofM . Consequently,

for a such p,

∫

M

sδ(r)

r
xidv = 0. For δ > 0, we assume in addition that φ(M) is

contained in a ball of radius π
4
√
δ
. Indeed, in this case φ(M) lies in a ball of center

p (the point p so that Yp = 0) with a radius less or equal to π
2
√
δ
and cδ is then

a nonnegative function. First note that the coordinates of X in the normal local

frame are
(

sδ(r)
r
xi

)

16i6n
. Moreover Heintze has proved that

n+1
∑

i=1

∣

∣

∣

∣

∇M

(

sδ(r)

r
xi

)
∣

∣

∣

∣

2

6

n − δ|XT |2. Then from the variational characterization of the first eigenvalue and
the previous proof we get

λ1(M)‖X‖22 6
1

V (M)

∫

M

(n− δ|XT |2)dv

6 n(‖H‖2∞ + δ)‖X‖22 −
‖H‖∞
V (M)

∫

M

cδsδ|∇Mr|2dv.

We end this section by the following proposition.

Proposition 2.1. Let (Nn+1, h) be a (n+1)-dimensional Riemannian manifold
whose sectional curvature KN satisfies KN 6 δ. If φ(M) lies in a convex ball of

radius min
(

i(N), π
4
√
δ

)

then for any ε < 1/4, (Λε) implies (Ip0,6ε) where p0 is the

center of mass of M .

Proof. If (Λε) holds then

n(‖H‖2∞ + δ)Jp0(M)2 6 (1 + ε)λ1(M)Jp0(M)2 6 (n− δ‖XT‖22)(1 + ε)

If δ > 0 then (Ip0,ε) is satisfied. If δ < 0 from the proof of the inequality of Reilly
we have

λ1(M)Jp0(M)2 6 n(‖H‖2∞ + δ)Jp0(M)2 − ‖H‖∞
V (M)

∫

M

cδ
sδ
|XT |22dv

6 λ1(M)Jp0(M)2(1 + ε)
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It follows that
√

|δ|‖H‖∞‖XT‖22 6 λ1(M)Jp0(M)2ε. Therefore

n(‖H‖2∞ + δ)Jp0(M)2 6 (n− δ‖XT‖22)(1 + ε)

6

(

n+

√

|δ|
‖H‖∞

λ1(M)Jp0(M)2ε

)

(1 + ε)

Now noting that |δ|
‖H‖2∞

6 1, λ1(M) 6 n(‖H‖2∞ + δ) and ε < 1, we get

(‖H‖2∞ + δ)Jp0(M)2(1− 2ε) 6 (1 + ε)

and if ε < 1/4, then (Ip0,6ε) is satisfied. Note that if δ > 0, it is not necessary to
suppose that φ(M) lies in a ball or radius π

4
√
δ
to prove that (Λε) implies (Ip0,6ε). �

3. An L2-approach

Throughout the paper we assume that φ(M) ⊂ B
(

p, π
4
√
δ

)

for δ > 0.

Lemma 3.1. If the pinching condition (Ip,ε) holds then ‖XT‖22 6 2ε
‖H‖2∞

.

Proof. We have

‖XT‖22 =
1

V (M)

(
∫

M

|X|2dv −
∫

M

〈X, ν〉2dv
)

6
2

V (M)

∫

M

(|X|2 − |〈X, ν〉||X|)dv 6 2ε

‖H‖2∞
where the last inequality is coming from the proof of (3) recalled in the preliminaries.

�

Lemma 3.2. Let Y = nHcδν − n‖H‖2∞X. If (Ip,ε) holds then ‖Y ‖22 6 4n2‖H‖2∞ε.
Proof. Using again (6) and the previous lemmas we have

‖Y ‖22 =
n2

V (M)

∫

M

H2c2δdv − 2
n2

V (M)
‖H‖2∞

∫

M

H〈X, ν〉cδdv + n2‖H‖4∞‖X‖22

6
n2

V (M)

∫

M

H2c2δdv +
2n‖H‖2∞
V (M)

∫

M

(div (XT )cδ − nc2δ)dv + n2‖H‖4∞‖X‖22

=
n2

V (M)

∫

M

H2c2δdv + 2nδ‖H‖2∞‖XT‖22 −
2n2‖H‖2∞
V (M)

∫

M

c2δdv + n2‖H‖4∞‖X‖22

6 − n2

V (M)
‖H‖2∞

∫

M

c2δdv + n2‖H‖4∞‖X‖22 + 2nδ‖H‖2∞‖XT‖22

= −n2‖H‖2∞ + n2‖H‖2∞(‖H‖2∞ + δ)Jp(M)2 + 2nδ‖H‖2∞‖XT‖22
= n2‖H‖2∞ε+ 2nδ‖H‖2∞‖XT‖22

Now we conclude by applying the lemma 3.1 and (7). �

Lemma 3.3. Let W = |X|1/2
(

δX +Hcδν − h X
|X|

)

. If (Ip,ε) holds and if δ > 0,

then ‖W‖22 6 6hε. If δ < 0 and V (M)1/n‖H‖∞ 6 A then ‖W‖22 6
(

2h+ C(n)‖H‖2∞
h

An/2
)

ε.
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Proof. First we have

‖W‖22 6
1

V (M)

∫

M

(

|X||δX +Hcδν|2 − 2h〈δX +Hcδν,X〉+ h2|X|
)

dv

6
1

V (M)

∫

M

(

|X||δX +Hcδν|2 − 2h〈δX +Hcδν,X〉
)

dv + h2‖X‖2(8)

Let us compute the first term

1

V (M)

∫

M

|X||δX +Hcδν|2dv =
1

V (M)

∫

M

|X|
(

δ2|X|2 + 2δcδH〈X, ν〉+H2c2δ
)

dv

=
1

V (M)

∫

M

|X|
(

δ(1− c2δ) +H2(1− δs2δ)H
2 + 2δcδH〈X, ν〉

)

dv

=
1

V (M)

∫

M

|X|(H2 + δ − δ|HX − cδν|2)dv

6 h2‖X‖2 −
δ

V (M)

∫

M

|X||HX − cδν|2dv(9)

Now let us compute the last two terms of (8)

− 2h

V (M)

∫

M

〈δX +Hcδν,X〉dv + h2‖X‖2

6 − 2δh

V (M)

∫

M

s2δdv +
2h

nV (M)

∫

M

div (XT )cδdv −
2h

V (M)

∫

M

c2δdv + h2‖X‖2

= −2h+
2hδ

n
‖XT‖22 + h2‖X‖2

Therefore reporting this and (9) in (8), we get

‖W‖22 6 2hε+
2hδ

n
‖XT‖22 −

δ

V (M)

∫

M

|X||HX − cδν|2dv

Now if δ > 0 then ‖W‖22 6 6hε. If δ < 0 we have

‖W‖22 6 2hε+
|δ|

V (M)
‖X‖∞

∫

M

|HX − cδν|2dv

Moreover,
∫

M

|HX − cδν|2dv 6 ‖H‖2∞
∫

M

s2δdv − 2

∫

M

H〈X, ν〉cδdv +
∫

M

c2δdv

Now from the proof of (3) recalled in the preliminaries and the pinching condition
we have

‖H‖2∞
∫

M

s2δdv −
∫

M

H〈X, ν〉cδdv 6 nh2‖X‖22C 6 nV (M)ε

and
∫

M

c2δdv −
∫

M

H〈X, ν〉cδdv 6
1

n

∫

M

div (XT )cδdv = δV (M)‖XT‖22

Then we have proved that if δ < 0 then

‖W‖22 6 (2h+ n|δ|‖X‖∞)ε(10)
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Now the researched inequality is a straightforward consequence of the following
lemma

Lemma 3.4. If V (M)1/n‖H‖∞ 6 A then ‖X‖∞ 6 K(n)An/2‖X‖2.

�

The proof of the lemma 3.4 uses a Nirenberg-Moser type of proof (see [7]) based
on a Sobolev inequality due to Hoffman and Spruck (see [10], [11] and [12]) which
is available under the conditions on the injectivity radius of N and the volume of
M contained in the definition of HV (n,N).
Proof of the lemma 3.4: Let us put ϕ = |X|. An easy computation shows
that |dϕ2α| 6 2αϕ2α−1cδ. Then if δ > 0, |dϕ2α| 6 2αϕ2α−1. If not we have

|dϕ2α| 6 2αϕ2α−1
√

1− δs2δ 6 2α(1+
√

|δ|‖ϕ‖∞)ϕ2α−1 6 2α(1+‖H‖∞‖ϕ‖∞)ϕ2α−1.
Moreover since 1 6 (‖H‖2∞ + δ)‖X‖22 6 2‖H‖2∞‖X‖2∞ we deduce that for δ < 0 we
have |dϕ2α| 6 4αϕ2α−1‖H‖∞‖ϕ‖∞. Hence, using the Sobolev inequality (see [10],
[11] and [12])

‖f‖ n
n−1

6 K(n)V (M)
1
n

(

‖df‖1 + ‖Hf‖1
)

(11)

we get for any α > 1 and f = ϕ2α

‖ϕ‖2α2αn
n−1

6 K(n)V (M)1/n2α‖H‖∞‖ϕ‖∞‖ϕ‖2α−1
2α−1

Then putting ν = n
n−1

and α = ap+1
2

where ap+1 = (ap + 1)ν and a0 = 2 we have

‖ϕ‖
ap+1

ν
ap+1 6 K(n)V (M)

1
n (ap + 1)‖H‖∞‖ϕ‖∞‖ϕ‖apap

6 K(n)V (M)
1
nap‖H‖∞‖ϕ‖∞‖ϕ‖apap

Then by iterating we find

‖ϕ‖
ap+1

νp+1
ap+1 6

(

K(n)V (M)
1
nap‖H‖∞‖ϕ‖∞

)1/νp

‖ϕ‖
ap
νp
ap

6

(

p
∏

i=0

a
1

νi

i

)

(

K(n)V (M)
1
n‖H‖∞‖ϕ‖∞

)n(1− 1
νp+1 ) ‖ϕ‖a0a0

Now since ap
νp

converges to a0 + n and a0 = 2 we get

‖ϕ‖2∞ 6 C(n)
(

V (M)
1
n‖H‖∞

)n

‖ϕ‖22 6 C(n)An‖ϕ‖22

Let’s introduce now the function ψ = |X|1/2
∣

∣|X| − 1
h

∣

∣ = |X|1/2
∣

∣

∣
X − 1

h
X
|X|

∣

∣

∣
. We

will give an L2-estimate of ψ.

Lemma 3.5. If (Ip,ε) holds and δ > 0 then ‖ψ‖1 6 C
h3/2ε

1/2. If δ < 0 and

max(V (M)1/n‖H‖∞, ‖H‖∞
h

) 6 A then ‖ψ‖1 6 C(n)A1+n/4

h3/2 ε1/2.
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Proof. First we have

ψ = |X|1/2
∣

∣

∣

∣

1

h2
(h2X − δX −Hcδν) +

1

h2

(

δX +Hcδν − h
X

|X|

)
∣

∣

∣

∣

6
|X|1/2
nh2

|Y |+ 1

h2
|W |

Then by Hölder inequality we get

‖ψ‖1 6
1

h2

(

1

n
‖X‖1/22 ‖Y ‖2 + ‖W‖2

)

From Lemmas 3.2 and 3.3, we deduce easily the inequality for δ > 0 and for δ < 0
we get

‖ψ‖1 6
C(n)

h2

(‖H‖∞
h1/2

+ h1/2 +
‖H‖∞
h1/2

An/4

)

ε1/2

6
C(n)

h2
(Ah1/2 + h1/2 + A1+n/4h1/2)ε1/2

Now from (11) by taking f = 1 we see that

K(n) 6 V (M)1/n‖H‖∞ 6 A(12)

This allows us to obtain the desired inequality for δ < 0. �

Lemma 3.6. Let ε < 1 be a positive real number and let us assume that

V (M)1/n‖H‖∞ 6 A (resp. max(V (M)1/n‖H‖∞, ‖H‖∞
h

) 6 A for δ < 0). Then there
exist constants C := C(n) and α := α(n) so that if (Ip,ε) holds then

‖ψ‖∞ 6
CAα

h3/2
ε

1
2(2n+1)

Proof. Let α > 1 then

|dψ2α| = αψ2α−2|dψ2|

= αψ2α−2

∣

∣

∣

∣

|X| − 1

h

∣

∣

∣

∣

∣

∣

∣

∣

3|X| − 1

h

∣

∣

∣

∣

|d|X||

6 3αψ2α−2

(

‖X‖∞ +
1

h

)2

cδ

Proceeding as in the proof of Lemma 3.4 we find that |dψ2α| 6 αEψ2α−2 where

E = 3
(

‖X‖∞ + 1
h

)2
if δ > 0 and E = 3

(

‖X‖∞ + 1
h

)2
(1 + ‖H‖∞‖X‖∞) if not. It

follows that

‖ψ‖2α2αn
n−1

6 K(n)V (M)1/n(αE + ‖ψ‖2∞‖H‖∞)‖ψ‖2α−2
2α−2

Now we know that for δ > 0, ‖H‖∞ 6 h and δ
‖H‖2∞

6 1. Moreover, h 6 ‖H‖∞ for

δ < 0. From these facts we deduce that

‖ψ‖2α2αn
n−1

6 K(n)AαE ′‖ψ‖2α−2
2α−2
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where E ′ = E
h
+ ‖X‖∞

(

‖X‖∞ + 1
h

)2
. Now we put ap+1 = (ap + 2)ν with ν = n

n−1
,

a0 = 1 and α = ap+2
2

. Then noting that ap
νp

converges to a0 + 2n, the end of the
proof is similar to that Lemma 3.4 and we find

‖ψ‖1+2n
∞ 6 K(n)(AE ′)n‖ψ‖1

Now Lemma 3.4 and 3.5 combining with (12) allow us to conclude that ‖ψ‖∞ 6

K(n)A
α(n)

h3/2 ε
1

2(2n+1) . �

Lemma 3.7. Let ε < 1 be a positive real and let us assume that V (M)1/n‖H‖∞ 6 A

(resp. max(V (M)1/n‖H‖∞, ‖H‖∞
h

) 6 A for δ < 0). Then there exist constants

C := C(n) and α := α(n) so that if ε
1

2n+1 6 1
16(CAα)2

and (Ip,ε) holds then
∣

∣

∣

∣

|X| − 1

h

∣

∣

∣

∣

6
CAα

h
ε

1
2(2n+1) and

∣

∣

∣

∣

r − s−1
δ

(

1

h

)
∣

∣

∣

∣

6
CAα

h
ε

1
2(2n+1)

Proof. Consider the function f(t) = t
(

t− 1
h

)2
which is increasing on [0, 1

3h
] and

[ 1
h
,+∞) and decreasing on [ 1

3h
, 1
h
]. Then ‖ψ‖2∞ = ‖f(|X|)‖∞ 6

(CAα)2

h3 ε
1

2n+1 . If

(CAα)2ε
1

2n+1 6 1
27

then f(|X|) 6 1
27h3 < f

(

1
3h

)

. Now since ‖X‖22 > 1
h2 there exists

x0 ∈M so that |Xx0| > 1
2h
> 1

3h
and by connectedness ofM , it follows that |X| > 1

3h

over M . Then
∣

∣|X| − 1
h

∣

∣ 6
√
3CAα

h
ε

1
2(2n+1) . Moreover assume that (CAα)2ε

1
2n+1 6 1

48

in order to have
√
δ
h
< 1 for δ > 0. We have

∣

∣

∣

∣

r − s−1
δ

(

1

h

)
∣

∣

∣

∣

6

(

sup
I

1
√

1− δy2

)

∣

∣

∣

∣

|X| − 1

h

∣

∣

∣

∣

6
3
√
3CAα

h
ε

1
2(2n+1)

where I = R
+ for δ 6 0 and I = [0, 4

3
√
2δ
] for δ > 0. We obtain the desired result

by choosing the new constant C ′ = 3
√
3C. �

4. Proof of the diffeomorphism

From now we will need a dependence on the second fundamental form in order
to prove the diffeomorphism and the quasi-isometry.

Let us consider F : M −→ S
(

p, s−1
δ

(

1
h

))

x 7−→ expp

(

s−1
δ

(

1
h

)

Y
|Y |

)

, where Y = exp−1
p (x). For

more convenience we will put ̺ = s−1
δ

(

1
h

)

Y
|Y | .

Lemma 4.1. Let u ∈ TxM so that |u| = 1 and v = u− 〈u,∇Mr〉∇Nr. We have

1

h2sµ(r)2
|v|2 6 |dFx(u)|2 6

sµ
(

s−1
δ

(

1
h

))2

sδ(r)2
|v|2

Proof. An easy computation shows that

d

(

Y

|Y |

)

|x(u) =
1

r
d exp−1

p |x(u) −
dr(u)

r2
exp−1

p (x)
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Then we deduce that

dFx(u) = d expp |̺
(

s−1
δ

(

1

h

)

d

(

Y

|Y |

)

|x(u)
)

=
s−1
δ

(

1
h

)

r
d expp |̺

(

d exp−1
p |x(u)

)

− s−1
δ

(

1
h

)

dr(u)

r2
d expp |̺ (exp−1

p (x))

=
s−1
δ

(

1
h

)

r
d expp |̺

(

d exp−1
p |x(u)

)

− s−1
δ

(

1
h

)

dr(u)

r
∇Nr

∣

∣

F (x)

Now let us compute the norm of dFx(u). We have

|dFx(u)|2 =
s−1
δ

(

1
h

)2

r2

[

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2

−2〈d expp |̺
(

d exp−1
p |x(u)

)

,∇Nr〉F (x)dr(u) + dr(u)2
]

Now since expp is a radial isometry (see for instance [20]), we have

〈d expp |̺
(

d exp−1
p |x(u)

)

,∇Nr〉F (x) = 〈d exp−1
p |x(u) ,

Y

|Y | 〉 = 〈u,∇Nr〉x

and it follows that

|dFx(u)|2 =
s−1
δ

(

1
h

)2

r2

[

∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2 − 〈∇Mr, u〉2
]

(13)

Now
∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2
=
∣

∣d expp |̺ (d exp−1
p |x(v))

+〈u,∇Mr〉d expp |̺
(

d exp−1
p

∣

∣

x(∇Nr)
)
∣

∣

2

where v = u− 〈u,∇Mr〉∇Nr. Expending this expression we get
∣

∣d expp |̺
(

d exp−1
p |x(u)

)
∣

∣

2
=

∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2
+ 〈u,∇Mr〉2

∣

∣d expp |̺
(

d exp−1
p

∣

∣

x(∇Nr)
)
∣

∣

2

+ 2〈u,∇Mr〉〈d expp |̺ (d exp−1
p |x(v)), d expp |̺

(

d exp−1
p

∣

∣

x(∇Nr)
)

〉
=
∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2
+ 〈u,∇Mr〉2

where in the last equality we have used again the radial isometry property of the
exponential map. And reporting this in (13) we obtain

|dFx(u)|2 =
s−1
δ

(

1
h

)2

r2
∣

∣d expp |̺ (d exp−1
p |x(v))

∣

∣

2

Since µ 6 KN 6 δ the standard Jacobi field estimates (see for instance corollary
2.8, p 153 of [20]) say that for any vector w orthogonal to ∇Nr at y we have

|w|2 r2

sµ(r)2
6 |d exp−1

p |y(w) |2 6 |w|2 r2

sδ(r)2
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This gives

sδ(s
−1
δ

(

1
h

)

)2

r2
|d exp−1

p |x(v) |2 6 |dFx(u)|2 6
sµ(s

−1
δ

(

1
h

)

)2

r2
|d exp−1

p |x(v) |2

and applying again the standard Jacobi field estimates we obtain the desired in-
equalities of the lemma. �

From now we denote by D any constant of the form D := c if µ > 0 and
D := ccµ

(

c
h

)

for some positive constant c.

Lemma 4.2. Let u ∈ TxM so that |u| = 1.

1− ‖∇Mr‖2∞
h2s2δ(r)

6 |dFx(u)|2 6
1

h2s2δ(r)

(

1 +D

(

δ − µ

h2

))2

Proof. Let r > 0. For t ∈ (−∞, π2

9r2
], consider the function σr(t) = st(r). An easy

check yields that σr is C1 on (−∞, π2

9r2
] and

σ′
r(t) =















r3ct(r)
2

(√
tr−tan(

√
tr)

(
√
tr)3

)

if t ∈ (0, π2

9r2
]

− r3

6
if t = 0

r3ct(r)
2

(

−
√
−tr+tanh(

√
−tr)

(
√
−tr)3

)

if t ∈ (−∞, 0)

It follows that σr is decreasing on (−∞, π2

9r2
] and that there exists a constant E so

that |σ′
r(t)| 6 Er3ct(r), for any t ∈ (−∞, π2

9r2
]. From this we deduce that

0 6 sµ(r)− sδ(r) 6 Er3cµ(r)(δ − µ)(14)

From the lemma 3.7 and from the fact that 1
h
6 s−1

δ

(

1
h

)

and φ(M) ⊂ B
(

p, π
4
√
δ

)

for δ > 0, we see that s−1
δ

(

1
h

)

6 π
3
√
δ
. Then applying (14) to s−1

δ

(

1
h

)

we obtain that

sµ

(

s−1
δ

(

1

h

))

6
1

h

(

1 +D

(

δ − µ

h2

))

(15)

From (14), (15) and the lemma 4.1 we get the desired result. �

Lemma 4.3. Let ε < 1 , q > n and A be positive real numbers. Then
there exist constants C := C(q, n) , α := α(q, n) and β := β(q, n)
so that if max(V (M)1/n‖H‖∞, V (M)1/n‖B‖q) 6 A for δ > 0 (resp.

max(V (M)1/n‖H‖∞, ‖H‖∞
h

, V (M)1/n‖B‖q) 6 A for δ < 0), εβ 6 1
CAα and (Ip,ε)

holds then

‖XT‖∞ 6
CAα

h
Dαεβ

Proof. Put χ = |XT |. Then |dχ2α| = 2αχ2α−1(cδ(r)|∇Mr|2+ sδ(r)|d|∇Mr||). Let us
estimate |d|∇Mr|| at a point x. For this, consider (ei)16i6n an orthonormal basis at
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x. We have

|d|∇Mr||2 = 1

4|∇Mr|2 |d〈∇
Nr, ν〉2|2

=
〈∇Nr, ν〉2
|∇Mr|2

n
∑

i=1

(ei〈∇Nr, ν〉)2

=
〈∇Nr, ν〉2
|∇Mr|2

n
∑

i=1

(∇Ndr(ei, ν) +B(ei,∇Mr))2

6
2

|∇Mr|2

(

n
∑

i=1

∇Ndr(ei, ν)
2 + |B|2|∇Mr|2

)

Now
n
∑

i=1

∇Ndr(ei, ν)
2 6 |∇Ndr|2 6

n+1
∑

i=1

∇Ndr(ui, ui) where (ui)16i6n+1 is an or-

thonormal basis which diagonalizes ∇Ndr. From the comparison theorems (see for
instance [20] p 153) we deduce that

n+1
∑

i=1

∇Ndr(ui, ui)
2 6

(

cµ
sµ

)2 n+1
∑

i=1

|ui − 〈ui,∇Nr〉∇Nr|2 = n

(

cµ
sµ

)2

It follows that |d|∇Mr||2 6 2n

|∇Mr|2
(

cµ
sµ

)2

+ 2|B|2 and

|dχ2α| 6 2αχ2α−1C(n)

(

cδ +
sδ

|∇Mr|

(

cµ
sµ

)

+ sδ|B|
)

Now it is easy to see that sδ
sµ

is bounded by a constant. Then

|dχ2α| 6 2αχ2α−1C(n)

(

cδ + cµ
|∇Mr| + ‖X‖∞|B|

)

6 2αχ2α−1C(n)‖X‖∞
(

cδ + cµ
χ

+ |B|
)

6 2αχ2α−2C(n)‖X‖∞(cδ + cµ + ‖χ‖∞|B|)
6 2αC(n)‖X‖∞(E + ‖X‖∞|B|)χ2α−2

where E = 1 if µ > 0 and E = cµ(r) if not. Now let us assume that α > 1. Then

‖χ‖2α2αn
n−1

6 K(n)V (M)1/n2α(‖X‖∞E‖χ‖2α−2
2α−2 + ‖X‖2∞‖B‖q‖χ‖2α−2

(2α−2)q
q−1

)

6 K(n)A2α

(‖X‖∞
h

E + ‖X‖2∞
)

‖χ‖2α−2
(2α−2)q

q−1
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Now we put ν := n(q−1)
(n−1)q

, ap+1 := apν +
2n
n−1

, a0 = 2 and α := 1
2

(

q−1
q

)

ap + 1. Then

ap+1 =
2αn
n−1

and

‖χ‖
ap+1

νp+1
ap+1 6

(

K(n)Aap+1

(‖X‖∞
h

E + ‖X‖2∞
))

n
n−1

1
νp+1

‖χ‖
ap
νp
ap

6

(

p+1
∏

i=1

a
1

νi

i

)

n
n−1 (

K(n)A

(‖X‖∞
h

E + ‖X‖2∞
))

n
n−1

p+1
∑

i=1

1

νi ‖χ‖a0a0

Now noting that ap
νp

converges to a0 +
2nq
q−n

we get

‖χ‖∞ 6 C(n, q)

(

A

(‖X‖∞
h

E + ‖X‖2∞
))

γ
2(1+γ)

‖χ‖
1

1+γ

2

where γ := nq
q−n

. Now combining Lemmas 3.4 and 3.1 we obtain that

‖χ‖∞ 6 C(q, n)
Aα(q,n)(E + 1)α(q,n)

h
εβ(q,n)

Now we conclude the proof by noting that if µ < 0, then from Lemma 3.7 we have

E = cµ(r) 6 cosh

(√
µ

(

s−1
δ

(

1

h

)

+
CAα

h
ε

1
2(2n+1)

))

6 cosh

(√
µ

(

s−1
δ

(

1

h

)

+
1

4h

))

6 cµ

( c

h

)

�

We can now give the proof of Theorem 1.1.
Proof of Theorem 1.1: From the lemma 3.7 we have

1

h2s2δ(r)

(

1 +D

(

δ − µ

h2

))2

− 1 6

(

1 +D
(

δ−µ
h2

))2

(1− CAαε
1

2(2n+1) )2
− 1

6
4

3

(

2 +D

(

δ − µ

h2

)

− CAαε
1

2(2n+1)

)(

D

(

δ − µ

h2

)

+ CAαε
1

2(2n+1)

)

6 DCAα

(

1 +
δ − µ

εh2

)2

ε
1

2(2n+1)

On the other hand from Lemmas 3.4 and 4.3 we have

‖∇Mr‖2∞ 6
h2

(1− CAαε
1

2(2n+1) )2
‖XT‖2∞ 6

16

9
(CAα)2D2αε2β
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Then we deduce that

1− ‖∇Mr‖2∞
h2s2δ(r)

− 1 > −2(CAα)2D2αε2β + (1 + CAαε
1

2(2n+1) )2 − 1

(1 + CAαε
1

2(2n+1) )2

> −
(

2(CAα)2D2αε2β + 2CAαε
1

2(2n+1) + (CAα)2ε
1

2n+1

)

> −CAα′
(D2α + 1)εβ

′

It follows from this, the previous inequality and Lemma 4.2 that

||dFx(u)|2 − 1| 6 CAα′
max

(

(D2α + 1)εβ
′
,

(

1 +
δ − µ

εh2

)2

ε
1

2(2n+1)

)

6 CAα′
Dα′

εβ
′′

(

1 +
δ − µ

εh2

)2

From (5) we deduce that if φ(M) lies in a ball of center p and radius s−1
δ

(

√

ε
δ−µ

)

then ||dFx(u)|2 − 1| 6 CAα′
Dα′

εβ
′′
. Moreover it is easy to see that for δ > 0 then

D 6 c cosh c. For δ < 0, we conclude by noting that
(

√

|µ| c
h

)2

6 c2
(

δ−µ
εh2

)

+ c2 |δ|
h2 6

c2 + c2 |δ|
‖H‖2∞

A2 6 c2 (1 + A2).

Proof of Corollary 1.1: Since φ(M) lies in a convex ball of radius min
(

π
8
√
δ
, i(N)

2

)

,

we deduce that φ(M) ⊂ B(p0,min
(

π
4
√
δ
, i(N)

)

where p0 is the center of mass of

M . From Proposition 2.1 and the fact that fact that ε < 1/6 we know that (Ip0,6ε)
holds. Then we can apply Theorem 1.1.

5. Application to the stability

Briefly, we recall the problem of the stability of hypersurfaces with constant mean
curvature (see for instance [4]).

Let (Mn, g) be an oriented compact n -dimensional hypersurface isometrically
immersed by φ in a n+1-dimensional oriented manifold (Nn+1, h). We assume that
M is oriented by the global unit normal field ν so that ν is compatible with the
orientations of M and N . Let F : (−ε, ε) ×M −→ N be a variation of φ so that
F (0, .) = φ. We recall that the balance volume is the function V : (−ε, ε) −→ R

defined by
∫

[0,t]×M

F ⋆dvh

where dvh is the element volume associated to the metric h. It is well known that

V ′(0) =

∫

M

fdv

where f(x) = 〈∂F
∂t
(0, x), ν〉. Moreover the area function A(t) =

∫

M

dvF ⋆
t h

satisfies

A′(0) = −n
∫

M

Hfdv
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The balance volume V is said to be preserving volume if V (t) = V (0) in a neigh-

borhood of 0 ; in this case we have

∫

M

fdv = 0. Conversely, for all smooth func-

tion f so that

∫

M

fdv = 0, there exists a preserving volume variation so that

f = 〈∂F
∂t
(0, x), ν〉. The following assertions are equivalent

(1) The immersion φ is a critical point of the area (i.e. A′(0) = 0 ) for all
variation with preserving volume.

(2)

∫

M

Hfdv = 0 for any smooth function so that

∫

M

fdv = 0.

(3) There exists a constant H0 so that A′(0) + nH0V
′(0) = 0 for any variation.

(4) φ is of constant mean curvature H0.

An immersion with constant mean curvature H0 will be said stable if A′′(0) > 0 for
all preserving volume variation. Now we consider the function J(t) defined by

J(t) = A(t) + nH0V (t)

Then J ′′(0) is depending only on f and we have

J ′′(0) =

∫

M

|df |2dv −
∫

M

(RicN (ν, ν) + |B|2)f 2dv

where RicN is the Ricci curvature of N with respect to the metric h. It is known
that φ is a stable constant mean curvature immersion if and only if J ′′(0) > 0 for

any smooth function so that

∫

M

fdv = 0.

Remark 5.1. Note that the problem which we consider is more general that the
isoperimetric problem since the hypersurfaces which we consider are immersed and
not necessarily embedded.

Now let us give a proof of Theorem 1.2.
Proof of Theorem 1.2: Let f be the first eigenfunction associated to λ1(M). Since
∫

M

fdv = 0 then J ′′(0) > 0 and

λ1(M)

∫

M

f 2dv −
∫

M

(RicN (ν, ν) + nH2 + |τ |2)f 2dv > 0

where τ is the umbilicity tensor (i.e. τ = nHg−B). Since µ 6 KN 6 δ, we deduce
that

n(H2 + µ) 6 λ1(M) 6 n(H2 + δ)

In other words, we have the pinching condition

nh2 6 λ1(M)

(

1 +
1

h2

δ−µ
− 1

)

Let ε < 1/6. If φ(M) lies in a ball of radius R1 := s−1
δ

(

√

ε
2(δ−µ)

)

then (Λε)

is satisfied. Let p0 be the center of mass of M . Let R2 := s−1
δ

(

√

ε
δ−µ

)

and
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R3 := 1
2
s−1
δ

(

√

ε
2(δ−µ)

)

. Then R3 6 min
(

R1,
1
2
R2

)

. Therefore if φ(M) lies in a

convex ball of radius R3 we deduce that this ball contains p0 and φ(M) ⊂ B(p0, R2).
Moreover (Λε) is satisfied and we conclude with Corollary 1.1.

6. Application to the almost umbilic hypersurfaces

Theorems 1.3 and 1.4 are obtained by combining Theorem 1.1 and results of [2]
for the Euclidean case with an eigenvalue pinching theorem in almost positive Ricci
curvature due to Aubry ([1]). In the following theorem we denote Ric(x) the lowest
eigenvalue of the Ricci tensor Ric(x) at x ∈ M . Moreover for any function f , we
put f− = min(−f, 0).

Theorem 6.1. (Aubry) Let (Mn, g) be a complete n-dimensional Riemannian
manifold and r > n. If M has finite volume and

ρr =
1

kV (M)2/r

(
∫

M

(Ric− (n− 1)k)r/2− dv

)2/r

6 C(r, n)−2/r

then M is compact and λ1(M) > nk(1− C(r, n)ρr).

Proof of Theorems 1.3 and 1.4: Using Gauss formula and the fact that N is of
constant sectional curvature δ, we have

‖Ric− (n− 1)(H2 + δ)g‖r/2 = ‖Rφ
+ nHB − B2 − (n− 1)H2g − (n− 1)δg‖r/2

= ‖(n− 2)Hτ − τ 2‖r/2
6 (n− 2)‖H‖r‖τ‖r + ‖τ‖2r

Now, putting k = ‖H‖2s + δ for 2 6 r 6 s, we get

‖Ric− (n− 1)kg‖r/2 6 ‖Ric− (n− 1)(H2 + δ)g‖r/2 + (n− 1)
√
n
∥

∥H2 − ‖H‖2s
∥

∥

r/2

6 (n− 2)‖H‖r‖τ‖r + ‖τ‖2r + (n− 1)
√
n
∥

∥H2 − ‖H‖2s
∥

∥

r/2

If ‖τ‖r 6 ‖H‖rε and ‖H2 − ‖H‖2s‖r/2 6 ‖H‖2rε then

‖Ric− (n− 1)kg‖r/2 6 K(n)‖H‖2rε

for δ 6= 0 we choose s = ∞. If δ > 0 and ε 6 K(n, r) (resp. ε 6 K(n) h2

‖H‖2∞
for

δ < 0) the theorem 6.1 allows us to conclude that

λ1(M) > n(‖H‖2s + δ)(1− C(n, r)ε)

(resp.λ1(M) > n(‖H‖2∞ + δ)

(

1− C(n, r)
‖H‖2∞
h2

ε

)

for δ < 0)

Now the conclusion is immediate from Corollary 1.1 and [2].
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